
Cost-based plan selection

Exercise 1.1

(refer to the handouts for the full exercise)

σa=1 AND b=2 AND d=3(R)

Give the best physical plan (index scan or table scan, possibly followed by a filter)
and the cost of the selection.

Solution of the exercises 1



Cost-based plan selection

Exercise 1.1

(refer to the handouts for the full exercise)

σa=1 AND b=2 AND d=3(R)

Give the best physical plan (index scan or table scan, possibly followed by a filter)
and the cost of the selection.

1. Cost of checking all conditions via a table scan + filter: B(R) = 1000 block
I/Os.

2. Cost of an index-scan for condition a = 1, followed by a filter: B(R)/V (R, a) =
1000/20 = 50 block I/Os.

3. Cost of an index-scan for condition b = 2, followed by a filter: T (R)/V (R, b) =
5000/1000 = 5 block I/Os.

4. Cost of an index-scan for condition d = 3, followed by a filter: T (R)/V (R, d) =
5000/500 = 10 block I/Os.

Hence, we select plan (3).

Solution of the exercises 2



Cost-based plan selection

Exercise 1.2

(refer to the handouts for the full exercise)

σa=1 AND b=2 AND c≥3(R)

Give the best physical plan (index scan or table scan, possibly followed by a filter)
and the cost of the selection.

1. Cost of checking all conditions via a table scan + filter: B(R) = 1000 block
I/Os.

2. Cost of an index-scan for condition a = 1, followed by a filter: B(R)/V (R, a) =
1000/20 = 50 block I/Os.

3. Cost of an index-scan for condition b = 2, followed by a filter: T (R)/V (R, b) =
5000/1000 = 5 block I/Os.

4. Cost of an index-scan for condition c ≥ 3, followed by a filter: T (R)/3 =
5000/3 = 1667 block I/Os.

Hence, we select plan (3).

Solution of the exercises 3



Cost-based plan selection

Exercise 1.3

(refer to the handouts for the full exercise)

σa=1 AND b≤2 AND c≥3(R)

Give the best physical plan (index scan or table scan, possibly followed by a filter)
and the cost of the selection.

1. Cost of checking all conditions via a table scan + filter: B(R) = 1000 block
I/Os.

2. Cost of an index-scan for condition a = 1, followed by a filter: B(R)/V (R, a) =
1000/20 = 50 block I/Os.

3. Cost of an index-scan for condition b ≤ 2, followed by a filter: T (R)/3 =
5000/3 = 1667 block I/Os.

4. Cost of an index-scan for condition c ≥ 3, followed by a filter: T (R)/3 =
5000/3 = 1667 block I/Os.

Hence, we select plan (2).

Solution of the exercises 4



Cost-based plan selection

Task

(refer to the handouts for the full exercise)

πD.dname,F.budget(σE.hobby=′yodeling′ AND E.sal≥59000(E) on σD.floor=1(D) on F )

Construct a sufficiently optimal physical query plan. Use disk I/Os as your opti-
mization metric.

Solution of the exercises 5



Cost-based plan selection

Task

πD.dname,F.budget(σE.hobby=′yodeling′ AND E.sal≥59000(E) on σD.floor=1(D) on F )

Solution plan

Note: We use a greedy approach

1. Find best plan for each selection individually

1. σE.hobby=′yodeling′ AND E.sal≥59000(E)

2. σD.floor=1(D)

2. Select the best pairwise join

1. σE.hobby=′yodeling′ AND E.sal≥59000(E) ./ σD.floor=1(D)

2. σE.hobby=′yodeling′ AND E.sal≥59000(E) ./ F

3. σD.floor=1(D) ./ F

3. Join the previously selected first join with the third, remaining relation

Solution of the exercises 6



Cost-based plan selection

Solution

Subexpression:
σE.hobby=′yodeling′ AND E.sal≥59000(E)

Possibilities:

1. Use clustered BTree index on E.sal, then filter on E.hobby

2. Scan the table and filter on both conditions

Solution of the exercises 7



Cost-based plan selection

Solution

Subexpression:
σE.hobby=′yodeling′ AND E.sal≥59000(E)

First possibility: we use the clustered BTree index on E.sal to get the records
such that E.sal ≥ 59000, and a filter is applied to retain those with the correct
hobby.

