
Teradata Database

Temporal Table Support
Release 14.0

B035-1182-111A
January 2012

The product or products described in this book are licensed products of Teradata Corporation or its affiliates.

Teradata, Active Enterprise Intelligence, Applications Within, Aprimo, Aprimo Marketing Studio, Aster, BYNET, Claraview, DecisionCast,
Gridscale, Managing the Business of Marketing, MyCommerce, Raising Intelligence, Smarter. Faster. Wins., SQL-MapReduce, Teradata Decision
Experts, Teradata Labs Logo, Teradata Raising Intelligence Logo, Teradata Source Experts, WebAnalyst, and Xkoto are trademarks or registered
trademarks of Teradata Corporation or its affiliates in the United States and other countries.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.

AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.

EMC, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC Corporation.

GoldenGate is a trademark of Oracle.

Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.

Intel, Pentium, and XEON are registered trademarks of Intel Corporation.

IBM, CICS, RACF, Tivoli, and z/OS are registered trademarks of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

LSI is a registered trademark of LSI Corporation.

Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered trademarks of Microsoft Corporation in the United
States and other countries.

NetVault is a trademark or registered trademark of Quest Software, Inc. in the United States and/or other countries.

Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other countries.

Oracle, Java, and Solaris are registered trademarks of Oracle and/or its affiliates.

QLogic and SANbox are trademarks or registered trademarks of QLogic Corporation.

SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.

SPARC is a registered trademark of SPARC International, Inc.

Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec Corporation or its affiliates in the United States
and other countries.

Unicode is a registered trademark of Unicode, Inc. in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. IN NO EVENT WILL TERADATA CORPORATION BE LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST SAVINGS, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The information contained in this document may contain references or cross-references to features, functions, products, or services that are
not announced or available in your country. Such references do not imply that Teradata Corporation intends to announce such features,
functions, products, or services in your country. Please consult your local Teradata Corporation representative for those features, functions,
products, or services available in your country.

Information contained in this document may contain technical inaccuracies or typographical errors. Information may be changed or updated
without notice. Teradata Corporation may also make improvements or changes in the products or services described in this information at any
time without notice.

To maintain the quality of our products and services, we would like your comments on the accuracy, clarity, organization, and value of this
document. Please email: teradata-books@lists.teradata.com.

Any comments or materials (collectively referred to as “Feedback”) sent to Teradata Corporation will be deemed non-confidential. Teradata
Corporation will have no obligation of any kind with respect to Feedback and will be free to use, reproduce, disclose, exhibit, display, transform,
create derivative works of, and distribute the Feedback and derivative works thereof without limitation on a royalty-free basis. Further, Teradata
Corporation will be free to use any ideas, concepts, know-how, or techniques contained in such Feedback for any purpose whatsoever, including
developing, manufacturing, or marketing products or services incorporating Feedback.

Copyright © 2010 – 2012 by Teradata Corporation. All Rights Reserved.

mailto:teradata-books@lists.teradata.com

Temporal Table Support 3

Preface

Purpose

Temporal Table Support describes concepts, tasks, and reference material related to the time-
based, or temporal, operations that Teradata Database is capable of performing.

Audience

The task-based and reference-based material is primarily targeted to technical personnel
responsible for designing and maintaining databases that are capable of time-based
operations. The concept-based material not only supports the task-based and referenced-
based material, but will be helpful to anyone who is interested in a better understanding of
what temporal table support means in the Teradata Database environment

Supported Software Releases and Operating
Systems

This book supports Teradata® Database 14.0.

Teradata Database 14.0 is supported on:

• SUSE Linux Enterprise Server (SLES)10

• SLES 11

Note that SLES 11 will be supported after the initial release of Teradata Database 14.0.

Teradata Database client applications support other operating systems.

Prerequisites

If you are not familiar with Teradata Database, reading Introduction to Teradata before reading
this book will be helpful.

You should be familiar with basic relational database technology and SQL.

Preface
Changes to This Book

4 Temporal Table Support

Changes to This Book

Additional Information

Release Description

Teradata Database 14.0
January 2012

Updated Syntax Diagram Conventions in Appendix A to mention
mixed-case words in syntax diagrams.

Teradata Database 14.0
November 2011

• DBS Control field that was documented as EnableNonTempoOp is
now EnabNonTempoOp.

• Added information about loading data to temporal tables.

• Added IDENTITY option to ALTER TABLE DROP syntax.

• Added example of an UPDATE trigger that enforces SEQUENCED
RI to Appendix D.

• Updated ALTER TABLE DROP path to include new IDENTITY
option, which removes the identity attribute from a column.

• Noted that syntax diagrams show only those syntax elements that
are relevant to temporal SQL or that are required for the statements.

• To ensure portability to future ANSI temporal SQL standards,
Teradata recommends explicit specification of temporal qualifiers.

• Temporal tables can be bulk loaded directly using FastLoad or any
application that supports the FastLoad protocol.

• Added NO COMPRESS option to ALTER TABLE.

• Algorithmic compression is not available for validtime and
transactiontime columns.

URL Description

www.info.teradata.com/ Use the Teradata Information Products Publishing Library site
to:

• View or download a manual:

1 Under Online Publications, select General Search.

2 Enter your search criteria and click Search.

• Download a documentation CD-ROM:

1 Under Online Publications, select General Search.

2 In the Title or Keyword field, enter CD-ROM, and click
Search.

• Order printed manuals:

Under Print & CD Publications, select How to Order.

http://www.info.teradata.com

Preface
Teradata Database Optional Features

Temporal Table Support 5

To maintain the quality of our products and services, we would like your comments on the
accuracy, clarity, organization, and value of this document. Please email teradata-
books@lists.teradata.com.

Teradata Database Optional Features

This book may include descriptions of the following optional Teradata Database features and
products:

• Teradata Row Level Security

• Temporal Table Support

• Teradata Columnar

• Teradata Virtual Storage (VS)

You may not use these features without the appropriate licenses. The fact that these features
may be included in product media or downloads, or described in documentation that you
receive, does not authorize you to use them without the appropriate licenses.

Contact your Teradata sales representative to purchase and enable optional features.

www.teradata.com The Teradata home page provides links to numerous sources of
information about Teradata. Links include:

• Executive reports, case studies of customer experiences with
Teradata, and thought leadership

• Technical information, solutions, and expert advice

• Press releases, mentions and media resources

www.teradata.com/t/TEN/ Teradata Customer Education designs, develops and delivers
education that builds skills and capabilities for our customers,
enabling them to maximize their Teradata investment.

www.teradataatyourservice.com Use Teradata @ Your Service to access Orange Books, technical
alerts, and knowledge repositories, view and join forums, and
download software patches.

developer.teradata.com/ Teradata Developer Exchange provides articles on using
Teradata products, technical discussion forums, and code
downloads.

URL Description

http://www.teradata.com
http://www.teradata.com/t/TEN/
www.teradataatyourservice.com
http://developer.teradata.com/
mailto:teradata-books@lists.teradata.com
mailto:teradata-books@lists.teradata.com

Preface
Teradata Database Optional Features

6 Temporal Table Support

Temporal Table Support 7

Table of Contents

Preface. .3

Purpose .3

Audience .3

Supported Software Releases and Operating Systems .3

Prerequisites .3

Changes to This Book. .4

Additional Information .4

Teradata Database Optional Features .5

Chapter 1: Getting Started . 11

The Need to Represent Time . 11

Introduction to Temporal Table Support. 12

Temporal Data Types . 13

Temporal Statements . 14

Overview: Temporal Tables . 14

Chapter 2: Basic Temporal Concepts . 17

Temporal Database Management System. 17

Temporal Database . 17

Transaction Time and Valid Time . 17

UNTIL_CHANGED and UNTIL_CLOSED. 21

Temporal Row Types . 22

Temporal Table Modifications . 24

Nontemporal Operations . 25

Temporal Table Queries. 25

Session Temporal Qualifiers . 27

Timestamping . 27

Period Data Types: Basic Definitions . 29

Period Data Type Usage . 31

Table of Contents

Temporal Table Support 8

Chapter 3: Creating Temporal Tables. .33

Creating Valid-Time Tables .33

Creating Transaction-Time Tables .35

Partitioning Temporal Tables .37

Creating Join Indexes for Temporal Tables .39

Loading Data into Temporal Tables .40

Chapter 4: SQL Data Definition Language
(Temporal Forms) .41

ALTER TABLE (Temporal Form). .42

CREATE JOIN INDEX (Temporal Form) .56

CREATE RECURSIVE VIEW/REPLACE RECURSIVE VIEW (Temporal Forms)60

CREATE TABLE, CREATE TABLE AS (Temporal Forms) .63

Partitioning Expressions for Temporal Tables. .84

Using Constraints with Temporal Tables .87

CREATE TRIGGER/REPLACE TRIGGER (Temporal Form) .96

CREATE VIEW, REPLACE VIEW (Temporal Forms) .101

SET SESSION (Session Temporal Qualifiers) .105

SET SESSION SUBSCRIBER .108

SQL HELP and SHOW Statements .109

Chapter 5: SQL Data Manipulation Language
(Temporal Forms) .111

ABORT (Temporal Form) .112

DELETE (Temporal Form) .115

INSERT/INSERT … SELECT (Temporal Forms) .121

MERGE (Temporal Form). .127

ROLLBACK (Temporal Form) .134

SELECT/SELECT ... INTO (Temporal Forms) .137

FROM Clause (Temporal Form). .154

UPDATE (Temporal Form). .158

UPDATE (Temporal Upsert Form) .167

Cursors and Temporal Queries .171

Table of Contents

Temporal Table Support 9

Chapter 6: SQL Data Control Language
(Temporal Forms) . 173

GRANT (Temporal Form). 174

REVOKE (Temporal Form). 177

Chapter 7: Administration. 179

System Clocks . 179

Nontemporal Operations . 179

Capacity Planning for Temporal Tables . 180

Archiving Temporal Tables . 181

Appendix A: How to Read Syntax Diagrams 185

Syntax Diagram Conventions . 185

Appendix B: Examples . 191

Creating Temporal Tables . 191

Querying Temporal Tables . 191

Modifying Temporal Tables. 193

Views on Temporal Tables . 205

Session Temporal Qualifier . 206

Restoring a Prior Table State . 206

Appendix C: Potential Concurrency Issues with
Current Temporal DML . 209

Transaction Isolation . 209

Examples . 210

Table of Contents

Temporal Table Support 10

Appendix D: Enforcing and Validating
Temporal Referential Constraints .217

Glossary .237

Index .239

Temporal Table Support 11

CHAPTER 1 Getting Started

This chapter provides a tutorial on getting started with Teradata Database temporal table
support.

The Need to Represent Time

Some applications need to design and build databases where information changes over time.
Doing so without temporal table support is possible, although complex.

Consider an application for an insurance company that uses a Policy table where the
definition looks like this:

CREATE TABLE Policy(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2),
Policy_Details CHAR(40)
)

UNIQUE PRIMARY INDEX(Policy_ID);

Suppose the application needs to record when rows in the Policy table became valid. Without
temporal table support, one approach that the application can take is to add a DATE column
to the Policy table called Start_Date. Suppose the application also needs to know when rows in
the table are no longer valid. Another DATE column called End_Date can accomplish this.

The new definition of the table looks like this:

CREATE TABLE Policy(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2),
Policy_Details CHAR(40)
Start_Date DATE,
End_Date DATE
)

UNIQUE PRIMARY INDEX(Policy_ID);

Several complications are now evident. For example, if a customer makes a change to their
policy during the life of the policy, a new row will need to be created to store the new policy
conditions that are in effect from that time until the end of the policy. But the policy
conditions prior to the change are also likely to be important to retain for historical reasons.
The original row represents the conditions that were in effect for the beginning portion of the
policy, but the END_DATE will need to be updated to reflect when the policy conditions were
changed.

Additionally, because of these types of changes, it becomes likely that more than one row will
now have the same value for Policy_ID, so the primary index for the table would need to

Chapter 1: Getting Started
Introduction to Temporal Table Support

12 Temporal Table Support

change. All modifications to the table must now consider changing the Start_Date and
End_Date columns. Queries will be more complicated.

The mere presence of a DATE column in a table does not make the table a temporal table, nor
make the database a temporal database. A temporal database must record the time-varying
nature of the information managed by the enterprise.

Rather than using approaches such as adding DATE columns to traditional tables, Teradata
Database provides support to effectively create, query, and modify time-varying tables in a
completely different manner.

Introduction to Temporal Table Support

Applications that need to represent time require temporal data types, different kinds of time,
and temporal statements.

Teradata Database provides the built-in capabilities that are required in a temporal database
management system.

Feature Description

Temporal data types The period data type represents an anchored duration of time.

Kinds of time In addition to user-defined time, which can be represented by using
DateTime data types such as DATE and TIMESTAMP, Teradata
temporal table support adds the capability to add valid time and
transaction time dimensions to tables.

Temporal statements Temporal SQL modifiers for existing statements let you create and
alter temporal tables, and query and modify data that changes over
time.

Queries and modifications can include temporal qualifiers that
reference a time dimension and act as criteria or selectors on the data.
They affect only the data that meets the time criterion. Temporal
DML statements can be generally qualified as:

• CURRENT, affecting only data that is currently in effect

• SEQUENCED, affecting only data that is in effect for a specified
time period

• AS OF, affecting only data that is in effect at a specified point in
time

• NONSEQUENCED, where the time dimension is ignored, the
table is treated as a nontemporal table, and DML is applied to all
data in the table

Chapter 1: Getting Started
Temporal Data Types

Temporal Table Support 13

Temporal Data Types

Teradata provides temporal table support at the data type level with period data types. A
period is an anchored duration that represents a set of contiguous time granules within the
duration. It has a beginning bound (defined by the value of a beginning element) and an
ending bound (defined by the value of an ending element). Beginning and ending elements
can be DATE, TIME, or TIMESTAMP types, but both must be the same type.

The duration that a period represents starts from the beginning bound and extends up to, but
does not include, the ending bound.

If the element type is DATE or TIMESTAMP, the ending bound can have a special value of
UNTIL_CHANGED, where Teradata Database interprets the ending bound of the period as
forever, or without end.

As a first step toward adding temporal table support to the Policy table, the application for the
insurance company can create the Policy table with a PERIOD(DATE) column to record when
rows are valid.

CREATE TABLE Policy(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE)
)

PRIMARY INDEX(Policy_ID);

Although the Policy table is a nontemporal table, the application can use the built-in support
that Teradata Database provides for period types, including period constructors, literals,
operators, functions, and predicates.

For example, to add a row to the table, the application could use the period constructor to
specify a value for the Validity column.

INSERT INTO Policy
(Policy_ID, Customer_ID, Policy_Type, Policy_Details, Validity)
VALUES (541008, 246824626, 'AU', 'STD-CH-345-NXY-00',

PERIOD(DATE '2009-10-01', UNTIL_CHANGED));

To retrieve rows from the Policy table that became valid on a specific date, the application
could use the BEGIN function like this:

SELECT * FROM Policy WHERE BEGIN(Validity) = DATE '2010-01-01';

Related Information

For more information on... See...

period data types • “Period Data Types: Basic Definitions” on page 29

• SQL Data Types and Literals

• SQL Functions, Operators, Expressions, and Predicates

Chapter 1: Getting Started
Temporal Statements

14 Temporal Table Support

Temporal Statements

Using the period data type and the SQL modifiers for CREATE TABLE, the application for the
insurance company can create the Policy table as a temporal table with a valid-time column to
record when rows are valid.

CREATE MULTISET TABLE Policy(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME
)

PRIMARY INDEX(Policy_ID);

The application can easily add a row to the table.

