Exercise 1.1

(refer to the handouts for the full exercise)

$$\sigma_{a=1 \text{ AND } b=2 \text{ AND } d=3}(R)$$

Give the best physical plan (index scan or table scan, possibly followed by a filter) and the cost of the selection.

Exercise 1.1

(refer to the handouts for the full exercise)

$$\sigma_{a=1 \text{ AND } b=2 \text{ AND } d=3}(R)$$

Give the best physical plan (index scan or table scan, possibly followed by a filter) and the cost of the selection.

- 1. Cost of checking all conditions via a table scan + filter: B(R) = 1000 block I/Os.
- 2. Cost of an index-scan for condition a = 1, followed by a filter: B(R)/V(R, a) = 1000/20 = 50 block I/Os.
- 3. Cost of an index-scan for condition b = 2, followed by a filter: T(R)/V(R, b) = 5000/1000 = 5 block I/Os.
- 4. Cost of an index-scan for condition d = 3, followed by a filter: T(R)/V(R, d) = 5000/500 = 10 block I/Os.

Hence, we select plan (3).

Exercise 1.2

(refer to the handouts for the full exercise)

$$\sigma_{a=1 \text{ AND } b=2 \text{ AND } c \geq 3}(R)$$

Give the best physical plan (index scan or table scan, possibly followed by a filter) and the cost of the selection.

- 1. Cost of checking all conditions via a table scan + filter: B(R) = 1000 block I/Os.
- 2. Cost of an index-scan for condition a = 1, followed by a filter: B(R)/V(R, a) = 1000/20 = 50 block I/Os.
- 3. Cost of an index-scan for condition b = 2, followed by a filter: T(R)/V(R, b) = 5000/1000 = 5 block I/Os.
- 4. Cost of an index-scan for condition $c \ge 3$, followed by a filter: T(R)/3 = 5000/3 = 1667 block I/Os.

Hence, we select plan (3).

Exercise 1.3

(refer to the handouts for the full exercise)

$$\sigma_{a=1 \text{ AND } b \leq 2 \text{ AND } c \geq 3}(R)$$

Give the best physical plan (index scan or table scan, possibly followed by a filter) and the cost of the selection.

- 1. Cost of checking all conditions via a table scan + filter: B(R) = 1000 block I/Os.
- 2. Cost of an index-scan for condition a = 1, followed by a filter: B(R)/V(R, a) = 1000/20 = 50 block I/Os.
- 3. Cost of an index-scan for condition $b \le 2$, followed by a filter: T(R)/3 = 5000/3 = 1667 block I/Os.
- 4. Cost of an index-scan for condition $c \ge 3$, followed by a filter: T(R)/3 = 5000/3 = 1667 block I/Os.

Hence, we select plan (2).

Task

(refer to the handouts for the full exercise)

 $\pi_{\texttt{D.dname,F.budget}}(\sigma_{\texttt{E.hobby='yodeling' AND E.sal} \geq 59000}(E) \bowtie \sigma_{\texttt{D.floor}=1}(D) \bowtie F)$

Construct a sufficiently optimal physical query plan. Use disk I/Os as your optimization metric.

Task

 $\pi_{\texttt{D.dname,F.budget}}(\sigma_{\texttt{E.hobby}=\texttt{'yodeling' AND E.sal} \geq 59000}(E) \bowtie \sigma_{\texttt{D.floor}=1}(D) \bowtie F)$

Solution plan

Note: We use a greedy approach

- 1. Find best plan for each selection individually 1. $\sigma_{\text{E.hobby}='\text{yodeling'} \text{ AND } \text{E.sal} \ge 59000}(E)$ 2. $\sigma_{\text{D.floor}=1}(D)$
- 2. Select the best pairwise join

1.
$$\sigma_{\text{E.hobby}='\text{yodeling' AND E.sal} \geq 59000}(E) \Join \sigma_{\text{D.floor}=1}(D)$$

2. $\sigma_{\text{E.hobby}='\text{yodeling' AND E.sal} \geq 59000}(E) \Join F$
3. $\sigma_{\text{D.floor}=1}(D) \Join F$

3. Join the previously selected first join with the third, remaining relation

Solution

Subexpression:

```
\sigma_{\texttt{E.hobby}=\texttt{'yodeling'} \text{ AND } \texttt{E.sal} \geq 59000}(E)
```

Possibilities:

- 1. Use clustered BTree index on E.sal, then filter on E.hobby
- 2. Scan the table and filter on both conditions

Solution

Subexpression:

```
\sigma_{\texttt{E.hobby}=\texttt{'yodeling'} \text{ AND } \texttt{E.sal} \geq 59000}(E)
```

First possibility: we use the clustered BTree index on E.sal to get the records such that $E.sal \ge 59000$, and a filter is applied to retain those with the correct hobby.