The number of tuples that satisfy the salary requirement is:
60000− 59000

60000− 10000
selectivity × 50000 employees = 1000 tuples

Hence, the index scan has a cost of 18 block I/Os (rounding up):

1000 tuples⌊
2048 bytes/block
35 bytes/tuple

⌋ = 18 blocks

The filtering can be performed on the fly without any supplemental I/O.

Solution of the exercises 8



Cost-based plan selection

Solution

Subexpression
σE.hobby=′yodeling′ AND E.sal≥59000(E)

Second possibility: we forget about the index, and do the selection by scanning
the table and filtering. This has a cost of B(E) I/Os (rounding up):

B(E) =
50000 tuples⌊
2048 bytes/block
35 bytes/tuple

⌋ = 863 blocks

Solution of the exercises 9



Cost-based plan selection

Solution

Subexpression:
σE.hobby=′yodeling′ AND E.sal≥59000(E)

Possibilities:

1. Use clustered BTree index on E.sal, then filter on E.hobby (18 blocks)

2. Scan the table and filter on both conditions (863 blocks)

Intermediate result:

• The first method is indeed better than the second one.

• The estimated number of tuples in the output of this subexpression is:

60000− 59000

60000− 10000
× 1

200
× 50000 tuples = 5 tuples

Solution of the exercises 10



Cost-based plan selection

Solution

Subexpression
σD.floor=1(D)

Possibilities:

1. Use the index

2. Scan the table and filter on condition

Solution of the exercises 11



Cost-based plan selection

Solution

Subexpression
σD.floor=1(D)

First possibility: use the index. The number of tuples that satisfy the selection
condition is:

T (D)

V (D, floor)
=

5000

2
= 2500

Since the index is not clustered, this approach has a cost of 2500 block I/Os.

Second possibility: a table scan followed by a filter. This costs B(D) block
I/Os (rounding up).

B(D) =
5000 tuples⌊
2048 bytes/block
40 bytes/tuple

⌋ = 99 blocks

The second possibility is indeed better than the first and is therefore preferred.

The estimated number of tuples in the output of this subexpression is 2500.

Solution of the exercises 12



Cost-based plan selection

Solution

Now, we must determine an ordering for the joins.

1. σE.hobby=′yodeling′ AND E.sal≥59000(E) ./ σD.floor=1(D)

2. σE.hobby=′yodeling′ AND E.sal≥59000(E) ./ F

3. σD.floor=1(D) ./ F

Solution of the exercises 13



Cost-based plan selection

Solution

Now, we must determine an ordering for the joins. We consider first all pairs of
joins and keep those with the smallest cost.

σE.hobby=′yodeling′ AND E.sal≥59000(E)︸ ︷︷ ︸
e1

and σD.floor=1(D)︸ ︷︷ ︸
e2

Note that there are only 8 buffers remaining, since we need 1 to execute the
selection in e1 and 1 for the selection in e2.

The output of e1 contains only 5 tuples, and can therefore be computed in 1
block. Since 1 = B(e1) ≤M = 8, we can apply the one-pass join algorithm. Its
cost is

B(e1) +B(e2) = 1 +
2500 tuples⌊
2048 bytes/block
40 bytes/tuple

⌋ = 51 block I/Os

Also, because there is no index on e1 and e2, we cannot apply index-based joins.
The other join algorithms (nested loop, sort-join, hash-join) are always less efficient
than the one-pass algorithm.

Solution of the exercises 14



Cost-based plan selection

Solution

Second pair of joins:

σE.hobby=′yodeling′ AND E.sal≥59000(E)︸ ︷︷ ︸
e1

and F

We have 9 buffers at our disposal, given that we need 1 buffers for the selection in
e1. Just as for the first join pair, we can apply the one-pass join since the output
of e1 fits in 1 block. The actual cost is:

B(e1) +B(F ) = 1 +
5000⌊
2048
15

⌋ = 38 I/O’s

It is also possible to use an index-join, since we have a clustered BTree on F.did.
This method has a cost of:

B(e1) + T (e1)×
⌈

B(F )

V (F, did)

⌉
= 1 + 5 = 6 I/O’s

Here, the index-join is therefore preferred.