INSERT INTO Policy
(Policy_ID, Customer_ID, Policy_Type, Policy_Details, Validity)
VALUES (541008, 246824626, 'AU', 'STD-CH-345-NXY-00',

PERIOD(DATE '2009-10-01', UNTIL_CHANGED));

Similarly, the application can easily query the table. The result of the following query is the
rows that are valid at the current time (where the value of the Validity column overlaps with
the current time):

CURRENT VALIDTIME SELECT * FROM Policy;

Related Information

Overview: Temporal Tables

Temporal tables store and maintain information with respect to time. Using temporal tables,
Teradata Database can perform operations and queries that include time-based reasoning.
Temporal tables include one or two special columns, which store time information:

• A transaction-time column records and maintains the time period for which Teradata
Database was aware of the information in the row. Teradata Database automatically enters

For more information on... See...

temporal table concepts Chapter 2: “Basic Temporal Concepts.”

creating temporal tables • Chapter 3: “Creating Temporal Tables”

• Chapter 4: “SQL Data Definition Language (Temporal Forms)”

manipulating temporal
tables

• Chapter 5: “SQL Data Manipulation Language (Temporal Forms)”

• “Modifying Temporal Tables” on page 193

querying temporal tables • Chapter 5: “SQL Data Manipulation Language (Temporal Forms)”

• “Querying Temporal Tables” on page 191

Chapter 1: Getting Started
Overview: Temporal Tables

Temporal Table Support 15

and maintains the transaction-time column data, and consequently automatically tracks
the history of such information.

• A valid-time column models the real world, and stores information such as the time an
insurance policy or product warranty is valid, the length of employment of an employee,
or other information that is important to track and manipulate in a time-aware fashion.
When you add a new row to this type of table, you use the valid-time column to specify the
time period for which the row information is valid. This is the period of validity (PV) of
the information in the row.

As rows are changed in temporal tables, the database automatically creates new rows as
necessary to maintain the time dimensions. For example, if a row in a table with transaction
time is modified, the row is automatically split into two rows:

• A new row is created to represent the changed information that exists following the
modification. The beginning bound of its transaction time period value is set to the time
of the modification, and its ending bound is left open (set to UNTIL_CLOSED). As far as
the database is concerned, the information in the new row is true until it changes again or
until the row is deleted.

• The original row represents the row as it existed before the modification. The ending
bound of the transaction time period value of the row is set to the time of the
modification. This row is “closed” and becomes a history row, because the information it
contains from before the modification is no longer true. However, the row is not physically
deleted from the database. It remains as a historical record of how the row existed before
the modification was made.

Modifications to rows in table with a valid-time column are more flexible. When a row is
modified in a table with a valid-time column, you can specify the time period for which the
modification applies. This is the period of applicability (PA) of the modification. Depending
on the relationship between the PV of the row and the PA of the modification, Teradata
Database may split the modified row into multiple rows. For example, if the modification is
applicable only to a brief period that lies within the PV of the row, three rows will result from
a modification:

• One row has the original information, and a valid-time period that covers the time from
the beginning of the original PV of the row until the modification happened.

• The second row has the modified information, and a valid-time period that matches the
PA of the modification statement.

• The third row has the original information, like the first row, but has a valid-time period
that covers the time starting from after the modification is no longer valid through the end
time of the PV of the original row.

If the PA of the modification overlaps, but does not lie within the PV of the row, the
modification will split the row into only two rows, similar to the example for a transaction-
time table.

Transaction time and valid time are considered independent time dimensions, and their
columns serve different purposes, so a table can have both a valid-time column and a
transaction-time column. Such a dual-purpose temporal table is called a bitemporal table.

Chapter 1: Getting Started
Overview: Temporal Tables

16 Temporal Table Support

Related Information

For more information on... See...

temporal table concepts Chapter 2: “Basic Temporal Concepts.”

Temporal Table Support 17

CHAPTER 2 Basic Temporal Concepts

This chapter defines concepts related to Teradata Database temporal table support.

Temporal Database Management System

A temporal database management system (DBMS) is a DBMS that provides built-in support
for the time dimension, including special facilities for storing, querying, and updating data
with respect to time. A temporal DBMS can distinguish between historical data, current data,
and data that will be in effect in the future.

The intent of a temporal database management system is to reason with time.

A temporal DBMS provides a temporal version of SQL, including enhancements to the data
definition language (DDL), constraint specifications and their enforcements, data types, data
manipulation language (DML), and query language for temporal tables.

Temporal Database

A temporal database stores data that relates to time periods and time instances. It provides
temporal data types and stores information relating to the past, present, and future. For
example, it stores the history of a stock or the movement of employees within an organization.
The difference between a temporal database and a conventional database is that a temporal
database maintains data with respect to time and allows time-based reasoning, whereas a
conventional database captures only a current snapshot of reality.

For example, a conventional database cannot directly support historical queries about past
status and cannot represent inherently retroactive or proactive changes. Without built-in
temporal table support from the DBMS, applications are forced to use complex and often
manual methods to manage and maintain temporal information.

Transaction Time and Valid Time

Static, time-related columns can be added to tables by adding columns defined to have
DateTime data types, such as DATE or TIMESTAMP. Teradata also supports two built-in time
dimensions that can be used to create temporal tables: transaction time and valid time.

Each of these time dimensions is represented by a column with a period data type. The
column stores a pair of DATE or TIMESTAMP values that define the beginning and end of the

Chapter 2: Basic Temporal Concepts
Transaction Time and Valid Time

18 Temporal Table Support

transaction- or valid-time period for a row. Transaction time and valid time are independent
time dimensions. A table can have either type of column, both, or neither:

• A table with a transaction-time column is called a transaction-time table.

• A table with a valid-time column is called a valid-time table.

• A table with both a transaction-time and a valid-time column is called a bitemporal table.

• A table with neither a transaction-time nor a valid-time column is a regular, nontemporal
table.

Transaction Time
Transaction time is the time period during which a fact, represented by all the information in
a row, is or was known to be in effect in the database. It models the database reality, recording
when rows have been added, modified, and changed in the database. The transaction-time
period is stored in a transaction-time column:

• The beginning of the transaction-time period is the time when the database became aware
of a row, when the row was first recorded in the database. This is when the row was added
to a table.

• The end of a transaction time period reflects when the fact was superseded by an update to
the row, or when the row was deleted from the database. Rows containing information
that is currently in effect have transaction-time periods with indefinite ending bounds,
represented as UNTIL_CLOSED.

Transaction-time columns are defined by specifying AS TRANSACTIONTIME in the column
definition, and have a period data type with an element type of TIMESTAMP. You cannot
normally set or modify the value of a transaction-time column. Teradata Database maintains
these values automatically. (However, for database maintenance and troubleshooting, closed
rows can be modified or deleted by administrators who have been granted the
NONTEMPORAL privilege.)

Every change to a table that has a transaction-time column is tracked by the database. In a
sense, physical rows are never deleted or modified in tables that have a transaction-time
column:

• When a row is “deleted” from the table, the row is not physically deleted from the table.
Instead, the transaction-time column is automatically modified to have an ending bound
that specifies the time of the deletion, which marks the row as “closed,” and no longer
available.

• When a row is “modified” in the table, the original row with the original values is marked
as closed, and a copy of the row having the modified values is automatically inserted into
the table.

The resulting snapshots of deleted and modified rows, which are retained in the table, provide
a complete internal history of the table. Any prior state of a table having a transaction-time
column can be reproduced. However, closed rows are unavailable to most DML modifications
or deletions.

Chapter 2: Basic Temporal Concepts
Transaction Time and Valid Time

Temporal Table Support 19

Add transaction-time columns to tables for which historical changes should be automatically
tracked and maintained in the database. For example, transaction-time tables can be used for
information that must retain a history of all changes, such as for tables used for regulatory
compliance reporting.

Valid Time
Valid time models the real world, and denotes the time period during which a fact,
represented by all the information in a row, is in effect or true. The valid-time period is stored
in a valid-time column. Valid-time columns store information such as the time an insurance
policy or contract is valid, the length of employment of an employee, or other information
that is important to track and manipulate in a time-aware fashion. The valid-time period is
also known as the period of validity (PV) of the row.

Valid-time columns are defined by specifying AS VALIDTIME in the column definition, and
have a period data type with an element type of DATE or TIMESTAMP. You specify the value
of the valid-time column when a new row is inserted into the table.

Teradata Database automatically maintains the valid-time column for rows that are changed
or deleted, according to how the time period specified for the change or deletion relates to the
original PV of the row.

For example, assume a row in a valid-time table represents the terms of a contract that is valid
for two years. If the terms (row) must be modified during the contract period:

• A copy of the row is automatically created and modified to show the new terms. The PV of
the row begins at the time of the change, to show when the new terms started. The PV of
the row retains the original ending bound for the valid-time column, to retain the original
contract end date.

• The original row, storing the original terms of the contract is marked as a history row. The
PV is set to end at the time of the modification, because that is when the old terms ceased
to be valid.

Such a modification changes the row information starting at the current time of the
modification, and the change is valid throughout the remaining PV of the row.

Modifications to tables that have valid-time columns can also apply to specified time periods,
even periods that do not overlap the current time, such as times that have passed or that are in
the future. The changes will affect only those rows with PVs that overlap the specified time
period, and only for the period during which the change is applicable. Other kinds of
modifications to these tables can affect rows for their entire PVs, much like changes to non-
temporal tables.

For example, if the terms of the contract in the example above were changed for only six weeks
during the middle of the two-year contract period, the change would automatically yield three
rows in the table:

• A copy of the row is automatically created and modified to show the new terms. The PV of
the row reflects the six weeks for which the new terms are in effect.

• The original row, storing the original terms of the contract, is marked as a history row. The
PV is set to end at the time the new terms begin.

Chapter 2: Basic Temporal Concepts
Transaction Time and Valid Time

20 Temporal Table Support

• A new row is inserted to reflect the conditions after the six-week change in terms has
ended, when the contract reverts to the original terms. The PV for the new row begins
when the new terms expire, and ends at the original end time for the original row.

In this way, valid-time tables also keep an automatic history of all changes. Unlike transaction-
time, however, history rows in tables with valid-time remain accessible to temporal SQL
queries and DML. Because they model the real world, valid-time tables can have rows with a
PV in the future, because things like contracts and policies may not begin until a future date.

Add valid-time columns to tables for which the information in a row is delimited by time, and
for which row information should be maintained, tracked, and manipulated in a time-aware
fashion. A valid time column is most appropriate when changes to rows occur relatively
infrequently. To represent attributes that change very frequently, such as a point of sale table,
an event table is preferable to a valid-time table. Temporal semantics do not apply to event
tables.

Bitemporal Tables
Transaction time and valid time are independent time dimensions that are used for different
purposes. Bitemporal tables have both a transaction-time column and a valid-time column.
Changes to bitemporal tables that happen automatically as a result of row modifications are
independent for the transaction-time and valid-time dimensions. These dimensions must be
considered separately when determining what will happen to a row as a result of a
modification.

For example, if a row in a bitemporal table is deleted, the ending bound of the transaction-
time period is automatically changed to reflect the time of the deletion, and the row is closed
to further modifications. The database reality, reflected by the modified ending bound of the
transaction-time period, is that the row has been deleted.

The valid-time period of the row remains unchanged. Because the deletion does not affect the
ending bound of the valid-time period, the row information retains its character in the valid-
time dimension as historical, current, or future information. However, because the row was
deleted, the row does not participate in further DML operations for the table, even though it
remains in the table as a closed row in transaction time.

Because of the transaction-time column, all modifications to rows in bitemporal tables
automatically create closed rows in the transaction time dimension, just as they do for
transaction-time tables. This is in addition to rows that might be created to account for
changes in the valid-time dimension.

For example, assume the terms of a contract are stored in a row of a bitemporal table. If the
terms are changed during the period when the contract is valid, the row must be modified, as
with an UPDATE statement. Because this is a temporal table, Teradata Database automatically
inserts a copy of the row to store the new terms. The period of validity of the new row is
automatically set to begin at the time of the change, and end at the original end date of the
contract. The beginning bound of the transaction-time period of the new row reflects when
the new row was created.

Chapter 2: Basic Temporal Concepts
UNTIL_CHANGED and UNTIL_CLOSED

Temporal Table Support 21

The original row is automatically modified to have the end of the period of validity reflect the
time of the change, when the old terms become no longer valid. This row becomes a history
row in the valid-time dimension. Note that both rows remain open rows in transaction time,
and as such, are still available to all types of DML queries and modifications. These changes
are purely a result of the valid-time dimension of the table.

Because the table also includes a transaction-time dimension, another copy is made of the
original row, reflecting the original period of validity, but the row is closed in transaction time
at the time the terms changed. No further changes can be made to this row, because it is closed
in transaction time. It provides a permanent “before” snapshot of the row as it existed in the
database before it was changed.

Note that the actions which are performed automatically by Teradata Database on the row
include independent actions that result from the table having both a valid-time column and a
transaction-time column.

Related Information

UNTIL_CHANGED and UNTIL_CLOSED

UNTIL_CHANGED and UNTIL_CLOSED are special values that represent the ending bound
of periods for which the duration is indefinite, forever, or for which the end is an unspecified
and unknown time in the future when the row will be changed. They are used in some
circumstances when a new row is inserted into a temporal table:

• All new rows that have transaction-time columns are assigned transaction-time periods
with end bounds of UNTIL_CLOSED. UNTIL_CLOSED is only associated with
transaction-time columns.

• New rows that have valid-time columns can be assigned valid-time periods with end
bounds of UNTIL_CHANGED to represent that the information in the row is valid
indefinitely.

For more information on... See...

temporal timestamping “Timestamping” on page 27

UNTIL_CHANGED and UNTIL_CLOSED “UNTIL_CHANGED and UNTIL_CLOSED”
on page 21

creating temporal tables Chapter 3: “Creating Temporal Tables”

history, current, future, open, and closed rows “Temporal Row Types” on page 22

NONTEMPORAL temporal qualifier “Nontemporal Operations” on page 25

CREATE_TABLE (temporal form) “CREATE TABLE, CREATE TABLE AS
(Temporal Forms)” on page 63

Chapter 2: Basic Temporal Concepts
Temporal Row Types

22 Temporal Table Support

UNTIL_CLOSED has a data type of TIMESTAMP(6) WITH TIME ZONE and a value of
TIMESTAMP '9999-12-31 23:59:59.999999+00:00'.

The value of UNTIL_CHANGED depends on the data type and precision of the valid-time
column. If the type is PERIOD(DATE), UNTIL_CHANGED is the value DATE '9999-12-31'.
If the type is PERIOD(TIMESTAMP), UNTIL_CHANGED is the value of TIMESTAMP
'9999-12-31 23:59:59.999999+00:00', with precision and time zone matching that specified for
the valid-time data type.

For more information on UNTIL_CHANGED and UNTIL_CLOSED, see the
discussion of Period data types in SQL Data Types and Literals.

Temporal Row Types

A row in a valid-time table can be a current row, future row, or history row.

A row in a transaction-time table can be an open or closed row.

A row in a bitemporal table can be a current row, future row, or history row in the valid-time
dimension and an open row or closed row in the transaction-time dimension.

Current Row
In a valid-time table, a current row is a row with a valid-time period that overlaps the current
time. A row with a valid-time value of NULL is not considered a current row.

In a bitemporal table, a current row has a valid-time period that overlaps the current time,
and a transaction-time period that is open.

Future Row
In a valid-time table, a future row is a row with a valid-time period that begins after the
current time. A row with a valid-time value of NULL is not considered a future row.

Transaction-time tables never have future rows. The transaction-time period of a row in a
transaction-time table begins at the time the row is created in the transaction-time table.

In a bitemporal table, a future row is a row with a valid-time period that begins after the
current time, and a transaction-time period that is open.

History Row
In a valid-time table, a history row is a row that is no longer valid: a row with a valid-time
period that ends before the current time. A row with a valid-time value of NULL is not
considered a history row.

In a transaction-time table, a row that is close is also considered to be a history row, regardless
of the valid-time period. See “Closed Row” on page 23.

Chapter 2: Basic Temporal Concepts
Temporal Row Types

Temporal Table Support 23

In a bitemporal table, a history row is a row with a valid-time period that ends before the
current time, or a row that is closed in transaction time, or a row that has both of these
conditions. A row with a valid-time value of NULL is not considered a history row.