The number of tuples that satisfy the salary requirement is:

 $\frac{60000 - 59000}{60000 - 10000}$ selectivity $\times 50000$ employees = 1000 tuples

Hence, the index scan has a cost of 18 block I/Os (rounding up):

 $\frac{1000 \text{ tuples}}{\left\lfloor \frac{2048 \text{ bytes/block}}{35 \text{ bytes/tuple}} \right\rfloor} = 18 \text{ blocks}$

The filtering can be performed on the fly without any supplemental I/O.

Solution

Subexpression

$$\sigma_{\texttt{E.hobby}=\texttt{'yodeling'} \text{ AND } \texttt{E.sal} \geq 59000}(E)$$

Second possibility: we forget about the index, and do the selection by scanning the table and filtering. This has a cost of B(E) I/Os (rounding up):

$$B(E) = \frac{50000 \text{ tuples}}{\left\lfloor \frac{2048 \text{ bytes/block}}{35 \text{ bytes/tuple}} \right\rfloor} = 863 \text{ blocks}$$

Solution

Subexpression:

 $\sigma_{\rm E.hobby='yodeling'\;AND\;E.sal\geq 59000}(E)$

Possibilities:

- 1. Use clustered BTree index on E.sal, then filter on E.hobby (18 blocks)
- 2. Scan the table and filter on both conditions (863 blocks)

Intermediate result:

- The first method is indeed better than the second one.
- The estimated number of tuples in the output of this subexpression is:

 $\frac{60000 - 59000}{60000 - 10000} \times \frac{1}{200} \times 50000 \text{ tuples} = 5 \text{ tuples}$

Solution

Subexpression

 $\sigma_{\mathtt{D.floor}=1}(D)$

Possibilities:

- 1. Use the index
- 2. Scan the table and filter on condition

Solution

Subexpression

 $\sigma_{\mathtt{D.floor}=1}(D)$

First possibility: use the index. The number of tuples that satisfy the selection condition is:

$$\frac{T(D)}{V(D, \texttt{floor})} = \frac{5000}{2} = 2500$$

Since the index is not clustered, this approach has a cost of 2500 block I/Os.

Second possibility: a table scan followed by a filter. This costs B(D) block I/Os (rounding up).

$$B(D) = \frac{5000 \text{ tuples}}{\left\lfloor \frac{2048 \text{ bytes/block}}{40 \text{ bytes/tuple}} \right\rfloor} = 99 \text{ blocks}$$

The second possibility is indeed better than the first and is therefore preferred. The estimated number of tuples in the output of this subexpression is 2500.

Solution

Now, we must determine an ordering for the joins.

- 1. $\sigma_{\text{E.hobby}='\text{yodeling'} \text{ AND } \text{E.sal} \ge 59000}(E) \bowtie \sigma_{\text{D.floor}=1}(D)$
- 2. $\sigma_{\text{E.hobby}='\text{yodeling'} \text{ AND } \text{E.sal} \geq 59000}(E) \Join F$
- $\textbf{3. } \sigma_{\texttt{D.floor}=1}(D) \bowtie F$

Solution

Now, we must determine an ordering for the joins. We consider first all pairs of joins and keep those with the smallest cost.

$$\underbrace{\sigma_{\texttt{E.hobby}='\texttt{yodeling'} \texttt{AND } \texttt{E.sal} \geq 59000(E)}_{e_1} \text{ and } \underbrace{\sigma_{\texttt{D.floor}=1}(D)}_{e_2}$$

Note that there are only 8 buffers remaining, since we need 1 to execute the selection in e_1 and 1 for the selection in e_2 .

The output of e_1 contains only 5 tuples, and can therefore be computed in 1 block. Since $1 = B(e_1) \le M = 8$, we can apply the one-pass join algorithm. Its cost is

$$B(e_1) + B(e_2) = 1 + \frac{2500 \text{ tuples}}{\left\lfloor \frac{2048 \text{ bytes/block}}{40 \text{ bytes/tuple}} \right\rfloor} = 51 \text{ block I/Os}$$

Also, because there is no index on e_1 and e_2 , we cannot apply index-based joins. The other join algorithms (nested loop, sort-join, hash-join) are always less efficient than the one-pass algorithm.

Solution

Second pair of joins:

$$\underbrace{\sigma_{\text{E.hobby}='\text{yodeling'} \text{ AND } \text{E.sal} \geq 59000}_{e_1}(E)}_{e_1} \text{ and } F$$

We have 9 buffers at our disposal, given that we need 1 buffers for the selection in e_1 . Just as for the first join pair, we can apply the one-pass join since the output of e_1 fits in 1 block. The actual cost is:

$$B(e_1) + B(F) = 1 + \frac{5000}{\left\lfloor\frac{2048}{15}\right\rfloor} = 38 \text{ I/O's}$$

It is also possible to use an index-join, since we have a clustered BTree on F.did. This method has a cost of:

$$B(e_1) + T(e_1) \times \left\lceil \frac{B(F)}{V(F, \operatorname{did})} \right\rceil = 1 + 5 = 6 \operatorname{I/O's}$$

Here, the index-join is therefore preferred.

