Cost-based plan selection

Exercise 1.1

(refer to the handouts for the full exercise)

$$
\sigma_{a=1} \text { AND } b=2 \text { AND } d=3(R)
$$

Give the best physical plan (index scan or table scan, possibly followed by a filter) and the cost of the selection.

Cost-based plan selection

Exercise 1.1

(refer to the handouts for the full exercise)

$$
\sigma_{a=1} \text { AND } b=2 \text { AND } d=3(R)
$$

Give the best physical plan (index scan or table scan, possibly followed by a filter) and the cost of the selection.

1. Cost of checking all conditions via a table scan + filter: $B(R)=1000$ block I/Os.
2. Cost of an index-scan for condition $a=1$, followed by a filter: $B(R) / V(R, a)=$ $1000 / 20=50$ block I/Os.
3. Cost of an index-scan for condition $b=2$, followed by a filter: $T(R) / V(R, b)=$ $5000 / 1000=5$ block I/Os.
4. Cost of an index-scan for condition $d=3$, followed by a filter: $T(R) / V(R, d)=$ $5000 / 500=10$ block I/Os.

Hence, we select plan (3).

Cost-based plan selection

Exercise 1.2

(refer to the handouts for the full exercise)

$$
\sigma_{a=1} \text { AND } b=2 \text { AND } c \geq 3(R)
$$

Give the best physical plan (index scan or table scan, possibly followed by a filter) and the cost of the selection.

1. Cost of checking all conditions via a table scan + filter: $B(R)=1000$ block I/Os.
2. Cost of an index-scan for condition $a=1$, followed by a filter: $B(R) / V(R, a)=$ $1000 / 20=50$ block I/Os.
3. Cost of an index-scan for condition $b=2$, followed by a filter: $T(R) / V(R, b)=$ $5000 / 1000=5$ block I/Os.
4. Cost of an index-scan for condition $c \geq 3$, followed by a filter: $T(R) / 3=$ $5000 / 3=1667$ block I/Os.

Hence, we select plan (3).

Cost-based plan selection

Exercise 1.3

(refer to the handouts for the full exercise)

$$
\sigma_{a=1} \text { AND } b \leq 2 \text { AND } c \geq 3(R)
$$

Give the best physical plan (index scan or table scan, possibly followed by a filter) and the cost of the selection.

1. Cost of checking all conditions via a table scan + filter: $B(R)=1000$ block I/Os.
2. Cost of an index-scan for condition $a=1$, followed by a filter: $B(R) / V(R, a)=$ $1000 / 20=50$ block I/Os.
3. Cost of an index-scan for condition $b \leq 2$, followed by a filter: $T(R) / 3=$ $5000 / 3=1667$ block I/Os.
4. Cost of an index-scan for condition $c \geq 3$, followed by a filter: $T(R) / 3=$ $5000 / 3=1667$ block I/Os.

Hence, we select plan (2).

Cost-based plan selection

Task

(refer to the handouts for the full exercise)
$\pi_{\text {D.dname,F.budget }}\left(\sigma_{\text {E.hobby='yodeling' }}\right.$ AND E.sal $\left.\geq 59000(E) \bowtie \sigma_{\text {D.floor }=1}(D) \bowtie F\right)$
Construct a sufficiently optimal physical query plan. Use disk I/Os as your optimization metric.