Open Row
An open row is a row that is currently known to the database, a row that is currently in effect
in the database. It is a row that has not been (logically) deleted from the database or
superseded by a row modification.

In a transaction-time table, an open row is a row with a transaction-time period that has an
ending bound of UNTIL_CLOSED. When a new row is added to a table with transaction time,
the ending bound of the transaction-time column period value is set to UNTIL_CLOSED, and
the original row is considered to be open until the row is modified or deleted.

UNTIL_CLOSED has a value of TIMESTAMP '9999-12-31 23:59:59.999999+00:00'.

In a valid-time table, all rows are considered to be open. When a row is deleted from a valid-
time table, the row is physically deleted from the database, rather than closed. See “Valid Row”
on page 23.

In a bitemporal table, an open row is a row with a transaction-time period that has an ending
bound of UNTIL_CLOSED. Open rows that are no longer valid in the valid-time dimension
are considered history rows, even though they remain open in the transaction-time
dimension. See “History Row” on page 22.

Closed Row
A closed row is a row that is no longer in effect in the database. It is a row that has either been
(logically) deleted from the database, or otherwise superseded by a row modification, which
closes the original row, and opens a new row with the changed information.

In a transaction-time table or bitemporal table, a closed row is a row with a transaction-time
period that has an ending bound different from UNTIL_CLOSED (9999-12-31
23:59:59.999999+00:00). Such a row is said to be closed in transaction time.

The concept of a closed row does not apply to valid-time tables. See “No Longer Valid Row”
on page 24.

Valid Row
A valid row is a current or future row. It is a row in a valid-time or bitemporal table with a
valid-time period that overlaps current time, or that begins in the future.

For bitemporal tables, only rows that are open in the transaction-time dimension can be valid.

The concept of a valid row does not apply to a transaction-time table.

Chapter 2: Basic Temporal Concepts
Temporal Table Modifications

24 Temporal Table Support

No Longer Valid Row
A row that is no longer valid is a row in a valid-time or bitemporal table with a valid-time
period that ends before the current time. It is considered to be a history row in the valid-time
dimension.

For bitemporal tables, only rows that are open in the transaction-time dimension can be
considered no longer valid. Rows that are closed in the transaction-time dimension of a
bitemporal table are considered history rows, regardless of their valid-time period, and are not
considered either valid or no longer valid.

Temporal Table Modifications

Modifications to temporal tables can be current, sequenced, or nonsequenced. These
operations apply to the valid-time dimension. The system automatically determines which
rows are to be modified based on the interaction between the period of validity of each row
and the period of applicability of the modification SQL.

With respect to the transaction-time dimension of transaction-time and bitemporal tables, a
row is considered either open or closed. Open rows participate in database operations. Closed
rows are historical snapshots of rows that have been deleted or modified subsequent to a prior
state. After a row has been closed, it no longer participates in normal SQL operations, but can
be viewed using temporal SQL.

Rows that have been closed in the transaction-time dimension remain as a permanent log of
database operations on these rows. They are not available to be deleted or modified. However,
these rows can be deleted and modified by users having the special NONTEMPORAL
privilege, provided that capability is enabled in the database.

Period of Applicability
The period of applicability (PA) is the period specified implicitly or explicitly in a temporal
query or DML statement. It is the period in valid time for which the query or modification
applies. Teradata Database determines how to handle the SQL request based on the
relationship between the PA of the statement and the PV in the valid-time column of the rows
in the temporal table. PV is described in “Valid Time” on page 19.

Current Temporal Modification
Current temporal modifications are modifications to the current rows of a temporal table.

The period of applicability of a current modification implicitly begins from the current time
and extends indefinitely, represented by an ending period bound of UNTIL_CHANGED.
Current modifications need not explicitly specify a period in the modification SQL. The
CURRENT keyword causes the system to automatically apply the modification to those rows
whose period of validity overlaps the current time.

Chapter 2: Basic Temporal Concepts
Nontemporal Operations

Temporal Table Support 25

Note: Some proposed implementations of temporal tables suggest that a current modification
also apply to future rows. In the Teradata Database implementation, a current modification
applies only to current rows.

A current modification to any column creates history rows in the temporal table.

Sequenced Temporal Modification
Sequenced temporal modifications are modifications that apply for an explicitly specified
time period, the PA.

Rows qualify for the modification if their valid-time period, the PV, overlaps the PA specified
for the modification. Sequenced modifications can be made to rows with periods of validity in
the past, present, or future.

Nonsequenced Temporal Modification
Nonsequenced temporal modifications are modifications to a temporal table that treat the
temporal columns as any other column, and impose no special temporal semantics.
Nonsequenced modifications may explicitly mention the valid-time column, but do not
automatically create history rows.

Nontemporal Operations

A nontemporal operation is an operation where the NONTEMPORAL prefix is used with an
ALTER TABLE, CREATE TABLE AS (Copy Table Syntax), DELETE, INSERT, or UPDATE
statement. Nontemporal operations allow modifications to be made to closed rows in
transaction-time and bitemporal tables which are normally not allowed on tables with
transaction time. These operations can circumvent the automatic history that is normally kept
for these kinds of temporal tables. They can specify a transaction time when modifying and
inserting rows, and can physically delete closed rows. These operations are normally not
allowed on temporal tables that have transaction time. Use of the NONTEMPORAL keyword
is discouraged in most situations, and requires the special NONTEMPORAL privilege. For
more information see “NONTEMPORAL Privilege” on page 175.

Temporal Table Queries

Queries involving a temporal table with valid time can be current, sequenced, or
nonsequenced. On a table with transaction time, temporal queries can be current or
nonsequenced.

Current Temporal Query
A current query is a SELECT statement that extracts and operates on the current rows of a
table:

Chapter 2: Basic Temporal Concepts
Temporal Table Queries

26 Temporal Table Support

• For a transaction-time table, current queries operate only on open rows.

• For a valid-time table, current queries operate only on rows with valid-time periods that
overlap the current time.

• For bitemporal tables, current queries operate only on rows that are both open in the
transaction-time dimension an current in the valid-time dimension.

A current query produces a nontemporal table as a result set.

Sequenced Temporal Query
A sequenced query is a SELECT statement that extracts and operates on rows in a valid-time
or bitemporal table with valid-time periods that overlap a time period specified in the query
(the PA of the query). If no time period is explicitly specified in the query, the default PA is all
time, and the query applies to all open rows in the table. Such queries ca n return rows that are
history rows, current rows, future rows, or combinations of the three.

A sequenced query produces a temporal table as a result set. The valid-time of the result rows
is the overlap of the query PA with the original row PV.

As Of Query
An as of query is a SELECT statement that extracts and operates on rows in temporal tables
with valid-time and transaction-time periods that overlap an AS OF date or time specified in
the query. As of queries operate on the data as a snapshot at any point in time. Typically, as of
queries are used for querying historical data.

The AS OF clause can be applied to the valid-time and transaction-time dimensions together
or independently. When applied to the valid-time dimension, it retrieves rows where the PV
overlaps the specified AS OF time. When applied to the transaction-time dimension, it
retrieves rows with transaction-time periods that overlap the specified AS OF time.

An as of query is similar in semantics to a current query; an AS OF extracts the information
based on the specified time and a current query extract the information as of the current time
or date of the query being executed. However, a current query operates on only open rows in
the transaction-time dimension. An AS OF query can read rows as of a particular point in
time in the transaction-time dimension regardless of whether the rows are closed or open.

An as of query produces a nontemporal table as a result set.

Nonsequenced Temporal Query
A nonsequenced query is a SELECT statement that treats temporal columns of temporal tables
as if they were nontemporal columns. It does not place any special semantics on temporal
columns. It considers all states simultaneously.

A NONSEQUENCED VALIDTIME query can optionally include a PA. In this case, the query
produces a valid-time temporal table, where the valid time of the result set rows is the PA
specified in the query. If a NONSEQUENCED VALIDTIME query does not include a PA, the
query produces a nontemporal table as a result set.

Chapter 2: Basic Temporal Concepts
Session Temporal Qualifiers

Temporal Table Support 27

A NONSEQUENCED TRANSACTIONTIME query cannot include a PA, and always
produces a nontemporal table as a result set.

Related Information

Session Temporal Qualifiers

The SET SESSION statement lets you set session temporal qualifiers in the valid-time
dimension, transaction-time dimension, or both dimensions. When a DML or SELECT
statement refers to a temporal table but omits a temporal qualifier, the system uses the value of
the session temporal qualifier.

Session Valid-Time Qualifier
When a SELECT or DML statement refers to a temporal table but does not explicitly specify a
valid-time qualifier, the system uses the session valid-time qualifier.

The default session valid-time qualifier is CURRENT VALIDTIME.

Session Transaction-Time Qualifier
When a SELECT statement refers to a temporal table but does not explicitly specify a
transaction-time qualifier, the system uses the session transaction-time qualifier.

The default session transaction-time qualifier is CURRENT TRANSACTIONTIME.

Timestamping

An awareness of time is the defining feature of a temporal database. Rows with transaction-
time columns are automatically tracked in time by the system, starting from the time the row
is first inserted in a table. Rows with valid-time columns specify the period of time for which
the information in the row is considered to be in effect. Whenever a row in any type of
temporal table is modified or deleted, the system automatically timestamps the row and any
new rows that are created as a result of the modification. These timestamps note the time of
the change, and are used to close rows with a transaction-time column, and modify the PV as
appropriate for rows with a valid-time column.

For more information on... See...

open, closed, current, future, and history rows “Temporal Row Types” on page 22.

transaction time and valid time “Transaction Time and Valid Time” on page 17

current, sequenced, as of, and nonsequenced
queries

• “SELECT/SELECT ... INTO (Temporal
Forms)” on page 137

• “Querying Temporal Tables” on page 191

Chapter 2: Basic Temporal Concepts
Timestamping

28 Temporal Table Support

For example, if a row has a valid-time period that extends from last week to next week, and
during that period a change is made to the row, the original information in the original row
ceases to be effective at the time of the change. Consequently, the database timestamps the end
bound of the valid-time column with the time of the change, because that marks the time the
original information in the row is no longer valid. The database automatically adds a copy of
the row to the table, having the changed values, and timestamps the valid-time period to begin
at the time of the change. The new row retains the ending bound of the valid-time period
from the original row.

Because transaction time and valid time are fundamentally different time dimensions, with
different purposes in temporal tables, timestamps are calculated differently for transaction-
time columns than they are for valid-time columns.

Transaction-Time Timestamping
When a row is added to, or modified in a temporal table with transaction time, the system
automatically timestamps the transaction-time column to indicate when the system became
aware of the new or modified information in the row. You do not normally have control over
the timestamp value used for a transaction-time column.

The timestamp used for transaction-time columns is the value read from the system clock by
each AMP at the instant the row is inserted or modified. This value is referred to as
TT_TIMESTAMP throughout this book:

• The beginning bound of the transaction-time period is automatically set to
TT_TIMESTAMP for rows inserted into tables with transaction time.

• The ending bound of the transaction-time period is automatically set to TT_TIMESTAMP
for rows that are modified in tables with transaction time. This maintains a history of
when the change to the row occurred.

This automatic timestamping process produces different timestamps for each row within the
same load job, and for each row within the same transaction. That means that all
modifications, even those within a single transaction, are individually tracked by the database
for tables that have a transaction-time column. For example, a transaction consisting of two
statements, where one statement inserts a row and the other statement deletes the previously
inserted row leaves a track in the database in the form of a stored history row that is closed in
transaction time, and unavailable to most SQL.

If a single modification to a row results in multiple rows being automatically added to the
database, the system uses the same TT_TIMESTAMP value to timestamp all affected rows. For
example, an update to a row of a table with a transaction-time column could result in an
update to the original row, plus the insertion of one or two new rows. In this case,
TT_TIMESTAMP would be the same time for all rows. For examples of how a modification to
one row can result in one or two additional rows being added to the temporal table, see
“Sequenced Updates” on page 163.

Chapter 2: Basic Temporal Concepts
Period Data Types: Basic Definitions

Temporal Table Support 29

Valid-Time Timestamping
A valid-time column specifies the period of time for which the information in a row is
effective. Because this information models the real world, such as the period for which a
contract is valid:

• The valid-time period should always be explicitly specified when adding rows to tables that
have a valid-time column.

• An explicit time period should always be specified when making DML modifications to
tables that have a valid-time column. This specifies the period of applicability (PA) of the
change, which may not exactly match the PV of any row. If the PA of a modification does
not match the PV of a row, Teradata Database determines how to make the change by the
relationship between the PA and PV. If the PA and PV overlaps, the modification involves
adding new rows to the table to account for the period before and after the change.

Although the PA and PV should always be explicitly specified for operations on tables with
valid-time columns, Teradata Database will use default values if these periods are not
specified. For valid-time tables, the current time at the time of a row insertion or modification
is timestamped as the value of the built-in function TEMPORAL_TIMESTAMP, or
TEMPORAL_DATE if the valid-time column has a DATE type.

The value of TEMPORAL_TIMESTAMP or TEMPORAL_DATE for a transaction is the time
or date when the first non-locking reference is made to a temporal table, or when the built-in
function is first accessed during the transaction.

For more information on TEMPORAL_TIMESTAMP built-in function, see SQL Functions,
Operators, Expressions, and Predicates.

Period Data Types: Basic Definitions

Period
A Period is an anchored duration. It represents a set of contiguous time granules within that
duration. It has a beginning bound (defined by the value of a beginning element) and an
ending bound (defined by the value of an ending element). The representation of the period is
inclusive-exclusive; that is, the period extends from the beginning bound up to but not
including the ending bound. The following diagram represents a period of 9 days starting
from 1 February, 2006 to 10 February, 2006. The Period includes 1 February, 2006 and extends
up to, but does not include, 10 February, 2006.

1101B570

1 Feb, 2006 10 Feb, 2006

Chapter 2: Basic Temporal Concepts
Period Data Types: Basic Definitions

30 Temporal Table Support

Element Type
The element type of a Period data type is the data type of the beginning and ending elements
of a value of that Period data type. The element type can be any DateTime data type. The
DateTime data types are DATE, TIME, and TIMESTAMP. The TIME and TIMESTAMP data
types have a number (from 0 to 6) of fractional seconds in the seconds field which can be
specified or defaults to 6 (for example, TIME(3) and TIMESTAMP(6)). They can also
explicitly include a time zone field by specifying WITH TIME ZONE (if WITH TIME ZONE
is not specified, a time zone field is implicitly not included).

Note that the element type must be the same for both the beginning and ending elements of a
period.

Comparable Period Data Types
Two Period values are comparable if their element types are of same DateTime data type. The
DateTime data types are DATE, TIME, and TIMESTAMP.

Teradata extends this to allow a CHARACTER and VARCHAR value to be implicitly cast as a
Period data type for some operators and, therefore, have a Period data type. Since the Period
data type is the data type of the other operand, these operands will be comparable.

Note that DateTime and Period data are saved internally with the maximum precision of 6
although the specified precision may be less than this and is padded with zeroes. Thus, the
comparison operations with differing precisions work without any additional logic.
Additionally, the internal value is saved in UTC for a Time or Timestamp value, or for a Period
value with an element type of TIME or TIMESTAMP. All comparable operands can be
compared directly due to this internal representation irrespective of whether they contain a
time zone value, or whether they have the same precision. Note that the time zone values are
ignored when comparing values.

Assignment Operators
A value is only assignable to a Period type target if either one of the following is true:

• The source and target both have Period data types with the same element type. That is, the
element types are both DATE, both TIME, or both TIMESTAMP.

• It is possible to implicitly cast the source (which must have a CHARACTER or VARCHAR
data type) as the data type of the target. In this case, the source is implicitly cast as the data
type before assignment.

Data type ... Is comparable with a ...

PERIOD(DATE) PERIOD(DATE) data type.