Solution

Third join pair:

$$\underbrace{\sigma_{\mathtt{D.floor}=1}(D)}_{e_2} \text{ and } F$$

We have 9 buffers at out disposal, given that we need 1 buffer to perform the selection in e_2 . It is not possible to use the one-pass join algorithm. The non-optimized version of the sort-merge join costs:

$$2B(e_2) \lceil \log_M B(e_2) \rceil + 2B(F) \lceil \log_M B(F) \rceil + B(e_2) + B(F) = 2 \times 50 \times 2 + 2 \times 37 \times 2 + 50 + 37 = 435 \text{ I/O's}$$

We cannot use the optimization here, since there is not enough memory to perform the last merge of the merge-sort along with that of the sort-join:

10 necessary buffers =
$$\left\lceil \frac{B(e_2)}{M} \right\rceil + \left\lceil \frac{B(F)}{M} \right\rceil \not\leq M = 9$$
 available buffers

Solution

In fact, we have a clustered B-tree index on F.did. It ensues that F is already sorted on this join attribute. Given that we just have to sort e_2 , the cost is:

$$2B(e_2) \lceil \log_M B(e_2) \rceil + B(e_2) + B(F) = 2 \times 50 \times 2 + 50 + 37 = 287 \text{ I/Os}$$

Here, we can perform the last merge of the merge-sort together with that of the sort-join:

7 necessary buffers =
$$\left\lceil \frac{B(e_2)}{M} \right\rceil + 1 \le M = 9$$
 available buffers

The best cost we can achieve for our sort-merge join is therefore:

$$2B(e_2)(\lceil \log_M B(e_2) \rceil - 1) + B(e_2) + B(F) = 187 \text{ I/Os}$$

Solution

The cost of a hash-join is:

$$\begin{split} & 2B(e_2) \left\lceil \log_{M-1} B(\pmb{F}) - 1 \right\rceil + 2B(F) \left\lceil \log_{M-1} B(F) - 1 \right\rceil + B(e_2) + B(F) \\ &= 2 \times 50 \times 1 + 2 \times 37 \times 1 + 50 + 37 \\ &= 261 \text{ I/O's} \end{split}$$

It is also possible to use an index-join, using the clustered Btree index on F.did. This method has a cost of:

$$B(e_2) + T(e_2) \times \left[\frac{B(F)}{V(F, \text{did})}\right] = 50 + 2500 \times \left[\frac{37}{5000}\right] = 2550 \text{ I/O's}$$

(Notice that there is no index available on e_2 , hence we cannot perform an indexjoin with e_2 as the inner relation)

Here, the optimized sort-merge join (using the sorted index) is therefore preferred.

Solution

The join-pair with the least cost is therefore:

$$\underbrace{\sigma_{\texttt{E.hobby}='\texttt{yodeling'} \texttt{ AND } \texttt{E.sal} \geq 59000}_{e_3}(E) \texttt{ and } F}_{e_3}$$

Where an index-join on F.did is used. Therefore, only 2 buffers are necessary (why?).

The estimated number of tuples in the output of this join is:

$$\frac{T(e_1) \times T(F)}{\max(V(e_1, \text{did}), V(F, \text{did}))} = \frac{5 \times 5000}{5000} = 5$$

Solution

We still need to find the best way to join e_3 with e_2

$$\underbrace{\sigma_{\texttt{E.hobby}='\texttt{yodeling'} \texttt{ AND } \texttt{E.sal} \geq 59000(E) \Join F}_{e_3} \texttt{ and } \underbrace{\sigma_{\texttt{D.floor}=1}(D)}_{e_2}$$

For the computation of e_3 we use 2 buffers for the index-join. Hence, only 8 buffers remain available.

The output of e_3 contains only 5 tuples. The size of a tuple of e_3 is evaluated to 15 + 35 bytes. Thus, the output of e_3 fits in one block. Given that $1 = B(e_3) \le M = 8$, a one-pass join is possible. The cost thereof is:

$$B(e_3) + B(e_2) = 1 + \frac{2500}{\left\lfloor \frac{2048}{40} \right\rfloor} = 51$$

There is no index on the intermediate result. An index-join is therefore not to be considered. The other join methods cost always more than the one-pass algorithm. Hence, the one-pass algorithm is preferred to perform the join between e_3 and e_2 .

Solution

The projection $\pi_{D.dname,F.budget}$ can be performed on the fly at the same time as the last join.

Notice that we did not need to materialize any of the intermediate results.