Cost-based plan selection

Task

$\pi_{\text {D.dname,F.budget }}\left(\sigma_{\text {E.hobby='yodeling' }}\right.$ AND E.sal $\left.\geq 59000(E) \bowtie \sigma_{\text {D.floor }=1}(D) \bowtie F\right)$

Solution plan

Note: We use a greedy approach

1. Find best plan for each selection individually
2. $\sigma_{\text {E.hobby }=\text { 'yodeling' }}$ AND E.sal $\geq 59000(E)$
3. $\sigma_{\text {D.floor }=1}(D)$
4. Select the best pairwise join
5. $\sigma_{\text {E.hobby='yodeling' }}$ AND E.sal $\geq 59000(E) \bowtie \sigma_{\text {D.floor }=1}(D)$
6. $\sigma_{\text {E.hobby='yodeling' }}$ AND E.sal $\geq 59000(E) \bowtie F$
7. $\sigma_{\text {D.floor }=1}(D) \bowtie F$
8. Join the previously selected first join with the third, remaining relation

Cost-based plan selection

Solution

Subexpression:

$$
\sigma_{\text {E.hobby='yodeling' }} \text { AND E.sal } \geq 59000(E)
$$

Possibilities:

1. Use clustered BTree index on E.sal, then filter on E.hobby
2. Scan the table and filter on both conditions

Cost-based plan selection

Solution

Subexpression:

$$
\sigma_{\text {E.hobby='yodeling' }} \text { AND E.sal } \geq 59000(E)
$$

First possibility: we use the clustered BTree index on E.sal to get the records such that E.sal ≥ 59000, and a filter is applied to retain those with the correct hobby.

The number of tuples that satisfy the salary requirement is:

$$
\frac{60000-59000}{60000-10000} \text { selectivity } \times 50000 \text { employees }=1000 \text { tuples }
$$

Hence, the index scan has a cost of 18 block I/Os (rounding up):

$$
\frac{1000 \text { tuples }}{\left\lfloor\frac{2048 \text { bytes/block }}{35 \text { bytes/tuple }}\right\rfloor}=18 \text { blocks }
$$

The filtering can be performed on the fly without any supplemental I/O.

Cost-based plan selection

Solution

Subexpression

$$
\sigma_{\text {E.hobby='yodeling' }} \text { AND E.sal } \geq 59000(E)
$$

Second possibility: we forget about the index, and do the selection by scanning the table and filtering. This has a cost of $B(E) \mathrm{I} / \mathrm{Os}$ (rounding up):

$$
B(E)=\frac{50000 \text { tuples }}{\left\lfloor\frac{2048 \text { bytes/block }}{35 \text { bytes/tuple }}\right\rfloor}=863 \text { blocks }
$$

Cost-based plan selection

Solution

Subexpression:

$$
\sigma_{\text {E.hobby='yodeling' AND E.sal } \geq 59000}(E)
$$

Possibilities:

1. Use clustered BTree index on E.sal, then filter on E.hobby (18 blocks)
2. Scan the table and filter on both conditions (863 blocks)

Intermediate result:

- The first method is indeed better than the second one.
- The estimated number of tuples in the output of this subexpression is:

$$
\frac{60000-59000}{60000-10000} \times \frac{1}{200} \times 50000 \text { tuples }=5 \text { tuples }
$$

Cost-based plan selection

Solution

Subexpression

$$
\sigma_{\text {D.floor }=1}(D)
$$

Possibilities:

1. Use the index
2. Scan the table and filter on condition

Cost-based plan selection

Solution

Subexpression

$$
\sigma_{\text {D.floor }=1}(D)
$$

First possibility: use the index. The number of tuples that satisfy the selection condition is:

$$
\frac{T(D)}{V(D, \mathrm{floor})}=\frac{5000}{2}=2500
$$

Since the index is not clustered, this approach has a cost of 2500 block I/Os.
Second possibility: a table scan followed by a filter. This costs $B(D)$ block I/Os (rounding up).

$$
B(D)=\frac{5000 \text { tuples }}{\left\lfloor\frac{2048 \text { bytes } / \text { block }}{40 \text { bytes } / \text { tuple }}\right\rfloor}=99 \text { blocks }
$$

The second possibility is indeed better than the first and is therefore preferred.
The estimated number of tuples in the output of this subexpression is 2500 .

Cost-based plan selection

Solution

Now, we must determine an ordering for the joins.