PERIOD(TIME(n) [WITH TIME ZONE]) PERIOD(TIME(m) [WITH TIME ZONE]) data
type.

PERIOD(TIMESTAMP(n) [WITH TIME
ZONE])

PERIOD(TIMESTAMP(m) [WITH TIME ZONE])
data type.

Chapter 2: Basic Temporal Concepts
Period Data Type Usage

Temporal Table Support 31

In addition, the target precision must not be lower than the source precision.

A Period value is not assignable to a target that does not have a Period data type.

Time Granule
A time granule or, simply, granule is the minimum interval that can be represented at a given
precision. For example, if the element type of a period is DATE, the granule is one day (that is,
INTERVAL '1' DAY); if the element type of a period is TIME(0), the granule is one second
(that is, INTERVAL '1' SECOND); if the element type of a period is TIMESTAMP(2), the
granule is one hundredth of a second (that is, INTERVAL '0.01' SECOND).

Last Value
The last value of a period is the greatest value of the element type that is less than the value of
the ending element of the period. That is, the last value is the ending bound minus one
granule of the element type.

Duration
The duration of a period is the number of granules in a period and is represented as an
interval.

Period Data Type Usage

Both temporal and nontemporal tables support Period data types and literals.

With respect to temporal tables:

• transaction-time columns must have a data type of PERIOD(TIMESTAMP(6) WITH
TIME ZONE).

• Valid-time columns can have a data type of PERIOD(DATE),
PERIOD(TIMESTAMP[(n)]), or PERIOD(TIMESTAMP[(n)] WITH TIME ZONE).

For more information on Period and DateTime data types, see SQL Data Types and Literals.

Chapter 2: Basic Temporal Concepts
Period Data Type Usage

32 Temporal Table Support

Temporal Table Support 33

CHAPTER 3 Creating Temporal Tables

This chapter describes tasks related to creating temporal tables.

Creating Valid-Time Tables

There are several ways to create a valid-time table:

• Create a new table as a valid-time table

• Add a valid-time column to a nontemporal or transaction-time table

• Create a valid-time table from a copy of a nontemporal table

Creating a New Valid-Time Table
To create a valid-time table, use a normal CREATE TABLE statement, and define one column
as a valid-time column. The data type must be PERIOD(DATE),
PERIOD(TIMESTAMP[(n)]), or PERIOD(TIMESTAMP[(n)] WITH TIME ZONE). Use the
VALIDTIME or AS VALIDTIME data type attribute to assign the column to be the valid-time
column.

Example
CREATE MULTISET TABLE Policy(

Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME
)

PRIMARY INDEX(Policy_ID);

Adding a Valid-Time Column to a Table
To add a valid-time column to a nontemporal or transaction-time table, use the ALTER
TABLE statement.

Example
Consider the following nontemporal table definition:

CREATE MULTISET TABLE Customer (
Customer_Name VARCHAR(40),
Customer_ID INTEGER,
Customer_Address VARCHAR(80),
Customer_Phone VARCHAR(12)
)

PRIMARY INDEX (Customer_ID);

Chapter 3: Creating Temporal Tables
Creating Valid-Time Tables

34 Temporal Table Support

The following statement adds a valid-time column to the Customer table:

ALTER TABLE Customer
ADD Customer_Validity PERIOD(DATE) AS VALIDTIME;

Temporal tables cannot have unique primary indexes. If the original nontemporal table has a
unique primary index, use ALTER TABLE to modify the primary index to nonunique prior to
adding the temporal column. Uniqueness can be applied to a temporal table using other
constraints. For more information, see “Using Constraints with Temporal Tables” on page 87.

Converting Period or DateTime Columns to a Valid-Time Column
If you have a table that defines a Period column or a table that uses two DateTime columns to
represent the beginning and ending bound values for a period of time, and the data types are
appropriate for a valid-time column, take the following steps to convert the existing Period
column or DateTime columns to a valid-time column:

1 Note all the constraint information on the table.

2 Drop all the constraints.

3 ALTER TABLE to add a new valid-time column.

4 Submit NONSEQUENCED VALIDTIME update to set the new valid-time column with
the existing column value. Use the PERIOD constructor if the existing column values are
two separate DateTime columns representing the beginning and ending bounds.

5 ALTER TABLE to drop the existing Period column or the two DateTime columns from the
table.

6 ALTER TABLE to rename the valid-time column with the name of the dropped column.

7 Create all of the previously dropped constraints with the desired valid-time qualifier.

Creating a Valid-Time Table as a Copy of a Nontemporal Table
To create a valid-time table as a copy of an existing nontemporal table, use CREATE
TABLE … AS (the copy table form of CREATE TABLE). Use the AS clause to specify a
temporal query that returns a table with valid time.

Example
Consider the following nontemporal table:

CREATE TABLE Policy_NT (
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40)
)

PRIMARY INDEX(Policy_ID);

To create a copy of the Policy_NT table as a valid-time table, use a nonsequenced query in the
AS clause of CREATE TABLE to specify a valid time period of applicability qualifier on the
SELECT. The result is a valid-time table where the period of validity for every row is set to the
period of applicability that was used in the query.

CREATE MULTISET TABLE Policy(

Chapter 3: Creating Temporal Tables
Creating Transaction-Time Tables

Temporal Table Support 35

Policy_ID,
Customer_ID,
Policy_Type,
Policy_Details,
Validity
) AS (
NONSEQUENCED VALIDTIME PERIOD '(2009-01-01, UNTIL_CHANGED)'
SELECT *
FROM Policy_NT)

WITH DATA
PRIMARY INDEX(Policy_ID);

The resulting Policy table has a valid-time column named Validity:

SHOW TABLE Policy;

CREATE MULTISET TABLE Policy ,NO FALLBACK ,
NO BEFORE JOURNAL,
NO AFTER JOURNAL,
CHECKSUM = DEFAULT,
DEFAULT MERGEBLOCKRATIO
(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) CHARACTER SET LATIN NOT CASESPECIFIC,
Policy_Details CHAR(40) CHARACTER SET LATIN NOT CASESPECIFIC,
Validity PERIOD(DATE) AS VALIDTIME)

PRIMARY INDEX (Policy_ID);

Related Information

Creating Transaction-Time Tables

There are two ways to create a transaction-time table:

• Create a new table as a transaction-time table

• Add a transaction-time column to a nontemporal or valid-time table

Creating a New Transaction-Time Table
To create a transaction-time table, use a normal CREATE TABLE statement, and define one
column of the table as a transaction-time column.The data type of the column must be

For more information on... See...

valid-time periods “Valid Time” on page 19

CREATE TABLE (temporal form) “CREATE TABLE, CREATE TABLE AS (Temporal
Forms)” on page 63

ALTER TABLE (temporal form) “ALTER TABLE (Temporal Form)” on page 42

UPDATE TABLE (temporal form) “UPDATE (Temporal Form)” on page 158

Chapter 3: Creating Temporal Tables
Creating Transaction-Time Tables

36 Temporal Table Support

PERIOD(TIMESTAMP(6) WITH TIME ZONE), and must use the TRANSACTIONTIME or
AS TRANSACTIONTIME data type attribute. Transaction-time columns must also specify
the NOT NULL data type attribute.

Example
CREATE MULTISET TABLE Policy_Types (

Policy_Name VARCHAR(20),
Policy_Type CHAR(2) NOT NULL PRIMARY KEY,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME
)

PRIMARY INDEX (Policy_Name);

Adding a Transaction-Time Column to a Table
To add a transaction-time column to a nontemporal or valid-time table, use the ALTER
TABLE statement.

Example
Consider the following nontemporal table definition:

CREATE MULTISET TABLE Customer (
Customer_Name VARCHAR(40),
Customer_ID INTEGER,
Customer_Address VARCHAR(80),
Customer_Phone VARCHAR(12)
)

PRIMARY INDEX (Customer_ID);

The following statement adds a transaction-time column to the Customer table:

ALTER TABLE Customer
ADD Customer_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME;

Temporal tables cannot have unique primary indexes. If the original nontemporal table has a
unique primary index, use ALTER TABLE to modify the primary index to nonunique prior to
adding the temporal column. Uniqueness can be applied to a temporal table using other
constraints. For more information, see “Using Constraints with Temporal Tables” on page 87.

Converting Period or DateTime Columns to a Transaction-Time
Column
If you have a table that defines a Period column or a table that uses two DateTime columns to
represent the beginning and ending bound values for a period of time, and the data types are
appropriate for a transaction-time column, take the following steps to convert the existing
Period column or DateTime columns to a transaction-time column:

1 Note all the constraint information on the original table.

2 Drop all the constraints on the original table.

3 Grant NONTEMPORAL privilege to the user on the table.

4 ALTER TABLE to add a new transaction-time column.

Chapter 3: Creating Temporal Tables
Partitioning Temporal Tables

Temporal Table Support 37

5 Submit NONTEMPORAL UPDATE to set the new transaction-time column with the
existing column value being converted. Use the PERIOD constructor if the existing
column values are two separate DateTime columns representing the beginning and ending
bounds.

6 ALTER TABLE to drop the existing Period column or two DateTime columns from the
table.

7 ALTER TABLE to rename the transaction-time column with the name of the dropped
column.

8 Create all the previously dropped constraints with the desired transaction-time qualifier.

Related Information

Partitioning Temporal Tables

To improve the performance of current queries on a temporal table, the table should have a
partitioned primary index. The table is logically divided into a set of current rows, and history
rows (open rows and closed rows in the transaction-time dimension). Current queries are
directed automatically to the partition containing current, open rows.

Partitioning a Valid-Time Table
To partition a valid-time table, use the following PARTITION BY clause.

Example
CREATE MULTISET TABLE Policy(

Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME
)

PRIMARY INDEX(Policy_ID)
PARTITION BY

CASE_N(END(Validity) >= CURRENT_DATE AT INTERVAL -'12:59' HOUR TO
MINUTE, NO CASE);

For more information on... See...

transaction-time periods “Transaction Time” on page 18

CREATE TABLE (temporal form) “CREATE TABLE, CREATE TABLE AS (Temporal
Forms)” on page 63

ALTER TABLE (temporal form) “ALTER TABLE (Temporal Form)” on page 42

UPDATE TABLE (temporal form) “UPDATE (Temporal Form)” on page 158

Chapter 3: Creating Temporal Tables
Partitioning Temporal Tables

38 Temporal Table Support

Partitioning a Transaction-Time Table
To partition a transaction-time table, use the following PARTITION BY clause.

Example
CREATE MULTISET TABLE Policy_Types (

Policy_Name VARCHAR(20),
Policy_Type CHAR(2) NOT NULL PRIMARY KEY,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME
)

PRIMARY INDEX (Policy_Name)
PARTITION BY

CASE_N (END(Policy_Duration) >= CURRENT_TIMESTAMP, NO CASE);

Partitioning a Bitemporal Table
To partition a bitemporal table, use the following PARTITION BY clause.

Example
CREATE MULTISET TABLE Policy_Bitemp (

Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME
)

PRIMARY INDEX (Policy_ID)
PARTITION BY CASE_N(

(END(Validity) IS NULL OR
END(Validity) >= CURRENT_DATE AT

INTERVAL -'12:59' HOUR TO MINUTE) AND
END(Policy_Duration) >= CURRENT_TIMESTAMP,
END(Validity) < CURRENT_DATE AT

INTERVAL -'12:59' HOUR TO MINUTE AND
END(Policy_Duration) >= CURRENT_TIMESTAMP,
END(Policy_Duration) < CURRENT_TIMESTAMP);

Maintaining a Current Partition
As time passes, and current rows become history rows, you should periodically use the ALTER
TABLE TO CURRENT statement to transition history rows out of the current partition into
the history partition. ALTER TABLE TO CURRENT resolves the partitioning expressions
again, transitioning rows to their appropriate partitions per the updated partitioning
expressions. For example:

ALTER TABLE Policy TO CURRENT;

This statement also updates any system-defined join indexes that were automatically created
for primary key and unique constraints defined on the table.

Chapter 3: Creating Temporal Tables
Creating Join Indexes for Temporal Tables

Temporal Table Support 39

Related Information

Creating Join Indexes for Temporal Tables

Join indexes aid performance by providing a smaller data set and shorter data access path for
common queries that would otherwise require full table scans. Join indexes can also help the
Optimizer better optimize queries. Join indexes can be created for temporal tables.

Creating a Join Index on a Table with Valid Time
To create a join index on a table with valid time, precede the SELECT statement in the join
index definition with a CURRENT VALIDTIME, NONSEQUENCED VALIDTIME, or
SEQUENCED VALIDTIME qualifier. For example:

CREATE JOIN INDEX Policy_JI AS
CURRENT VALIDTIME SELECT Policy_ID, Policy_Type, Validity
FROM Policy;

A join index that is current or sequenced in the valid-time dimension must project the valid-
time column in the SELECT statement to ensure that the join index is used appropriately.
Here, the Validity column is the valid-time column.

Creating a Join Index on a Table with Transaction Time
To create a join index on a table with transaction time, precede the SELECT statement in the
join index definition with a CURRENT TRANSACTIONTIME or NONSEQUENCED
TRANSACTIONTIME qualifier. For example:

CREATE JOIN INDEX Policy_Types_JI AS
CURRENT TRANSACTIONTIME SELECT Policy_Type, Policy_Duration
FROM Policy_Types;

A join index that is current in the transaction-time dimension must project the transaction-
time column in the SELECT statement. Here, the Policy_Duration column is the transaction-
time column.

For more information on... See...

partitioning temporal tables “Partitioning Expressions for Temporal Tables” on
page 84

CREATE TABLE (temporal form) “CREATE TABLE, CREATE TABLE AS (Temporal
Forms)” on page 63

ALTER TABLE TO CURRENT (regular form) SQL Data Definition Language

Chapter 3: Creating Temporal Tables
Loading Data into Temporal Tables

40 Temporal Table Support

Maintaining Current Join Indexes
As time passes, and current rows become history rows, you should periodically use the ALTER
TABLE TO CURRENT statement to ensure that the rows in the index continue to reflect only
rows that are valid. For example:

ALTER TABLE Policy_JI TO CURRENT;

Related Information

Loading Data into Temporal Tables

Teradata Database supports two methods of bulk loading data into temporal tables:

• FastLoad (and applications that support the FastLoad protocol), can perform bulk loads
directly into temporal tables.

Do not use CURRENT INSERT (valid time or transaction time) if the FastLoad script
includes a CHECKPOINT specification. Restarts during loading can change the valid time
and transaction time values for rows that are inserted after the restart.

In this case, use NONTEMPORAL INSERT instead, to ensure an exact one-to-one
correspondence between the number of rows inserted and the number of rows that results
in the target table.

• Alternatively, Multiload can be used to load data into nontemporal staging tables, followed
by the use of INSERT ... SELECT requests to load the data from the staging tables into
temporal tables.

For more information on... See...

CREATE JOIN INDEX (temporal form) “CREATE JOIN INDEX (Temporal Form)” on
page 56

ALTER TABLE TO CURRENT (regular form) SQL Data Definition Language

Temporal Table Support 41

CHAPTER 4 SQL Data Definition Language
(Temporal Forms)

This chapter describes the SQL DDL statements related to temporal tables.

The material in this chapter covers the syntax, rules, and other details that are specific to
temporal table support.

The existing rules that apply to conventional DDL statements also apply to the statements in
this chapter and are not repeated here. For more information on conventional DDL
statements, see SQL Data Definition Language.

Teradata Replication Services supports temporal tables. The SET SESSION SUBSCRIBER ON
statement enables a replication subscriber session to apply changes to temporal tables using
the transaction time of the source transaction. For more information on Teradata Database
replication, see Teradata Replication Services Using Oracle GoldenGate.

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

42 Temporal Table Support

ALTER TABLE (Temporal Form)

Purpose
Performs any of the following:

• Adds a valid-time column or a transaction-time column or both to an existing table.

• Adds, modifies, or drops columns from temporal tables.

• Drops a valid-time column or a transaction-time column or both.

