
Optimization of Logical Queries

Integrated Exercise 8.3 p3

Translate the following SQL query to the relational algebra, remove redundant
joins and use the algebraic laws to produce a better query plan.

SELECT F.budget, E.eid

FROM Emp E, Dept D, Finance F

WHERE E.did = D.did AND D.did = F.did

AND E.hobby = ’yodeling’

AND D.floor NOT IN

(SELECT D2.floor FROM Dept D2, Finance F2

WHERE NOT D2.dname = ’CID’

OR (F2.did = D2.did AND F2.expenses >= ALL

(SELECT MAX(F3.expenses)

FROM Finance F3

WHERE F3.budget = F.budget)

)

)

Solution of the Exercises 1

Optimization of Logical Queries

Step 1. Normalize to Exists and Not Exists

SELECT F.budget, E.eid

FROM Emp E, Dept D, Finance F

WHERE E.did = D.did AND D.did = F.did AND E.hobby = ’yodeling’

AND NOT EXISTS

(SELECT D2.floor FROM Dept D2, Finance F2

WHERE D.floor = D2.floor AND

(NOT D2.dname = ’CID’

OR (F2.did = D2.did AND NOT EXISTS

(SELECT MAX(F3.expenses)

FROM Finance F3

WHERE F3.budget = F.budget

HAVING MAX(F3.EXPENSES) > F2.EXPENSES)

)

)

)

Solution of the Exercises 2

Optimization of Logical Queries

Step 2. Normalize to the conjunctive normal form

SELECT F.budget, E.eid

FROM Emp E, Dept D, Finance F

WHERE E.did = D.did AND D.did = F.did AND E.hobby = ’yodeling’

AND NOT EXISTS

(SELECT D2.floor FROM Dept D2, Finance F2

WHERE (D.floor = D2.floor AND NOT D2.dname = ’CID’)

OR (D.floor = D2.floor AND F2.did = D2.did

AND NOT EXISTS

(SELECT MAX(F3.expenses)

FROM Finance F3

WHERE F3.budget = F.budget

HAVING MAX(F3.EXPENSES) > F2.EXPENSES)

)

)

Solution of the Exercises 3

Optimization of Logical Queries

Step 3. Normalize to UNION

SELECT F.budget, E.eid

FROM Emp E, Dept D, Finance F

WHERE E.did = D.did AND D.did = F.did AND E.hobby = ’yodeling’

AND NOT EXISTS

((SELECT D2.floor FROM Dept D2, Finance F2

WHERE D.floor = D2.floor AND NOT D2.dname = ’CID’)

UNION

(SELECT D2.floor FROM Dept D2, Finance F2

WHERE D.floor = D2.floor AND F2.did = D2.did

AND NOT EXISTS

(SELECT MAX(F3.expenses)

FROM Finance F3

WHERE F3.budget = F.budget

HAVING MAX(F3.EXPENSES) > F2.EXPENSES)

)

)

Solution of the Exercises 4

Optimization of Logical Queries

Step 4. Translation of the innermost subquery

SELECT MAX(F3.expenses)

FROM Finance F3

WHERE F3.budget = F.budget

HAVING MAX(F3.EXPENSES) > F2.EXPENSES)

e1 := πMAX(F3.expenses),F.∗,F2.∗σMAX(F3.expenses)>F2.expenses γMAX(F3.expenses),F.∗,F2.∗

σF3.budget=F.budget (ρF(Finance)× ρF2(Finance)× ρF3(Finance))

Solution of the Exercises 5

Optimization of Logical Queries

Step 5. Translation

(SELECT D2.floor FROM Dept D2, Finance F2

WHERE D.floor = D2.floor AND F2.did = D2.did

AND NOT EXISTS

(SELECT MAX(F3.expenses)

FROM Finance F3

WHERE F3.budget = F.budget

HAVING MAX(F3.EXPENSES) > F2.EXPENSES)

)

Translating the From clause yields: (note that F is a context relation!)

e2 := ρD2(Dept)× ρF2(Finance)× ρD(Dept)× ρF(Finance)

Since this is a NOT EXISTS subquery, we decorrelate by means of an antijoin:

f2 := (e2on πF2.∗,F.∗(e1))

Adding the WHERE and SELECT clauses (with the necessary parameters) gives:

e3 := πD2.floor,D.∗,F.∗σD.floor=D2.floor∧F2.did=D2.did(f2)

Solution of the Exercises 6

Optimization of Logical Queries

Step 6. Translation

((SELECT D2.floor FROM Dept D2, Finance F2

WHERE D.floor = D2.floor AND NOT D2.dname = ’CID’)

e4 := πD2.floor,D.∗σD.floor=D2.floor∧D2.name6=′CID′(ρD2(Dept)×ρF2(Finance)×ρD(Dept))