1. $\sigma_{\text {E.hobby }=\text { 'yodeling' }}$ AND E.sal $\geq 59000(E) \bowtie \sigma_{\text {D.floor=1 }}(D)$
2. $\sigma_{\text {E.hobby='yodeling' }}$ AND E.sal $\geq 59000(E) \bowtie F$
3. $\sigma_{\text {D.floor }=1}(D) \bowtie F$

Cost-based plan selection

Solution

Now, we must determine an ordering for the joins. We consider first all pairs of joins and keep those with the smallest cost.

$$
\underbrace{\sigma_{\text {E.hobby }}{ }^{\prime} \text { 'yodeling' AND E.sal } \geq 59000(E)}_{e_{1}} \text { and } \underbrace{\sigma_{\text {D.floor }=1}(D)}_{e_{2}}
$$

Note that there are only 8 buffers remaining, since we need 1 to execute the selection in e_{1} and 1 for the selection in e_{2}.

The output of e_{1} contains only 5 tuples, and can therefore be computed in 1 block. Since $1=B\left(e_{1}\right) \leq M=8$, we can apply the one-pass join algorithm. Its cost is

$$
B\left(e_{1}\right)+B\left(e_{2}\right)=1+\frac{2500 \text { tuples }}{\left\lfloor\frac{2048 \text { bytes/block }}{40 \text { bytes/tuple }}\right\rfloor}=51 \text { block I/Os }
$$

Also, because there is no index on e_{1} and e_{2}, we cannot apply index-based joins. The other join algorithms (nested loop, sort-join, hash-join) are always less efficient than the one-pass algorithm.

Cost-based plan selection

Solution

Second pair of joins:

$$
\underbrace{\sigma_{\text {E.hobby }=\text { 'yodeling' }}{ }^{\prime} \text { AND E.sal } \geq 59000(E)}_{e_{1}} \text { and } F
$$

We have 9 buffers at our disposal, given that we need 1 buffers for the selection in e_{1}. Just as for the first join pair, we can apply the one-pass join since the output of e_{1} fits in 1 block. The actual cost is:

$$
B\left(e_{1}\right)+B(F)=1+\frac{5000}{\left\lfloor\frac{2048}{15}\right\rfloor}=38 \text { I/O's }
$$

It is also possible to use an index-join, since we have a clustered BTree on F.did.
This method has a cost of:

$$
B\left(e_{1}\right)+T\left(e_{1}\right) \times\left\lceil\frac{B(F)}{V(F, \mathrm{did})}\right\rceil=1+5=6 \mathrm{I} / \mathrm{O} \text { 's }
$$

Here, the index-join is therefore preferred.

Cost-based plan selection

Solution

Third join pair:

$$
\underbrace{\sigma_{\text {D.floor }=1}(D)}_{e_{2}} \text { and } F
$$

We have 9 buffers at out disposal, given that we need 1 buffer to perform the selection in e_{2}. It is not possible to use the one-pass join algorithm. The nonoptimized version of the sort-merge join costs:

$$
\begin{aligned}
& 2 B\left(e_{2}\right)\left\lceil\log _{M} B\left(e_{2}\right)\right\rceil+2 B(F)\left\lceil\log _{M} B(F)\right\rceil+B\left(e_{2}\right)+B(F) \\
= & 2 \times 50 \times 2+2 \times 37 \times 2+50+37 \\
= & 435 \mathrm{I} / \mathrm{O} \mathrm{~s}
\end{aligned}
$$

We cannot use the optimization here, since there is not enough memory to perform the last merge of the merge-sort along with that of the sort-join:

$$
10 \text { necessary buffers }=\left\lceil\frac{B\left(e_{2}\right)}{M}\right\rceil+\left\lceil\frac{B(F)}{M}\right\rceil \not \leq M=9 \text { available buffers }
$$