• Adds, drops, or modifies constraints.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

1182A029

ALTER TABLE table_name
NONTEMPORAL

,
BA

A
database_name.table_name

user_name.table_name

alter_table_option

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

Temporal Table Support 43

1182B030

ADD

CONSTRAINT name

UNIQUE

PRIMARY KEY

column_name

,

((

DROP CONSTRAINT name

MODIFY

CONSTRAINT name

(boolean_condition)CHECK

DROP CHECK

CONSTRAINT name

ADD (boolean_condition)CHECK

((

CONSTRAINT name

DROP INCONSISTENT REFERENCES

ADD FOREIGN KEY

CONSTRAINT name

column_name

REFERENCES WITH NO CHECK OPTION table_name
,

column_name

DROP column_name

ADD column_name

Column
Changes

Constraint
Table-Level

Changes

Reference
Table-Level

Definition

B

a

a

Unique
Table-Level

Definition

,

,

data type

RENAME

IDENTITY

old_column_name TO new_column_name
AS

()

NULL
NOT

;

data type attributes

data type attributes

column storage attributes

column constraint attributes

RI time option

RI time option

time option

DROP

time option

time option

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

44 Temporal Table Support

1101B535

INTEGER

SMALLINT

BIGINT

(integer)

FLOAT

NUMERIC

DECIMAL

BYTEINT

DATE

REAL

NUMBER
()integer

*

DOUBLE PRECISION

(integer)

data type

WITH TIMEZONE(fractional_seconds_precision)

,fractional_seconds_precision

TIME

TIMESTAMP

TO MONTH(precision)

(precision)

(precision)

INTERVAL YEAR

INTERVAL MONTH

TO HOUR

INTERVAL DAY

MINUTE

SECOND

INTERVAL HOUR

INTERVAL MINUTE

TO SECOND

)

INTERVAL SECOND

(precision)

(precision)

(precision)

(precision)

TO MINUTE

SECOND

(fractional_seconds_precision)

(fractional_seconds_precision)

(fractional_seconds_precision)

PERIOD(TIMESTAMP WITH TIMEZONE

PERIOD(TIME

PERIOD(DATE)

A B

, integer

, integer

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

Temporal Table Support 45

1101B536

BINARY LARGE OBJECT ((integer

BLOB G
K
MCHARACTER LARGE OBJECT

CLOB

UDT_name

SYSUDTLIB. ST_Geometry

MBR

A B

CHAR

BYTE

GRAPHIC

LONG VARGRAPHIC

VARCHAR

CHAR VARYING

VARBYTE

VARGRAPHIC

(integer)

(integer)

LONG VARCHAR

ARRAY_name

VARRAY_name

1182A019

data type attributes

NOT

USER

DATE

TIME

NULL

UPPERCASE

CASESPECIFIC

FORMAT quotestring

TITLE quotestring

NAMED name

DEFAULT number

WITH DEFAULT

UC

CS

CHARACTER SET

VALIDTIME

TRANSACTIONTIMEAS

server_character_set

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

46 Temporal Table Support

column storage attributes

COMPRESS

MVC

ALC

COMPRESS USING

1182A052

compress_UDF_name

NULL

constant

constant

,

()

255

DECOMPRESS USING

decompress_UDF_name

NO COMPRESS

A

A

1182A032

column constraint attributes

CHECK (boolean_condition)

table_name

CONSTRAINT UNIQUE
PRIMARY KEY

(column_name)

name time option

REFERENCES WITH NO CHECK OPTION a

a
RI time option

1182A033

time option

CURRENT TRANSACTIONTIME

NONSEQUENCED

SEQUENCED

AND CURRENT VALIDTIME

AND VALIDTIME

AND CURRENT TRANSACTIONTIMECURRENT VALIDTIME

VALIDTIME

NONSEQUENCED

SEQUENCED

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

Temporal Table Support 47

Syntax Element … Specifies …

NONTEMPORAL that the table to be altered has transaction time and that the ALTER
TABLE operation will modify data in the table.

database_name.table_name the name of the table to alter and the optional name of the database
or user in which it is contained if different from the current
database.user_name.table_name

table_name

alter_table_option an option from the Alter Table Options list for a conventional
ALTER TABLE statement.

Column Changes Clause

ADD column_name to add or change the specified column and its specified attributes.

ADD and DROP cannot both be specified on the same column in
the same ALTER TABLE statement.

The ADD keyword either changes the definition of an existing
column or adds a new column to the table. If the named column
already exists, ADD indicates that its attributes are to be changed.

Adding or changing a column on a table with transaction time
requires that the statement include the NONTEMPORAL prefix.

Data Type
[Data Type Attributes]

one or more data definition phrases that define data for the column.

You must always specify a data type for a newly added column.

For information on Period data types, see “Period Data Types: Basic
Definitions” on page 29.

1182A051

RI time option

NONSEQUENCED

SEQUENCED

AND CURRENT VALIDTIME

AND VALIDTIME

AND CURRENT TRANSACTIONTIMECURRENT VALIDTIME

VALIDTIME

CURRENT TRANSACTIONTIME

SEQUENCED TRANSACTIONTIME

NONSEQUENCED TRANSACTIONTIME

NONSEQUENCED

SEQUENCED

AND SEQUENCED TRANSACTIONTIME

NONSEQUENCED TRANSACTIONTIME

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

48 Temporal Table Support

[AS] VALIDTIME that the column to be added is a valid-time column.

A valid-time column can be added only if its data type is
PERIOD(DATE), PERIOD(TIMESTAMP[(n)]), or
PERIOD(TIMESTAMP[(n)] WITH TIME ZONE).

There can be no more than one valid-time column in a temporal
table.

An existing column cannot be modified to be a valid-time column
using ALTER TABLE.

To add a valid-time column, the existing table cannot have a UPI
and cannot have any unique, primary key, or referential integrity
constraints.

[AS] TRANSACTIONTIME that the column to be added is a transaction-time column.

A transaction-time column can be added only if its data type is
PERIOD(TIMESTAMP(6) WITH TIME ZONE).

There can be no more than one transaction-time column in a
temporal table.

A DEFAULT clause cannot be specified for a transaction-time
column.

A transaction-time column must be defined as NOT NULL.

To add a transaction-time column, the existing table cannot have a
UPI and cannot have any unique, primary key, or referential
integrity constraints.

ADD column_name NULL to change an existing column column_name from being NOT
NULL to being nullable.

DROP column_name
[IDENTITY]

that the named column is to be removed from the table.

Dropping a column on a table with transaction time requires that
the statement include the NONTEMPORAL prefix.

When the transaction-time column is dropped from a table, all
closed rows are deleted from the table.

When the valid-time column is dropped from a table, all the rows
that are no longer valid are deleted from the table.

The IDENTITY option removes the IDENTITY attribute from a
column without dropping the column itself. For more information,
see SQL Data Definition Language.

Column Storage Attributes

COMPRESS a specified set of distinct values in a column that is to be
compressed using multi-value compression (MVC).

NULL that nulls are compressed using MVC.

Nulls are compressed by default.

constant that nulls and the value specified by constant are compressed.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

Temporal Table Support 49

COMPRESS USING
compress_UDF_name

that column values should be compressed using algorithmic
compression (ALC).

compress_UDF_name is the name of the UDF used to compress
character or graphic data in this column.

Note: ALC is not supported for validtime and transactiontime
columns.

DECOMPRESS USING
decompress_UDF_name

that column values compressed using ALC should be decompressed
using the specified UDF.

decompress_UDF_name is the name of the UDF used to decompress
character or graphic data in this column.

Note: ALC is not supported for validtime and transactiontime
columns.

NO COMPRESS to drop any type of compression (MVC or ALC) that has been
applied to this column.

Column Constraint Attributes
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.

CONSTRAINT name the optional name for a constraint.

CURRENT
TRANSACTIONTIME

that only rows that are open in transaction time are to be checked
for constraint violations.

SEQUENCED
TRANSACTIONTIME

that any value for the constrained column in the child table must
exist in the parent table during the time period for which it exists in
the child.

Note: The sequenced transactiontime constraint qualifier is valid
only for the REFERENCES constraint.

NONSEQUENCED
TRANSACTIONTIME

that any value for the constrained column in the child table must
exist in the parent table. A nonsequenced constraint is like a
nontemporal relational constraint, and ignores the transaction-
time column in the child table.

Note: The parent table cannot have a transaction-time column.

The nonsequenced transactiontime constraint qualifier is valid only
for the REFERENCES constraint.

CURRENT VALIDTIME that only rows that are current and future in valid time are to be
checked for constraint violations. History rows are not checked.

[SEQUENCED]
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations.

NONSEQUENCED
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations. Nonsequenced constraints treat
the valid-time column as a non-temporal column, so are similar to
constraints on non-temporal tables. They apply to all open rows of
the table.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

50 Temporal Table Support

CHECK (boolean_condition) a boolean conditional expression that must be true, or else the row
violates the check constraint.

Check constraints cannot be placed on valid-time or transaction-
time columns.

UNIQUE or
PRIMARY KEY

that during the qualified time, any given value in the constrained
column will not exist in more than one row at any instant in time:

• For a current constraint this means any current or future rows
that have overlapping time periods cannot have the same value
in the column.

• For a sequenced constraint this means any history, current, or
future rows that have overlapping time periods cannot have the
same value in the column.

• For a nonsequenced constraint this means that the value of the
column is unique in every row in the table, irrespective of
whether row time periods overlap. This is similar to a unique or
primary key constraint in a non-temporal table.

In all cases, if the table has a transaction-time column, the
constraint is applied only to rows that are open in transaction time.

For a current or sequenced PRIMARY KEY or UNIQUE constraint
defined on a temporal table, the valid-time column must be defined
as NOT NULL.

The PK or unique column cannot be a valid-time or transaction-
time column.

Because PK and unique constraints on temporal tables are
implemented as system-defined join indexes, the constraint is not
allowed if it would cause the maximum number of secondary
indexes to be exceeded for the table.

REFERENCES table_name
[(column_name)]

a foreign key-primary key referential integrity constraint where
table_name is the parent table.

The column cannot be a valid-time or transaction-time column.

WITH NO CHECK
OPTION

that referential integrity is not to be enforced for the specified
primary key-foreign key relationship.

Constraint Change Options
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.

ADD to add or drop a constraint.

When a named primary key or unique constraint is dropped, the
associated system-defined join index or USI is automatically
dropped.

You cannot use ALTER TABLE to drop an unnamed primary key or
unique constraint. Instead, use DROP JOIN INDEX or DROP
INDEX to drop the system-defined join index.

DROP

ADD/DROP CONSTRAINT
name

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

Temporal Table Support 51

Table Level REFERENCES Definition
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.

CONSTRAINT name the optional name for the constraint.

CURRENT
TRANSACTIONTIME

that every value for the constrained column in the child table must
exist in the open rows of the parent table.

SEQUENCED
TRANSACTIONTIME

that any value for the constrained column in the child table must
exist in the parent table during the time period for which it exists in
the child.

NONSEQUENCED
TRANSACTIONTIME

that any value for the constrained column in the child table must
exist in the parent table. A nonsequenced constraint is like a
nontemporal relational constraint, and ignores the transaction-
time column in the child table.

Note: The parent table cannot have a transaction-time column.

CURRENT VALIDTIME that any value for the constrained column in the child table must
exist in the open current or future rows of the parent table. The
valid-time period of the child row must be contained within the
combined valid-time periods of current and future rows in the
parent table that have a value that matches the child table. History
rows in the child table are not checked, and history rows in the
parent table are not considered.

[SEQUENCED]
VALIDTIME

that any value for the constrained column in the child table must
exist in the open rows of the parent table. The valid-time period of
the child row must be contained within the combined valid-time
periods of open rows in the parent table that have a value that
matches the child table.

NONSEQUENCED
VALIDTIME

that any value for the constrained column in the child table must
exist in the parent table. A nonsequenced constraint is like a
nontemporal relational constraint, and ignores the valid-time
column in the child table.

Note: The parent table cannot have a valid-time column.

FOREIGN KEY a foreign key for the table.

column_name a name for a column defined as part of the foreign key.

REFERENCES WITH NO
CHECK OPTION

an integrity reference to the parent table named in table_name.

Referential integrity is not enforced for the specified primary key-
foreign key relationship

table_name the name of the referenced parent table used in the referential
integrity constraint definition.

column_name a column in the column set that makes up the parent table
PRIMARY KEY or UNIQUE candidate key columns. The column
cannot be a valid-time or transaction-time column.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

52 Temporal Table Support

DROP INCONSISTENT
REFERENCES

to delete all inconsistent references defined on the table.

Table Level CHECK Definition
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.

CONSTRAINT name the optional name for the constraint.

CURRENT
TRANSACTIONTIME

that only rows that are open in transaction time are to be checked
for constraint violations.

CURRENT VALIDTIME that only rows that are current and future in valid time are to be
checked for constraint violations. History rows are not checked.

[SEQUENCED]
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations.

NONSEQUENCED
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations. Nonsequenced constraints treat
the valid-time column as a non-temporal column, so are similar to
constraints on non-temporal tables. They apply to all open rows of
the table.

CHECK (boolean_condition) a boolean conditional expression that must be true, or else the row
violates the check constraint.

Check constraints cannot be placed on valid-time or transaction-
time columns.

Table Level UNIQUE Definition
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.

CONSTRAINT name the optional name for the constraint.

CURRENT
TRANSACTIONTIME

that only rows that are open in transaction time are to be checked
for constraint violations.

CURRENT VALIDTIME that only rows that are current and future in valid time are to be
checked for constraint violations. History rows are not checked.

[SEQUENCED]
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations.

NONSEQUENCED
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations. Nonsequenced constraints treat
the valid-time column as a non-temporal column, so are similar to
constraints on non-temporal tables. They apply to all open rows of
the table.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

Temporal Table Support 53

Adding a Valid-Time Column
If a default value is specified for a new valid-time column, the column is populated with the
specified value. Otherwise, the new column is populated as follows:

In addition to the rules for specifying a valid-time column specified in “CREATE TABLE,
CREATE TABLE AS (Temporal Forms)” on page 63, the following rules apply when using
ALTER TABLE to add a valid-time column to an existing table:

• If the table has a transaction-time column, the ALTER TABLE statement must specify the
NONTEMPORAL prefix. This requires the NONTEMPORAL privilege on the table.

UNIQUE and
PRIMARY KEY

that during the qualified time, any given values in the constrained
columns will not exist in more than one row at any instant in time:

• For a current constraint this means any current or future rows
that have overlapping time periods cannot have the same value
in the columns.

• For a sequenced constraint this means any history, current, or
future rows that have overlapping time periods cannot have the
same value in the columns.

• For a nonsequenced constraint this means that the value of the
column is unique in every row in the table, irrespective of
whether row time periods overlap. This is similar to a unique or
primary key constraint in a non-temporal table.

In all cases, if the table has a transaction-time column, the
constraint is applied only to rows that are open in transaction time.

For a current or sequenced PRIMARY KEY or UNIQUE constraint
defined on a valid-time table, the valid-time column must be
defined as NOT NULL.

The PK or UNIQUE columns cannot include the valid-time or
transaction-time columns.

Because PK and unique constraints on temporal tables are
implemented as system-defined join indexes, the constraint is not
allowed if it would cause the maximum number of secondary
indexes to be exceeded for the table.

column_name a column in the column set to be used as the primary key or as
unique. The column cannot be a valid-time or transaction-time
column.

Syntax Element … Specifies …

IF the valid-time column has a … THEN the column is populated with a value of …

PERIOD(DATE) data type PERIOD(TEMPORAL_DATE, UNTIL_CHANGED).

PERIOD(TIMESTAMP) data type PERIOD(TEMPORAL_TIMESTAMP, UNTIL_CHANGED).

The precision and time zone values are set depending on the
data type of the new column.

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

54 Temporal Table Support

• The table cannot have a UPI.
If it does, first use ALTER TABLE table_name MODIFY NOT UNIQUE, which is described
in SQL Data Definition Language, to modify the PI to be non-unique.

