
Concurrency Control

Remember

• A schedule is a sequence of actions (reads and writes) belonging to multiple
transactions.

• A serial schedule is a schedule in which transactions are not executed concur-
rently.

• Two actions in a schedule are in conflict if

1. They belong to the same transaction; or

2. they act upon the same element and one of them is a write

• A schedule is conflict-serializable if we can obtain a serial schedule by repeatedly
swapping non-conflicting actions.

Solution of the exercises 1



Concurrency Control

Remember

• Transaction T1 takes precedence over transaction T2 if there are two actions
A1 ∈ T1 and A2 ∈ T2 such that:

1. A1 is ahead of A2

2. Both actions are in conflict.

• The precedence graph of a schedule represents each transaction of the schedule
as node, and adds edge from T1 to T2 if T1 takes precedence over T2.

• The precedence graph is acyclic if and only if the schedule is conflict-serializable.

Solution of the exercises 2



Concurrency Control

Exercise 18.2.4 b

The schedule is:

r1(A);w1(B); r2(B);w2(C); r3(C);w3(A)

Task:

• Give the corresponding precedence graph.

• If possible, give an equivalent conflict-serializable schedule.

• Are there any serial schedules that must be equivalent, while not conflict equiv-
alent?

Solution of the exercises 3



Concurrency Control

Exercise 18.2.4 b

The schedule is:

r1(A);w1(B); r2(B);w2(C); r3(C);w3(A)

Hence, the precedence graph is:

T1 T2 T3

w1(B) < r2(B) w2(C) < r3(C)

r1(A) < w3(A)

The schedule is already serial and conflict-free. No other serial schedule is equiv-
alent (why?).

Solution of the exercises 4



Concurrency Control

Exercise 18.2.4 d

The schedule is:

r1(A); r2(A);w1(B);w2(B); r1(B); r2(B);w2(C);w1(D);

Task:

• Give the corresponding precedence graph.

• If possible, give an equivalent conflict-serializable schedule.

• Are there any serial schedules that must be equivalent, while not conflict equiv-
alent?

Solution of the exercises 5



Concurrency Control

Exercise 18.2.4 d

The schedule is:

r1(A); r2(A);w1(B);w2(B); r1(B); r2(B);w2(C);w1(D);

Hence, the precedence graph is:

T1 T2

w1(B) < w2(B)

w2(B) < r1(B)

This precedence graph contains a loop; the corresponding schedule is therefore
not conflict-serializable.

Solution of the exercises 6



Concurrency Control

Exercise 18.2.4 d

The schedule is:

r1(A); r2(A);w1(B);w2(B); r1(B); r2(B);w2(C);w1(D);

Let’s assume that the actions are as follows:

• T1 write 1 in B

• T2 write 42 in B

• T2 write the value read from B in C

• T1 write the value read from B in D

Let us further assume that there exist a serial schedule. In that schedule, inde-
pendently of whether T1 or T2 executes first, C will contain 42 and D will contain
1.

Here, where both C and D will contain 42. Hence, no serial schedule is equivalent
for all transaction.

Solution of the exercises 7



Concurrency Control

Exercise 18.2.4 e

The schedule is:

r1(A); r2(A); r1(B); r2(B); r3(A); r4(B);w1(A);w2(B)

Task:

• Give the corresponding precedence graph.

• If possible, give an equivalent conflict-serializable schedule.

• Are there any serial schedules that must be equivalent, while not conflict equiv-
alent?

Solution of the exercises 8



Concurrency Control

Exercise 18.2.4 e

The schedule is:

r1(A); r2(A); r1(B); r2(B); r3(A); r4(B);w1(A);w2(B)

Hence, the precedence graph is:

T3 T1 T2 T4

r2(A) < w1(A)

r3(A) < w1(A)

r1(B) < w2(B)

r4(B) < w2(B)

Solution of the exercises 9



Concurrency Control

Exercise 18.2.4 e

This precedence graph contains a loop; the corresponding schedule is therefore
not conflict-serializable.

An equivalent serial schedule could first contain T3 and T4, followed by T1 and
T2.

Let’s assume that both transactions T1 and T2 write (A + B). With the given
schedule, both A and B will take the same value.

If T1 is executed first (resp. second), B ← A+2B (resp. A← 2A+B). Hence,
no serial schedule is equivalent for all transaction.

Solution of the exercises 10



Concurrency Control

Remember

A timestamp-based scheduler stores for each transation T , a timestamp TS(T ),
and for For each database element X :

• RT(X): The highest timestamp of a transaction that read X

•WT(X): The highest timestamp of a transaction that wrote X

• C(X): A boolean value, true iff the most recent transaction to write X has
commited.

Such scheduler can allow a read/write request to proceed, or abort and restart
the transaction that made the request.

To abort a transaction, the the scheduler resets the value of X , and WT(X) to
their last values.

Solution of the exercises 11



Concurrency Control

Remember

The scheduler validates a read request rT (X) as follows:

• If C(X) if false, wait for C(X) to become true, or for the transaction that
wrote X to aborts.

• If C(X) is true and TS(T ) > WT(X), allow the read to proceed.

• Otherwise, abort and restart T .

Solution of the exercises 12



Concurrency Control

Remember

The scheduler validates a write request wT (X) as follows:

• If TS(T ) ≥ RT (X), and TS(T ) < WT (X), and C(X) is false, wait for
C(X) to become true, or for the transaction that wrote X to aborts.