Solution of the Exercises 7

Optimization of Logical Queries

Step 7. Translation of the union

((SELECT D2.floor FROM Dept D2, Finance F2

WHERE D.floor = D2.floor AND NOT D2.dname = ’CID’)

UNION

(SELECT D2.floor FROM Dept D2, Finance F2

WHERE D.floor = D2.floor AND F2.did = D2.did

AND NOT EXISTS

(SELECT MAX(F3.expenses)

FROM Finance F3

WHERE F3.budget = F.budget

HAVING MAX(F3.EXPENSES) > F2.EXPENSES)

)

)

Notice that the schemas of e3 and e4 are not equivalent because they have other
context relations. Therefore, to be able to take the union, we have to add the
context relation F of e3 to e4.

e5 := πD2.floor,D.∗,F.∗(e3) ∪ πD2.floor,D.∗,F.∗(e4 × ρF(Finance))

Solution of the Exercises 8

Optimization of Logical Queries

Step 8. Translation of the outermost query

Translation of the From clause yields:

e6 := ρE(Emp)× ρD(Dept)× ρF(Finance)

Since this is a NOT EXISTS subquery, we decorrelate by means of an antijoin:

f7 := e6onπD.∗,F.∗(e5)

And translate the remaining WHERE and SELECT clauses:

e7 := πF.budget,E.eid(σE.did=D.did∧D.did=F.did∧E.hobby=′yodeling′(f7))

Solution of the Exercises 9

Whole expression:

πF.budget,E.eid(

σE.did=D.did∧D.did=F.did∧E.hobby=′yodeling(ρE(Emp)× ρD(Dept)× ρF(Finance)))

on (πD.∗,F.∗σD.floor=D2.floor∧D2.name6=′CID′(ρD2(Dept)× ρF2(Finance)

× ρD(Dept)× ρF(Finance))

∪ πD.∗F.∗ ((σD.floor=D2.floor∧F2.did=D2.did(ρD2(Dept)× ρF2(Finance)

× ρD(Dept)× ρF(Finance)))

on (πF2.∗,F.∗σMAX(F3.expenses)>F2.expenses γMAX(F3.expenses),F.∗,F2.∗

σF3.budget=F.budget (ρF(Finance)× ρF2(Finance)× ρF3(Finance)))))

Solution of the Exercises 10

Optimization of Logical Queries

Step 9. Removal of redundant joins

No atom can be removed from the following maximal subexpressions (why?)

• σE.did=D.did∧D.did=F.did∧E.hobby=′yodeling(ρE(Emp)× ρD(Dept)× ρF(Finance))

• (σD.floor=D2.floor∧F2.did=D2.did(ρD2(Dept)× ρF2(Finance)× ρD(Dept)×
ρF(Finance)))

• σF3.budget=F.budget (ρF(Finance)× ρF2(Finance)× ρF3(Finance)))))

Solution of the Exercises 11

Optimization of Logical Queries

Step 9. Removal of redundant joins

Subexpression

πD.∗,F.∗σD.floor=D2.floor∧D2.name6=′CID′(ρD2(Dept)× ρF2(Finance)

× ρD(Dept)× ρF(Finance))

Is not a select-project-join expression, because of the inequality. Therefore, no
redundant join can be removed.

Therefore, in this example, no redundant join can be removed.

Solution of the Exercises 12

Optimization of Logical Queries

Step 10. Application of the algebraic laws

πF.budget,E.eid(πF.∗,E.eid(πE.eid,e.didσE.hobby=′yodeling′ρE(Emp)

on
E.did=D.did

πD.didρD(Dept) on
D.did=F.did

ρF(Finance)))

on (πF.∗ (πD2.floorσD2.name6=′CID′ρD2(Dept)

on
D.floor=D2.floor

πD.floorρD(Dept)× πρF2(Finance)

× ρF(Finance))

∪ πF.∗ ((πF.∗,F2.∗(πD.floorρD2(Dept) on
D.floor=D2.floor

πD2.floor,D2.didρD(Dept)

on
F2.did=D2.did

ρF2(Finance)× ρF(Finance))

on (πF2.∗,F.∗σMAX(F3.expenses)>F2.expenses γMAX(F3.expenses),F.∗,F2.∗

(ρF(Finance) on
F3.budget=F.budget

πF3.budget,F3.expensesρF3(Finance)×ρF2(Finance)))))

Solution of the Exercises 13