• The table must have a NUPI.

• Existing CHECK constraints become current constraints in the valid-time dimension. An
error is reported if there are any other types of constraints. See “Using Constraints with
Temporal Tables” on page 87.

• Any join indexes defined on the table must be dropped before the table can be made a
valid-time table.

• The table cannot be the subject table of an existing trigger.

• Existing views, macros, or triggered action statements that reference the table but do not
specify a valid-time qualifier in the statement referencing the table must be modified to
add a valid-time qualifier.

If an executing stored procedure includes an SQL statement that references the table being
altered, and no explicit qualifier is specified in the SQL, the compile time qualifier is applied to
the SQL.

The partitioning for the table cannot be altered to be partitioned on the added valid-time
column unless the table is empty.

Adding a Transaction-Time Column
The added transaction-time column is populated with the system default value of
PERIOD(TEMPORAL_TIMESTAMP, UNTIL_CLOSED).

In addition to the rules for specifying a transaction-time column specified in “CREATE
TABLE, CREATE TABLE AS (Temporal Forms)” on page 63, the following rules apply when
using ALTER TABLE to add a transaction-time column to an existing table:

• The table cannot have a UPI.
If it does, first use ALTER TABLE table_name MODIFY NOT UNIQUE, which is described
in SQL Data Definition Language, to modify the PI to be non-unique.

• The table must have a NUPI.

• Existing CHECK constraints become current constraints in the transaction-time
dimension. An error is reported if there are any other types of constraints. See “Using
Constraints with Temporal Tables” on page 87.

• Any join indexes defined on the table must be dropped before the table can be made a
transaction-time table.

• The table cannot be the subject table of an existing trigger.

• Existing views, macros, or triggered action statements that reference the table but do not
specify a transaction-time qualifier in the statement referencing the table must be
modified to add a transaction-time qualifier.

If an executing stored procedure includes an SQL statement that references the table being
altered, and no explicit qualifier is specified in the SQL, the compile time qualifier is applied to
the SQL.

Chapter 4: SQL Data Definition Language (Temporal Forms)
ALTER TABLE (Temporal Form)

Temporal Table Support 55

The partitioning for the table cannot be altered to be partitioned on the added transaction-
time column unless the table is empty.

Dropping Temporal Columns
Dropping any type of column from a transaction-time or bitemporal table requires the
NONTEMPORAL privilege on the table, and the NONTEMPORAL qualifier to ALTER
TABLE must be used.

Temporal columns cannot be dropped if any constraints or a join index or a trigger are
defined on the table.

Temporal columns cannot be dropped if the table is partitioned on the temporal columns.

When a transaction-time column is dropped, all closed rows (all history rows in the
transaction-time dimension) are deleted from the table.

When a valid-time column is dropped, all the rows that are no longer valid (all history rows in
the valid-time dimension) are deleted from the table.

Related Information

For more information on... See...

ALTER TABLE (regular form) SQL Data Definition Language

adding temporal columns to
nontemporal tables

• “Adding a Valid-Time Column to a Table” on page 33

• “Adding a Transaction-Time Column to a Table” on
page 36

CREATE TABLE (temporal form) “CREATE TABLE, CREATE TABLE AS (Temporal
Forms)” on page 63

dropping temporal columns from tables • “NONTEMPORAL Privilege” on page 175

• “Example 20: Dropping a Valid-Time Column” on
page 204

• “Example 21: Dropping a Transaction-Time Column”
on page 205

temporal table constraints “Using Constraints with Temporal Tables” on page 87

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE JOIN INDEX (Temporal Form)

56 Temporal Table Support

CREATE JOIN INDEX (Temporal Form)

Purpose
Creates a join index on temporal tables.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

1182A034

CREATE JOIN INDEX join_index_name

database_name.
user_name.

AS select_statement

A

A

B

B

,
,

FALLBACK

CHECKSUM = integrity_checking_level
NO

temporal qualifier

PROTECTION

temporal qualifier

valid time qualifier

valid time qualifier

transaction time qualifier

transaction time qualifier

AND

AND
1182A020

1182A022

valid time qualifier

CURRENT VALIDTIME

SEQUENCED
VALIDTIME

NONSEQUENCED

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE JOIN INDEX (Temporal Form)

Temporal Table Support 57

Join Indexes on Tables with Transaction Time
The following table shows the types of join index that can be created on transaction-time
tables, and whether the transaction-time column must be projected in the index.

Syntax Element … Specifies …

database_name an optional database name or user name specified if the join
index is to be contained in a database or user other than the
current database or user.user_name

join_index_name the name given to the join index created by this statement.

FALLBACK [PROTECTION] that the join index uses fallback protection.

NO FALLBACK [PROTECTION] that the join index does not use fallback protection. This is
the default.

CHECKSUM =
integrity_checking_level

a table-specific disk I/O integrity checksum level.

CURRENT VALIDTIME that the join index is current in valid time.

The select_statement must project the valid-time column in a
join index definition that is current in valid time.

SEQUENCED VALIDTIME that the join index is sequenced in valid time.

The select_statement must project the valid-time column in a
join index definition that is sequenced in valid time.

NONSEQUENCED VALIDTIME that the join index is nonsequenced in valid time.

AND a keyword for specifying both a valid-time qualifier and a
transaction-time qualifier.

CURRENT TRANSACTIONTIME that the join index is current in transaction time.

The select_statement must project the transaction-time
column in a join index definition that is current in
transaction time.

NONSEQUENCED
TRANSACTIONTIME

that the join index is nonsequenced in transaction time.

select_statement conventional SELECT statement syntax for creating a join
index.

1182A021

transaction time qualifier

CURRENT TRANSACTIONTIME

NONSEQUENCED TRANSACTIONTIME

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE JOIN INDEX (Temporal Form)

58 Temporal Table Support

If no explicit transaction-time qualifier is specified in the statement, the system uses the
session transaction-time qualifier.

When a current join index is created, the following condition is added to the join definition:
END(<TransactionTimeColumn>) IS UNTIL_CLOSED.

If a current join index on a transaction-time table has an outer join and results in a derived
table, Teradata Database returns an error.

Teradata Database maintains any current join indexes in the transaction-time dimension with
every DML statement on the base table.

Although projecting the transaction-time column is not required for nonsequenced join
indexes, doing so can increase the usefulness of the index.

Join Indexes on Tables with Valid Time
The following table shows the types of join index that can be created on valid-time tables, and
whether the valid-time column must be projected in the index.

If no explicit valid-time qualifier is specified in the statement, the system uses the session
valid-time qualifier.

Teradata Database maintains any current and sequenced join indexes in the valid-time
dimension with every current or sequenced DML statement on the base table, regardless of
whether the column being modified is included in the join index.

For sequenced join indexes, the system does not append a VALIDTIME column that is
normally added to the results of a SEQUENCED SELECT statement.

Qualifier Single Table JI Multitable JI
Transaction-time
Required in JI

CURRENT TRANSACTIONTIME Allowed Allowed Yes

TRANSACTIONTIME AS OF Disallowed Disallowed N/A

SEQUENCED TRANSACTIONTIME Disallowed Disallowed N/A

NONSEQUENCED TRANSACTIONTIME Allowed Allowed No

Qualifier Single Table JI Multitable JI
Transaction-time
Required in JI

CURRENT VALIDTIME Allowed Disallowed Yes

VALIDTIME AS OF Disallowed Disallowed Not applicable

SEQUENCED VALIDTIME Allowed Allowed Yes

NONSEQUENCED VALIDTIME Allowed Allowed No

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE JOIN INDEX (Temporal Form)

Temporal Table Support 59

Although projecting the valid-time column is not required for nonsequenced join indexes,
doing so can increase the usefulness of the index.

To avoid the high current join index and sequenced join index maintenance cost for a table
with valid time, modify the columns that are not referenced in the current join index using
nonsequenced DML (nontemporal DML if table is bitemporal). Such columns must be time-
invariant columns whose history is not required.

If the join index involves only time-invariant columns, the best practice is to create a
nonsequenced join index. This avoids the reference of a valid-time column and, thus, avoids
join index maintenance steps when columns that are not part of the join index are modified.

Current multitable JIs are not supported for valid-time tables, however a sequenced valid-
time index can be created to include only current valid-time queries issued at any point in
time from current time to future time, as shown in the following example of a multitable join
index created from two bitemporal tables. Note that the temporal columns must be projected
in the sequenced index.

Example
CREATE JOIN INDEX AS
SEQUENCED VALIDTIME and CURRENT TRANSACTIONTIME
SELECT X1, Y1, VT1, TT1, X2, Y2, VT2, TT2
FROM t1, t2
WHERE END(t1.VT1) >= TEMPORAL_DATE
AND END(t2.VT2) >= TEMPORAL_DATE;

Maintaining Current Join Indexes
As time passes, and current rows become history rows, you should periodically use the ALTER
TABLE TO CURRENT statement to ensure that the rows in the index continue to reflect only
rows that are valid. For example:

ALTER TABLE Policy_JI TO CURRENT;

Related Information

For more information on... See...

ALTER TABLE TO CURRENT SQL Data Definition Language

CREATE JOIN INDEX SQL Data Definition Language

join indexes for temporal tables “Creating Join Indexes for Temporal Tables” on page 39

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE RECURSIVE VIEW/REPLACE RECURSIVE VIEW (Temporal Forms)

60 Temporal Table Support

CREATE RECURSIVE VIEW/REPLACE
RECURSIVE VIEW (Temporal Forms)

Purpose
Creates or replaces a recursive view definition involving temporal tables.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

1182A035

CREATE view_nameRECURSIVE VIEW

REPLACE

AS seed_statement
(

A B

C

A

;)

database_name.
user_name.

()
,

column_name

temporal qualifier

UNION ALLB C

seed_statement UNION ALL
temporal qualifier

recursive_statement
temporal qualifier

recursive_statement
temporal qualifier

temporal qualifier

valid time qualifier

valid time qualifier

transaction time qualifier

transaction time qualifier

AND

AND

AS OF date_timestamp_expression
1182A023

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE RECURSIVE VIEW/REPLACE RECURSIVE VIEW (Temporal Forms)

Temporal Table Support 61

Syntax Element … Specifies …

view_name the name of the recursive view.

database_name the name of the database or user to contain view_name if something
other than the current database or user.

user_name

column_name the name of a view column. If more than one column is specified, list
their names in the order in which each column is to be displayed for
the view.

CURRENT VALIDTIME that seed_statement is a current query in the valid-time dimension.
The result set is a nontemporal table.

VALIDTIME AS OF
date_timestamp_expression

that seed_statement retrieves rows where the period of validity
overlaps the specified AS OF expression. The result set is a
nontemporal table.

NONSEQUENCED
VALIDTIME

that seed_statement is a nonsequenced query in the valid-time
dimension. If period_expression is specified, the nonsequenced query
produces a table with valid time; otherwise, the result set is a
nontemporal table.

The result set for a valid-time table includes an extra column for the
overlapped valid-time period. If the list of columns for the view does
not provide a name for the extra column, the default name is
“VALIDTIME”.

period_expression the period of applicability for the nonsequenced query.

CURRENT
TRANSACTIONTIME

that seed_statement or recursive_statement is a current query in the
transaction-time dimension. The result set is a nontemporal table.

TRANSACTIONTIME AS
OF timestamp_expression

that seed_statement or recursive_statement retrieves rows whose
transaction-time period in the row overlaps the specified AS OF
expression. The result set is a nontemporal table.

1182A024

valid time qualifier

CURRENT VALIDTIME

VALIDTIME AS OF date_timestamp_expression

NONSEQUENCED VALIDTIME
period_expression

1182A017

transaction time qualifier

CURRENT TRANSACTIONTIME

TRANSACTIONTIME AS OF date_timestamp_expression

NONSEQUENCED TRANSACTIONTIME

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE RECURSIVE VIEW/REPLACE RECURSIVE VIEW (Temporal Forms)

62 Temporal Table Support

Seed Statement and Recursive Statement
All rules that apply to the temporal form of the SELECT statement are applicable for queries
specified in recursive views.

If no temporal qualifier is specified for the view and the view references any temporal tables,
the temporal qualifier defaults to the applicable session temporal qualifier.

The seed statement and the recursive statement must have compatible valid-time qualifiers.

Selecting from a Recursive View
A query that selects from a recursive view can specify a temporal qualifier that is different
from the temporal qualifier of the SELECT statements in the view definition.

Related Information

NONSEQUENCED
TRANSACTIONTIME

that seed_statement or recursive_statement is a nonsequenced query
in the transaction-time dimension. A nonsequenced query produces
a nontemporal table as a result set.

AS OF
date_timestamp_expresion

that seed_statement or recursive_statement retrieves rows whose valid-
time and transaction-time periods overlap the specified AS OF
expression.

seed_statement existing seed SELECT statement syntax for CREATE RECURSIVE
VIEW or REPLACE RECURSIVE VIEW.

recursive_statement existing recursive SELECT statement syntax for CREATE
RECURSIVE VIEW or REPLACE RECURSIVE VIEW.

Syntax Element … Specifies …

For more information on... See...

CREATE RECURSIVE VIEW
(regular form)

SQL Data Definition Language

CREATE VIEW (temporal form) “CREATE VIEW, REPLACE VIEW (Temporal Forms)”
on page 101

temporal table views “Views on Temporal Tables” on page 205

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 63

CREATE TABLE, CREATE TABLE AS
(Temporal Forms)

Purpose
Defines the column names, column data types and attributes, primary and secondary indexes,
column level and table level constraints, and other attributes of a new temporal table.

The CREATE TABLE AS form (Copy Table Syntax) copies specified column definitions and
optionally copies their data and statistics to a new table.