Solution of the exercises 15



Cost-based plan selection

Solution

Third join pair:
σD.floor=1(D)︸ ︷︷ ︸

e2

and F

We have 9 buffers at out disposal, given that we need 1 buffer to perform the
selection in e2. It is not possible to use the one-pass join algorithm. The non-
optimized version of the sort-merge join costs:

2B(e2) dlogM B(e2)e + 2B(F ) dlogM B(F )e +B(e2) +B(F )

= 2× 50× 2 + 2× 37× 2 + 50 + 37

= 435 I/O’s

We cannot use the optimization here, since there is not enough memory to perform
the last merge of the merge-sort along with that of the sort-join:

10 necessary buffers =

⌈
B(e2)

M

⌉
+

⌈
B(F )

M

⌉
6≤M = 9 available buffers

Solution of the exercises 16



Cost-based plan selection

Solution

In fact, we have a clustered B-tree index on F.did. It ensues that F is already
sorted on this join attribute. Given that we just have to sort e2, the cost is:

2B(e2) dlogM B(e2)e +B(e2) +B(F )

= 2× 50× 2 + 50 + 37

= 287 I/Os

Here, we can perform the last merge of the merge-sort together with that of the
sort-join:

7 necessary buffers =

⌈
B(e2)

M

⌉
+ 1 ≤M = 9 available buffers

The best cost we can achieve for our sort-merge join is therefore:

2B(e2)(dlogM B(e2)e − 1) +B(e2) +B(F ) = 187 I/Os

Solution of the exercises 17



Cost-based plan selection

Solution

The cost of a hash-join is:

2B(e2) dlogM−1B(F )− 1e + 2B(F ) dlogM−1B(F )− 1e +B(e2) +B(F )

= 2× 50× 1 + 2× 37× 1 + 50 + 37

= 261 I/O’s

It is also possible to use an index-join, using the clustered Btree index on F.did.
This method has a cost of:

B(e2) + T (e2)×
⌈

B(F )

V (F, did)

⌉
= 50 + 2500×

⌈
37

5000

⌉
= 2550 I/O’s

(Notice that there is no index available on e2, hence we cannot perform an index-
join with e2 as the inner relation)

Here, the optimized sort-merge join (using the sorted index) is therefore preferred.

Solution of the exercises 18



Cost-based plan selection

Solution

The join-pair with the least cost is therefore:

σE.hobby=′yodeling′ AND E.sal≥59000(E) and F︸ ︷︷ ︸
e3

Where an index-join on F.did is used. Therefore, only 2 buffers are necessary
(why?).

The estimated number of tuples in the output of this join is:

T (e1)× T (F )
max(V (e1, did), V (F, did))

=
5× 5000

5000
= 5

Solution of the exercises 19



Cost-based plan selection

Solution

We still need to find the best way to join e3 with e2

σE.hobby=′yodeling′ AND E.sal≥59000(E) on F︸ ︷︷ ︸
e3

and σD.floor=1(D)︸ ︷︷ ︸
e2

For the computation of e3 we use 2 buffers for the index-join. Hence, only 8
buffers remain available.

The output of e3 contains only 5 tuples. The size of a tuple of e3 is evaluated to
15 + 35 bytes. Thus, the output of e3 fits in one block. Given that 1 = B(e3) ≤
M = 8, a one-pass join is possible. The cost thereof is:

B(e3) +B(e2) = 1 +
2500⌊
2048
40

⌋ = 51

There is no index on the intermediate result. An index-join is therefore not to be
considered. The other join methods cost always more than the one-pass algorithm.

Hence, the one-pass algorithm is preferred to perform the join between e3 and e2.

Solution of the exercises 20



Cost-based plan selection

Solution

The projection πD.dname,F.budget can be performed on the fly at the same time as
the last join.

Notice that we did not need to materialize any of the intermediate results.

Solution of the exercises 21