Cost-based plan selection

Solution

In fact, we have a clustered B-tree index on F.did. It ensues that F is already sorted on this join attribute. Given that we just have to sort e_{2}, the cost is:

$$
\begin{aligned}
& 2 B\left(e_{2}\right)\left\lceil\log _{M} B\left(e_{2}\right)\right\rceil+B\left(e_{2}\right)+B(F) \\
= & 2 \times 50 \times 2+50+37 \\
= & 287 \mathrm{I} / \mathrm{Os}
\end{aligned}
$$

Here, we can perform the last merge of the merge-sort together with that of the sort-join:

$$
7 \text { necessary buffers }=\left\lceil\frac{B\left(e_{2}\right)}{M}\right\rceil+1 \leq M=9 \text { available buffers }
$$

The best cost we can achieve for our sort-merge join is therefore:

$$
2 B\left(e_{2}\right)\left(\left\lceil\log _{M} B\left(e_{2}\right)\right\rceil-1\right)+B\left(e_{2}\right)+B(F)=187 \mathrm{I} / \mathrm{Os}
$$

Cost-based plan selection

Solution
The cost of a hash-join is:

$$
\begin{aligned}
& 2 B\left(e_{2}\right)\left\lceil\log _{M-1} B(F)-1\right\rceil+2 B(F)\left\lceil\log _{M-1} B(F)-1\right\rceil+B\left(e_{2}\right)+B(F) \\
= & 2 \times 50 \times 1+2 \times 37 \times 1+50+37 \\
= & 261 \text { I/O's }
\end{aligned}
$$

It is also possible to use an index-join, using the clustered Btree index on F.did.
This method has a cost of:

$$
B\left(e_{2}\right)+T\left(e_{2}\right) \times\left\lceil\frac{B(F)}{V(F, \text { did })}\right\rceil=50+2500 \times\left\lceil\frac{37}{5000}\right\rceil=2550 \mathrm{I} / \mathrm{O} \mathrm{~s}
$$

(Notice that there is no index available on e_{2}, hence we cannot perform an indexjoin with e_{2} as the inner relation)
Here, the optimized sort-merge join (using the sorted index) is therefore preferred.

Cost-based plan selection

Solution

The join-pair with the least cost is therefore:

Where an index-join on F.did is used. Therefore, only 2 buffers are necessary (why?).
The estimated number of tuples in the output of this join is:

$$
\frac{T\left(e_{1}\right) \times T(F)}{\max \left(V\left(e_{1}, \operatorname{did}\right), V(F, \operatorname{did})\right)}=\frac{5 \times 5000}{5000}=5
$$

Cost-based plan selection

Solution

We still need to find the best way to join e_{3} with e_{2}

$$
\underbrace{\sigma_{\text {E.hobby }=\text { 'yodeling' AND E.sal } \geq 59000}(E) \bowtie F}_{e_{3}} \text { and } \underbrace{\sigma_{\text {D.floor }=1}(D)}_{e_{2}}
$$

For the computation of e_{3} we use 2 buffers for the index-join. Hence, only 8 buffers remain available.

The output of e_{3} contains only 5 tuples. The size of a tuple of e_{3} is evaluated to $15+35$ bytes. Thus, the output of e_{3} fits in one block. Given that $1=B\left(e_{3}\right) \leq$ $M=8$, a one-pass join is possible. The cost thereof is:

$$
B\left(e_{3}\right)+B\left(e_{2}\right)=1+\frac{2500}{\left\lfloor\frac{2048}{40}\right\rfloor}=51
$$

There is no index on the intermediate result. An index-join is therefore not to be considered. The other join methods cost always more than the one-pass algorithm.
Hence, the one-pass algorithm is preferred to perform the join between e_{3} and e_{2}.

Cost-based plan selection

Solution

The projection $\pi_{\text {D.dname,F.budget }}$ can be performed on the fly at the same time as the last join.

Notice that we did not need to materialize any of the intermediate results.