Syntax - CREATE TABLE
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

64 Temporal Table Support

1182A036

CONSTRAINT name

(boolean_condition)CHECK

(column_name)UNIQUE

((

CONSTRAINT PRIMARY KEY name

REFERENCES WITH NO CHECK OPTION table_name
,

column_name

GENERATED ALWAYS AS IDENTITY

BY DEFAULT
START WITH()

INCREMENT BY

MINVALUE
NO

CREATE MULTISET TABLE table_name

GLOBAL TEMPORARY

VOLATILE

,

column_name

C
ol

um
n

D
ef

in
iti

on
Ta

bl
e

Le
ve

l D
ef

in
iti

on

Reference
Definition

Unique
Definition

B (C

BA

A

a

a

Check
Definition

,

data type

NULL
NOT

)

,

data type attributes

column storage attributes

column constraint attributes

time option

time option

database_name.

user_name.

create_table_option

MAXVALUE
NO

CYCLE
NO

(column_name)FOREIGN KEY
CONSTRAINT name

,

RI time option

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 65

1182B037

PRIMARY INDEX

,

UNIQUE
INDEX index_column_name()

,

(

PARTITION BY partitioning_expression

partitioning_expression

)

,
)(

primary_index_column
index_name

C

D

b

b

D

ALL

,

index_name

64

64

INDEX index_column_name()
ALL

,

index_name

64

ORDER BY order_column_name()
VALUES

HASH

ON COMMIT

Index
Definition

DELETE ROWS

PRESERVE

;

PARTITION BY partitioning_expression

partitioning_expression
,

)(

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

66 Temporal Table Support

1101B535

INTEGER

SMALLINT

BIGINT

(integer)

FLOAT

NUMERIC

DECIMAL

BYTEINT

DATE

REAL

NUMBER
()integer

*

DOUBLE PRECISION

(integer)

data type

WITH TIMEZONE(fractional_seconds_precision)

,fractional_seconds_precision

TIME

TIMESTAMP

TO MONTH(precision)

(precision)

(precision)

INTERVAL YEAR

INTERVAL MONTH

TO HOUR

INTERVAL DAY

MINUTE

SECOND

INTERVAL HOUR

INTERVAL MINUTE

TO SECOND

)

INTERVAL SECOND

(precision)

(precision)

(precision)

(precision)

TO MINUTE

SECOND

(fractional_seconds_precision)

(fractional_seconds_precision)

(fractional_seconds_precision)

PERIOD(TIMESTAMP WITH TIMEZONE

PERIOD(TIME

PERIOD(DATE)

A B

, integer

, integer

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 67

1101B536

BINARY LARGE OBJECT ((integer

BLOB G
K
MCHARACTER LARGE OBJECT

CLOB

UDT_name

SYSUDTLIB. ST_Geometry

MBR

A B

CHAR

BYTE

GRAPHIC

LONG VARGRAPHIC

VARCHAR

CHAR VARYING

VARBYTE

VARGRAPHIC

(integer)

(integer)

LONG VARCHAR

ARRAY_name

VARRAY_name

1182A019

data type attributes

NOT

USER

DATE

TIME

NULL

UPPERCASE

CASESPECIFIC

FORMAT quotestring

TITLE quotestring

NAMED name

DEFAULT number

WITH DEFAULT

UC

CS

CHARACTER SET

VALIDTIME

TRANSACTIONTIMEAS

server_character_set

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

68 Temporal Table Support

column storage attributes

COMPRESS

MVC

ALC

COMPRESS USING

1182B031

compress_UDF_name

NULL

constant

constant

,

()

255

DECOMPRESS USING

decompress_UDF_nameA

A

1182A032

column constraint attributes

CHECK (boolean_condition)

table_name

CONSTRAINT UNIQUE
PRIMARY KEY

(column_name)

name time option

REFERENCES WITH NO CHECK OPTION a

a
RI time option

1182A033

time option

CURRENT TRANSACTIONTIME

NONSEQUENCED

SEQUENCED

AND CURRENT VALIDTIME

AND VALIDTIME

AND CURRENT TRANSACTIONTIMECURRENT VALIDTIME

VALIDTIME

NONSEQUENCED

SEQUENCED

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 69

1182A051

RI time option

NONSEQUENCED

SEQUENCED

AND CURRENT VALIDTIME

AND VALIDTIME

AND CURRENT TRANSACTIONTIMECURRENT VALIDTIME

VALIDTIME

CURRENT TRANSACTIONTIME

SEQUENCED TRANSACTIONTIME

NONSEQUENCED TRANSACTIONTIME

NONSEQUENCED

SEQUENCED

AND SEQUENCED TRANSACTIONTIME

NONSEQUENCED TRANSACTIONTIME

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

70 Temporal Table Support

Syntax - CREATE TABLE AS

1182A038

CONSTRAINT name

(boolean_condition)CHECK

(column_name)UNIQUE

CONSTRAINT

AS

()

source_table_name

database_name.source_table_name

user_name.source_table_name

query_expression

PRIMARY KEY name

CREATE MULTISET TABLE table_name

GLOBAL TEMPORARYNONTEMPORAL

VOLATILE

,

column_name

C
ol

um
n

D
ef

in
iti

on

Unique
Definition

B (C

BA

A

Check
Definition

,

NULL
NOT

)

,

data type attributes

column storage attributes

time option

temporal qualifier

time option

database_name.table_name

user_name.table_name

create_table_option

CHECK (boolean_condition)

CONSTRAINT UNIQUE
PRIMARY KEY

name time option

C D

Ta
bl

e
Le

ve
l D

ef
in

iti
on

WITH

NO

DATA D E

NO
AND STATISTICS

STATS

STAT

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 71

1182B039

PRIMARY INDEX

,

UNIQUE
INDEX index_column_name()

,

(

PARTITION BY partitioning_expression

partitioning_expression

)

,
)(

primary_index_column
index_name

E

F

b

b

F

ALL

,

index_name

64

64

INDEX index_column_name()
ALL

,

index_name

64

ORDER BY order_column_name()
VALUES

HASH

ON COMMIT

Index
Definition

DELETE ROWS

PRESERVE

;

PARTITION BY partitioning_expression

partitioning_expression
,

)(

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

72 Temporal Table Support

1182A019

data type attributes

NOT

USER

DATE

TIME

NULL

UPPERCASE

CASESPECIFIC

FORMAT quotestring

TITLE quotestring

NAMED name

DEFAULT number

WITH DEFAULT

UC

CS

CHARACTER SET

VALIDTIME

TRANSACTIONTIMEAS

server_character_set

column storage attributes

COMPRESS

MVC

ALC

COMPRESS USING

1182B031

compress_UDF_name

NULL

constant

constant

,

()

255

DECOMPRESS USING

decompress_UDF_nameA

A

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 73

1182A033

time option

CURRENT TRANSACTIONTIME

NONSEQUENCED

SEQUENCED

AND CURRENT VALIDTIME

AND VALIDTIME

AND CURRENT TRANSACTIONTIMECURRENT VALIDTIME

VALIDTIME

NONSEQUENCED

SEQUENCED

temporal qualifier

valid time qualifier

valid time qualifier

transaction time qualifier

transaction time qualifier

AND

AND

AS OF date_timestamp_expression
1182A023

1182A016

valid time qualifier

CURRENT VALIDTIME

VALIDTIME AS OF date_timestamp_expression

SEQUENCED
VALIDTIME

NONSEQUENCED

period_expression

1182A025

transaction time qualifier

CURRENT TRANSACTIONTIME

TRANSACTIONTIME AS OF date_timestamp_expression

NONSEQUENCED TRANSACTIONTIME

SEQUENCED TRANSACTIONTIME

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

74 Temporal Table Support

Syntax Element … Specifies …

NONTEMPORAL (for Copy Table Syntax) that all the transaction-time values are to
be copied from the source table to a target table that has
transaction time.

If the target table is not a table with transaction time, the
NONTEMPORAL prefix is ignored.

MULTISET that duplicate rows are allowed.

Note: Temporal tables must be multiset tables.

GLOBAL TEMPORARY that a temporary table definition be created and stored in the data
dictionary for future materialization.

VOLATILE that a volatile table be created, with its definition retained in
memory only for the course of the session in which it is defined.

database_name.table_name the name of the new table and the optional name of the database or
user in which it is to be contained if different from the current
database.user_name.table_name

table_name

create_table_option an option from the Create Table Options list for a conventional
CREATE TABLE statement.

Column Definition Clause

column_name specifies the name of one or more columns, in the order in which
they and their attributes are to be defined for the table.

Data Type
[Data Type Attributes]

one or more data definition phrases that define data for the
column.

Data types cannot be specified when copying a table using the
CREATE TABLE AS statement.

For information on Period data types, see “Period Data Types:
Basic Definitions” on page 29.

[AS] VALIDTIME that the column is a valid-time column.

A column can be specified as VALIDTIME only if its data type is
PERIOD(DATE), PERIOD(TIMESTAMP[(n)]), or
PERIOD(TIMESTAMP[(n)] WITH TIME ZONE).

There can be no more than one valid-time column in a temporal
table.

This attribute does not apply to Copy Table Syntax.

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 75

[AS] TRANSACTIONTIME that the column is a transaction-time column.

A column can be specified as TRANSACTIONTIME only if its data
type is PERIOD(TIMESTAMP(6) WITH TIME ZONE).

There can be no more than one transaction-time column in a
temporal table.

A DEFAULT clause cannot be specified for a transaction-time
column.

A transaction-time column must be defined as NOT NULL.

This attribute does not apply to Copy Table Syntax.

Column Storage Attributes

COMPRESS a specified set of distinct values in a column that is to be
compressed using multi-value compression (MVC).

NULL that nulls are compressed using MVC.

Nulls are compressed by default.

constant that nulls and the value specified by constant are compressed.

COMPRESS USING
compress_UDF_name

that column values should be compressed using algorithmic
compression (ALC).

compress_UDF_name is the name of the UDF used to compress
character or graphic data in this column.

Note: ALC is not supported for validtime and transactiontime
columns.

DECOMPRESS USING
decompress_UDF_name

that column values compressed using ALC should be
decompressed using the specified UDF.

decompress_UDF_name is the name of the UDF used to
decompress character or graphic data in this column.

Note: ALC is not supported for validtime and transactiontime
columns.

Column Constraint Attributes
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.
Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

CONSTRAINT name the optional name for a constraint.

CURRENT
TRANSACTIONTIME

that only rows that are open in transaction time are to be checked
for constraint violations.

SEQUENCED
TRANSACTIONTIME

that any value for the constrained column in the child table must
exist in the parent table during the time period for which it exists in
the child.

Note: The sequenced transactiontime constraint qualifier is valid
only for the REFERENCES constraint.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

76 Temporal Table Support

NONSEQUENCED
TRANSACTIONTIME

that any value for the constrained column in the child table must
exist in the parent table. A nonsequenced constraint is like a
nontemporal relational constraint, and ignores the transaction-
time column in the child table.

Note: The parent table cannot have a transaction-time column.

The nonsequenced transactiontime constraint qualifier is valid
only for the REFERENCES constraint.

CURRENT VALIDTIME that only rows that are current and future in valid time are to be
checked for constraint violations. History rows are not checked.

[SEQUENCED] VALIDTIME that rows that are history, current, and future in valid time are to be
checked for constraint violations.

NONSEQUENCED
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations. Nonsequenced constraints treat
the valid-time column as a non-temporal column, so are similar to
constraints on non-temporal tables. They apply to all open rows of
the table.

CHECK (boolean_condition) a boolean conditional expression that must be true, or else the row
violates the check constraint.

Check constraints cannot be placed on valid-time or transaction-
time columns.

UNIQUE or
PRIMARY KEY

that during the qualified time, any given value in the constrained
column will not exist in more than one row at any instant in time:

• For a current constraint this means any current or future rows
that have overlapping time periods cannot have the same value
in the column.

• For a sequenced constraint this means any history, current, or
future rows that have overlapping time periods cannot have the
same value in the column.

• For a nonsequenced constraint this means that the value of the
column is unique in every row in the table, irrespective of
whether row time periods overlap. This is similar to a unique or
primary key constraint in a non-temporal table.

In all cases, if the table has a transaction-time column, the
constraint is applied only to rows that are open in transaction time.

For a current or sequenced PRIMARY KEY or UNIQUE constraint
defined on a temporal table, the valid-time column must be
defined as NOT NULL.

The PK or UNIQUE column cannot be the valid-time or
transaction-time column.

Unique and PK constraints on temporal tables are usually
implemented as system-defined join indexes. (See“Indexes for
Primary Key and Unique Constraints” on page 89.) The constraint
is not allowed if it would cause the maximum permitted number of
secondary indexes to be exceeded for the table.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 77

REFERENCES table_name
[(column_name)]

a foreign key-primary key referential integrity constraint where
table_name is the parent table.

The column cannot be a valid-time or transaction-time column.

The implications of temporal qualifiers used with referential
constraints are more complex than those for other constraints. For
more information, see “Temporal Referential Constraints” on
page 90.

WITH NO CHECK OPTION that referential integrity is not to be enforced for the specified
primary key-foreign key relationship.

Identity Column Attributes

ALWAYS that identity column values are always system-generated.

BY DEFAULT that identity column values can be system-generated or user-
inserted, depending on the circumstance.

START WITH the lowest number in the system-generated numeric series for an
identity column. The default is 1.

INCREMENT BY the (possibly negative) interval on which to increment system-
generated numbers. The default is 1.

[NO] MINVALUE the minimum value to which a system-generated numeric series
can decrement. MINVALUE applies only to system-generated
numbers.

[NO] MAXVALUE the maximum value to which a system-generated numeric series
can increment. MAXVALUE applies only to system-generated
numbers.

[NO] CYCLE whether system-generated values can be recycled when their
minimum or maximum is reached.

Table Level UNIQUE Definition
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.
Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

CONSTRAINT name the optional name for the constraint.

CURRENT
TRANSACTIONTIME

that only rows that are open in transaction time are to be checked
for constraint violations.

CURRENT VALIDTIME that only rows that are current and future in valid time are to be
checked for constraint violations. History rows are not checked.

[SEQUENCED] VALIDTIME that rows that are history, current, and future in valid time are to be
checked for constraint violations.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

78 Temporal Table Support

NONSEQUENCED
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations. Nonsequenced constraints treat
the valid-time column as a non-temporal column, so are similar to
constraints on non-temporal tables. They apply to all open rows of
the table.

UNIQUE and
PRIMARY KEY

that during the qualified time, any given values in the constrained
columns will not exist in more than one row at any instant in time:

• For a current constraint this means any current or future rows
that have overlapping time periods cannot have the same value
in the columns.

• For a sequenced constraint this means any history, current, or
future rows that have overlapping time periods cannot have the
same value in the columns.

• For a nonsequenced constraint this means that the value of the
column is unique in every row in the table, irrespective of
whether row time periods overlap. This is similar to a unique or
primary key constraint in a non-temporal table.

In all cases, if the table has a transaction-time column, the
constraint is applied only to rows that are open in transaction time.

For a current or sequenced PRIMARY KEY or UNIQUE constraint
defined on a valid-time table, the valid-time column must be
defined as NOT NULL.

The PK or UNIQUE columns cannot include the valid-time or
transaction-time columns.

Unique and PK constraints on temporal tables are usually
implemented as system-defined join indexes. (See“Indexes for
Primary Key and Unique Constraints” on page 89.) The constraint
is not allowed if it would cause the maximum permitted number of
secondary indexes to be exceeded for the table.

column_name a column in the column set to be used as the primary key or as
unique. The column cannot be a valid-time or transaction-time
column.

Table Level REFERENCES Definition
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.
Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

CONSTRAINT name the optional name for the constraint.

CURRENT
TRANSACTIONTIME

that every value for the constrained column in the child table must
exist in the open rows of the parent table.

SEQUENCED
TRANSACTIONTIME

that any value for the constrained column in the child table must
exist in the parent table during the time period for which it exists in
the child.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 79

NONSEQUENCED
TRANSACTIONTIME

that any value for the constrained column in the child table must
exist in the parent table. A nonsequenced constraint is like a
nontemporal relational constraint, and ignores the transaction-
time column in the child table.

Note: The parent table cannot have a transaction-time column.

CURRENT VALIDTIME that any value for the constrained column in the child table must
exist in the open current or future rows of the parent table. The
valid-time period of the child row must be contained within the
combined valid-time periods of current and future rows in the
parent table that have a value that matches the child table. History
rows in the child table are not checked, and history rows in the
parent table are not considered.

[SEQUENCED] VALIDTIME that any value for the constrained column in the child table must
exist in the open rows of the parent table. The valid-time period of
the child row must be contained within the combined valid-time
periods of open rows in the parent table that have a value that
matches the child table.

NONSEQUENCED
VALIDTIME

that any value for the constrained column in the child table must
exist in the parent table. A nonsequenced constraint is like a
nontemporal relational constraint, and ignores the valid-time
column in the child table.

Note: The parent table cannot have a valid-time column.

FOREIGN KEY a foreign key for the table.

column_name a name for a column defined as part of the foreign key.

REFERENCES WITH NO
CHECK OPTION

an integrity reference to the parent table named in table_name.

Referential integrity is not enforced for the specified primary key-
foreign key relationship

table_name the name of the referenced parent table used in the referential
integrity constraint definition.

column_name a column in the column set that makes up the parent table
PRIMARY KEY or UNIQUE candidate key columns. The column
cannot be a valid-time or transaction-time column.

Table Level CHECK Definition
For more information on constraints, see “Using Constraints with Temporal Tables” on page 87.
Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

CONSTRAINT name the optional name for the constraint.

CURRENT
TRANSACTIONTIME

that only rows that are open in transaction time are to be checked
for constraint violations.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

80 Temporal Table Support

CURRENT VALIDTIME that only rows that are current and future in valid time are to be
checked for constraint violations. History rows are not checked.

This is the default temporal qualifier for constraints applied to
valid-time columns.

[SEQUENCED] VALIDTIME that rows that are history, current, and future in valid time are to be
checked for constraint violations.

This is the default type of valid-time constraint applied if the
VALIDTIME keyword is specified without a CURRENT,
SEQUENCED, or NONSEQUENCED prefix.