• If TS(T ) ≥ RT (X), and TS(T ) < WT (X), and C(X) is true, allow the
write to proceed, but make no change to the database: X has already been
overwritten.

• If TS(T ) ≥ RT (X), and TS(T ) ≥ WT (X), allow the write to proceed.

• Otherwise, abort and restart T .

Solution of the exercises 13



Concurrency Control

Exercise 18.8.1 a

Given the following sequence of events:

st1; st2; r1(A); r2(B);w2(A);w1(B)

Task:

Tell what happens as each event occurs for a timestamp based scheduler.

Solution of the exercises 14



Concurrency Control

Exercise 18.8.1 a

Given the following sequence of events:

st1; st2; r1(A); r2(B);w2(A);w1(B)

• T1 starts first and hence gets a lower timestamp (e.g. TS(1) = 1, TS(2) = 2).

• The two first reads are allowed, and RT (A)← TS(1), RT (B)← TS(2).

•When w2(A) occurs it is allowed: RT (A) ≤ TS(2). Hence, WT (A) ←
TS(2), and C(A)← false.

• T2 can commit, and set C(A)← true.

• However, when w1(B) occurs, RT (B) � TS(1), and T1 is aborted.

Solution of the exercises 15



Concurrency Control

Exercise 18.8.1 c

Given the following sequence of events:

st1; st2; st3; r1(A); r3(B);w1(C); r2(B); r2(C);w3(B);w2(A)

Task:

Tell what happens as each event occurs for a timestamp based scheduler.

Solution of the exercises 16



Concurrency Control

Exercise 18.8.1 c

Given the following sequence of events:

st1; st2; st3; r1(A); r3(B);w1(C); r2(B); r2(C);w3(B);w2(A)

• Each transaction gets a timestamp in order of their start point.

• The two first reads succeed, and RT (A)← TS(1), RT (B)← TS(3).

• w1(C) is allowed: RT (C) ≤ TS(1). Hence, WT (C)← TS(1), and C(C)←
false. Then, T1 can commit.

• r2(B) is allowed: WT (B) ≤ TS(2). However, RT (B) needs not be updated.
Why?

• r2(C) is allowed, but T2 is paused until T1 has committed: WT (C) = TS(1) ≤
TS(2).

• w3(B) is allowed: RT (B) ≤ TS(3), and WT (B) ≤ TS(3). Then, T3 can
commit.

• w2(A) is allowed: RT (A) ≤ TS(2), and WT (A) ≤ TS(3). Then T2 can
commit.

Solution of the exercises 17



Concurrency Control

Exercise 18.8.2 a

Given the following sequence of events:

st1; st2; st3; st4;w1(A);w2(A);w3(A); r2(A); r4(A);

Tell what happens as each event occurs for (a) a multiversion timestamp scheduler,
and (b) a scheduler that does not maintain multiple versions.

• In a multiversion system, the three writes create three different versions of A.
When T2 reads A, it is given the value that it wrote itself. When T4 reads A,
it gets the value written by T3, since it was the last to write a value.

•With a scheduler that only maintains one version, T2 would be forced to abort.

Solution of the exercises 18



Concurrency Control

Remember

A validation-based scheduler stores for each transaction T :

• RS(T ): the set of element read by T

•WS(T ): the set of element written by T

• For each database element X :

A transaction first reads element in RS(T ), is then validated, and finally write
new values for items in WS(T ).

The scheduler may abort and restart T depending on its validation.

Solution of the exercises 19



Concurrency Control

Remember

To validate a transaction T , we use the following rules:

Consider all transactions U that already passed validation, but were not finished
when T started. T is valid if and only if:

RS(T ) ∩WS(U) = ∅

Consider all transactions U that already passed validation, but were not finished
when T started its validation. T is valid if and only if:

WS(T ) ∩WS(U) = ∅

Solution of the exercises 20



Concurrency Control

Exercise 18.9.1 c

Given the following sequence of events:

R1(A,B);R2(B,C);V1;R3(C,D);V3;W1(C);V2;W2(A);W3(D)

Task:

Tell what happens when the sequence is processed by a validation-based scheduler.

Solution of the exercises 21



Concurrency Control

Exercise 18.9.1 c

Given the following sequence of events:

R1(A,B);R2(B,C);V1;R3(C,D);V3;W1(C);V2;W2(A);W3(D)

• Reads of T1 and T2 are processed

• Validation of T1 is accepted (no other validated transaction)

• Reads of T3 are processed

• Validation of T3 is rejected (RS(T3) ∩WS(T1) = {C});

• T1 makes its writes and finishes.

• Validation of T2 is rejected (RS(T2) ∩WS(T1) = {C});

Solution of the exercises 22



Concurrency Control

Exercise 18.9.1 f

Given the following sequence of events:

R1(A,B);R2(B,C);R3(C);V1;V2;V3;W1(A);W2(C);W3(B)

Task:

Tell what happens when the sequence is processed by a validation-based scheduler.

Solution of the exercises 23



Concurrency Control

Exercise 18.9.1 f

Given the following sequence of events:

R1(A,B);R2(B,C);R3(C);V1;V2;V3;W1(A);W2(C);W3(B)

• All read requests are processed

• Validation of T1 is accepted (no other validated transaction)

• Validation of T2 is accepted (conditions satisfied)

• Validation of T3 is accepted (conditions satisfied)

• T1, T2, and T3 perform their writes

Solution of the exercises 24