NONSEQUENCED
VALIDTIME

that rows that are history, current, and future in valid time are to be
checked for constraint violations. Nonsequenced constraints treat
the valid-time column as a non-temporal column, so are similar to
constraints on non-temporal tables. They apply to all open rows of
the table.

CHECK (boolean_condition) a boolean conditional expression that must be true, or else the row
violates the check constraint.

Check constraints cannot be placed on valid-time or transaction-
time columns.

AS Clause (CREATE TABLE AS Syntax)
Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

source_table_name the name of the source table whose column- and table-level
definitions (with some restrictions) and, optionally, data are to be
copied to table_name.

CURRENT VALIDTIME that query_expression is a current query in the valid-time
dimension. The resulting target table is a nontemporal table.

VALIDTIME AS OF
date_timestamp_expression

that query_expression retrieves rows where the period of validity
overlaps the specified AS OF expression. The resulting target table
is a nontemporal table.

VALIDTIME that query_expression is a sequenced query in the valid-time
dimension. The resulting target table is a valid-time table.

SEQUENCED VALIDTIME

NONSEQUENCED
VALIDTIME

that query_expression is a nonsequenced query in the valid-time
dimension. If period_expression is specified, the nonsequenced
query produces a table with valid time; otherwise, the resulting
target table is a nontemporal table.

period_expression the period of applicability for the sequenced or nonsequenced
query.

CURRENT
TRANSACTIONTIME

that query_expression is a current query in the transaction-time
dimension. The resulting target table is a nontemporal table.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 81

TRANSACTIONTIME AS OF
date_timestamp_expression

that query_expression retrieves rows whose transaction-time
period in the row overlaps the specified AS OF expression. The
resulting target table is a nontemporal table.

SEQUENCED
TRANSACTIONTIME

that query_expression is a sequenced query in the transaction-time
dimension. The target table is a table with transaction time.

There can only be one table referenced in query_expression and the
table must have transaction time.

NONSEQUENCED
TRANSACTIONTIME

that query_expression is a nonsequenced query in the transaction-
time dimension. A nonsequenced query produces a nontemporal
table as a result set.

AS OF
date_timestamp_expression

that query_expression retrieves rows whose valid-time and
transaction-time periods overlap the specified AS OF expression.

query_expression an optional clause used to select a subset of the column definitions
and, only when a WITH DATA clause is specified, data from
query_expression for copying to table_name.

WITH NO DATA that none of the data from the source table or query expression are
to be copied to a new table based on its definition.

WITH DATA that the data for the source table or query expression are to be
copied to a new table.

AND STATISTICS that the statistics for the source table are to be copied to a new table
based on its definition.

Index Definition Clause

PRIMARY INDEX the primary index definition.

Note: Temporal tables must have primary indexes, but they cannot
have UPIs. The primary index must be a NUPI.

index_name an optional name for the index.

primay_index_column a column in the column set that defines a primary index.

Note: The primary index cannot include a valid-time or
transaction-time column.

PARTITION BY that the primary index is partitioned by the specified partitioning
expression or expressions.

partitioning_expression one or more SQL expressions used to define the partition set to
which a partitioned primary index row is assigned when it is
hashed to its AMP.

UNIQUE INDEX a secondary index definition.

INDEX

index_name an optional name for the index.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

82 Temporal Table Support

Required Privileges
The privileges required are the same as those required for a conventional CREATE TABLE
statement.

For the Copy Table syntax, if the CREATE TABLE statement specifies the NONTEMPORAL
qualifier, the NONTEMPORAL privilege is also required on the target temporal table.

Resource Consumption
Because temporal DML statements may insert new rows into a table or logically delete rows
from a table, a temporal table occupies more space than a nontemporal table. Additionally,
tables with transaction time grow monotonically because rows are never physically deleted
and removed from these tables (unless rows are explicitly removed using the
NONTEMPORAL DELETE statement, which requires special privileges).

The increased number of row operations means that the SELECT and DML statements on
temporal tables tend to be more resource intensive when compared to nontemporal tables.
Because constraints defined on temporal tables are time aware, constraint checking is also
more resource intensive on temporal tables than on nontemporal tables.

To mitigate the performance impacts from operations on temporal tables:

• Partition temporal tables. Use the partitioning expressions recommended in this section.

• Define appropriate join indexes on temporal tables.

ALL that the system should ignore the assigned case specificity for a
column.

index_column_name a column set whose values are to be used as the basis for a
secondary index.

ORDER BY VALUES value row ordering on each AMP by a single NUSI column.

ORDER BY HASH hash row ordering on each AMP by a single NUSI column.

oder_column_name a column in the INDEX column list that specifies the sort order
used to store index rows.

Temporary/Volatile Table Preservation Clause

ON COMMIT DELETE
ROWS

to delete or preserve the contents of a global temporary or volatile
table when a transaction completes.

ON COMMIT PRESERVE
ROWS

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TABLE, CREATE TABLE AS (Temporal Forms)

Temporal Table Support 83

Related Information

For more information on... See...

CREATE TABLE (regular form) SQL Data Definition Language

creating temporal tables Chapter 3: “Creating Temporal Tables”

constraints and temporal tables “Using Constraints with Temporal Tables” on page 87

partitioning temporal tables “Partitioning Expressions for Temporal Tables” on page 84

transaction time and valid time “Transaction Time and Valid Time” on page 17

Chapter 4: SQL Data Definition Language (Temporal Forms)
Partitioning Expressions for Temporal Tables

84 Temporal Table Support

Partitioning Expressions for Temporal Tables

To improve the performance of current queries on a temporal table, the table should be
partitioned:

• For tables with valid-time columns, the partitions logically separate the current and future
rows from the history rows, so fewer rows need to be scanned for current queries.

• For tables with transaction-time columns, the partitions logically separate the open rows
from the closed rows.

• For bitemporal tables, the partitions separate open current and future rows from open
history rows from all closed rows.

Note: Like other types of tables, temporal tables can have several levels of partitioning
defined. The temporal partitioning described here should be one of those levels.

The recommended partitioning expressions discussed for each table type below reference the
built-in functions CURRENT_DATE, CURRENT_TIMESTAMP, or both.

As time passes, the values of CURRENT_DATE and CURRENT_TIMESTAMP differ from the
values that were used to resolve CURRENT_DATE and CURRENT_TIMESTAMP in the
partitioning expressions when the table was created. Because of this, the partition intended to
hold the current and future rows might include rows that are not strictly current. The
optimizer can nevertheless successfully find current rows within the partition. The presence of
some history rows in the current partition will not adversely affect performance unless there
are a great many history rows there.

Use the ALTER TABLE TO CURRENT statement periodically to move history rows out of the
current partition into the history partition. ALTER TABLE TO CURRENT resolves the
partitioning expressions again, transitioning rows to their appropriate partitions per the
updated partitioning expressions. For more information on ALTER TABLE TO CURRENT,
see SQL Data Definition Language.

Note: To ensure optimal partition elimination, the granularity of the time specification in AS
OF and SEQUENCED queries on partitioned temporal tables should be no finer than the
valid-time column in the query with the coarsest time granularity.

Partitioning Valid-Time Tables
The following table describes the recommended partitioning expressions for a valid-time
table, where vtcolumn represents the valid-time column.

Valid-Time Column Data Type Recommended Partitioning Expressions

PERIOD(DATE)
NOT NULL

PARTITION BY CASE_N(
END(vtcolumn) >= CURRENT_DATE AT '-12:59',
NO CASE)

(where AT '-12:59' is a shorthand form of AT INTERVAL -'12:59'
HOUR TO MINUTE)

Chapter 4: SQL Data Definition Language (Temporal Forms)
Partitioning Expressions for Temporal Tables

Temporal Table Support 85

By using the recommended physical partitioning for a valid-time table, the physical partitions
are as follows:

• The current partition has rows that are or were valid as of the last resolved
CURRENT_DATE or CURRENT_TIMESTAMP value for the partitioning expression and
rows that are in the future with respect to that date or timestamp.

Note that rows with a valid-time column value as NULL are in the current partition (but
are not considered current or valid rows).

• The history partition has rows that were no longer valid as of the last resolved
CURRENT_DATE or CURRENT_TIMESTAMP value for the partitioning expression.

Note: Most of the AS OF queries are concerned with times that have already past.
Consequently, these queries will not benefit from the recommended partitioning scheme
described above. If AS OF queries are expected to be frequent, one way to get the benefit of
partition elimination is to partition on END(<VT_column>) and, within each partition, by
BEGIN(<VT_column>) such that there is a 20% distribution within each outer partition.

Partitioning Transaction-Time Tables
The following partitioning expression is recommended for a transaction-time table, where
ttcolumn represents the transaction-time column.

PARTITION BY CASE_N (END(ttcolumn) >= CURRENT_TIMESTAMP, NO CASE)

By using the recommended physical partitioning for a transaction-time table, the physical
partitions are as follows:

1 The current partition has rows that are or were open as of the last resolved
CURRENT_TIMESTAMP value for the partitioning expression.

2 The history partition has rows that were closed as of the last resolved
CURRENT_TIMESTAMP value for the partitioning expression.

PERIOD(DATE) PARTITION BY CASE_N(
END(vtcolumn) IS NULL OR
END(vtcolumn) >= CURRENT_DATE AT '-12:59',
NO CASE)

(where AT '-12:59' is a shorthand form of AT INTERVAL -'12:59'
HOUR TO MINUTE)

PERIOD(TIMESTAMP[(n)]
[WITH TIME ZONE])
NOT NULL

PARTITION BY CASE_N(
END(vtcolumn) >= CURRENT_TIMESTAMP,
NO CASE)

PERIOD(TIMESTAMP[(n)]
[WITH TIME ZONE])

PARTITION BY CASE_N(
END(vtcolumn) IS NULL OR
END(vtcolumn) >= CURRENT_TIMESTAMP,
NO CASE)

Valid-Time Column Data Type Recommended Partitioning Expressions

Chapter 4: SQL Data Definition Language (Temporal Forms)
Partitioning Expressions for Temporal Tables

86 Temporal Table Support

Partitioning Bitemporal Tables
The following table describes the recommended partitioning expressions for a bitemporal
table, where vtcolumn represents the valid-time column and ttcolumn represents the
transaction-time column.

By using the recommended physical partitioning for a bitemporal table, the physical partitions
are as follows:

• The current partition has rows that are or were valid and open as of the last resolved
CURRENT_DATE or CURRENT_TIMESTAMP value for the partitioning expression.

• The valid-time history/transaction-time open partition has rows that are or were no
longer valid but were still open as of the last resolved CURRENT_DATE or
CURRENT_TIMESTAMP value for the partitioning expression.

• The transaction-time history partition has rows that were closed as of the last resolved
CURRENT_DATE or CURRENT_TIMESTAMP value for the partitioning expression.

Valid-Time Column Data Type Recommended Partitioning Expressions

PERIOD(DATE)
NOT NULL

PARTITION BY CASE_N(
END(vtcolumn) >= CURRENT_DATE AT '-12:59'
AND END(ttcolumn) >= CURRENT_TIMESTAMP,

END(vtcolumn) < CURRENT_DATE AT '-12:59'
AND END(ttcolumn) >= CURRENT_TIMESTAMP,

END(ttcolumn) < CURRENT_TIMESTAMP)

(where AT '-12:59' is a shorthand form of AT INTERVAL -'12:59'
HOUR TO MINUTE)

(The END(ttcolumn) < CURRENT_TIMESTAMP expression
represents closed rows, and is used instead of NO CASE to achieve
better partition elimination.)

PERIOD(DATE) PARTITION BY CASE_N(
(END(vtcolumn) IS NULL OR
END(vtcolumn) >= CURRENT_DATE AT '-12:59')
AND END(ttcolumn) >= CURRENT_TIMESTAMP,

END(vtcolumn) < CURRENT_DATE AT '-12:59'
AND END(ttcolumn) >= CURRENT_TIMESTAMP,

END(ttcolumn) < CURRENT_TIMESTAMP)

(where AT '-12:59' is a shorthand form of AT INTERVAL -'12:59'
HOUR TO MINUTE)

PERIOD(TIMESTAMP[(n)]
[WITH TIME ZONE])
NOT NULL

PARTITION BY CASE_N(
END(vtcolumn) >= CURRENT_TIMESTAMP AND
END(ttcolumn) >= CURRENT_TIMESTAMP,
END(vtcolumn) < CURRENT_TIMESTAMP AND
END(ttcolumn) >= CURRENT_TIMESTAMP,
END(ttcolumn) < CURRENT_TIMESTAMP)

PERIOD(TIMESTAMP[(n)]
[WITH TIME ZONE])

PARTITION BY CASE_N(
(END(vtcolumn) IS NULL OR END(vtcolumn) >=
CURRENT_TIMESTAMP) AND END(ttcolumn) >=
CURRENT_TIMESTAMP,
END(vtcolumn) < CURRENT_TIMESTAMP AND
END(ttcolumn) >= CURRENT_TIMESTAMP,
END(ttcolumn) < CURRENT_TIMESTAMP)

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

Temporal Table Support 87

Related Information

Using Constraints with Temporal Tables

Column or table level constraints defined on temporal tables can be associated with a time
dimension, and are of three basic types:

For tables with transaction-time columns, non-referential constraints are always considered to
be current in the transaction-time dimension. These constraints are enforced only on rows
that are open in transaction time. For bitemporal tables, constraints are enforced only on
open rows that satisfy the valid-time constraint temporal qualifier.

Because constraints are not allowed on columns with a period data type, constraints are not
allowed on valid-time or transaction-time columns.

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Check Constraints
Check constraints ensure that the value in a constrained column always satisfies the boolean
expression that was specified when the check constraint was defined.

For more information on... See...

CREATE TABLE (temporal form) “CREATE TABLE, CREATE TABLE AS (Temporal
Forms)” on page 63

ALTER TABLE TO CURRENT (regular
form)

SQL Data Definition Language

Multilevel partitioned primary indexes • CREATE TABLE in SQL Data Definition Language

• Database Design

Temporal Constraint Form Description

CURRENT VALIDTIME The constraint is applied to all current and future rows. History
rows are not checked for constraint violations.

SEQUENCED VALIDTIME The constraint is applied to all future, current, and open history
rows and ensures that the constraint is not violated at any instant of
time in the valid-time dimension.

NONSEQUENCED
VALIDTIME

The constraint is applicable to all open rows in the table, and treats
the valid-time column as a regular, non-temporal column. A
nonsequenced constraint on a valid-time table is similar in
semantics to a constraint defined on a nontemporal table.

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

88 Temporal Table Support

• CURRENT VALIDTIME CHECK constraints are enforced only on rows that are current
and future in valid time. Consequently, modifications to rows that are history rows in valid
time are not checked for constraint violations.

• SEQUENCED VALIDTIME CHECK constraints are enforced on history, current, and
future rows in valid time.

• NONSEQUENCED VALIDTIME CHECK constraints treat the valid-time column as a
nontemporal column, so act like a check constraint on a nontemporal table, and are
enforced on all open rows of the table. This means nonsequenced and sequenced check
constraints have identical effects on temporal tables.

Primary Key and Unique Constraints
Primary key and unique constraints impose uniqueness on column values amongst the rows
of a table.

• CURRENT VALIDTIME PRIMARY KEY and CURRENT VALIDIMTE UNIQUE
constraints ensure that the value for the constrained column in a row is unique for all
instances of time from current time through the future. Current and future rows that have
overlapping valid-time periods are prevented from having the same value in the
constrained columns.

• SEQUENCED VALIDTIME PRIMARY KEY and SEQUENCED VALIDTIME UNIQUE
constraints ensure that the value for the constrained column in a row is unique for all
instances of time, including history, current, and future. Any rows that have overlapping
valid-time periods are prevented from having the same value in the constrained columns.

• NONSEQUENCED VALIDTIME PRIMARY KEY and NONSEQUENCED VALIDTIME
UNIQUE constraints treat the valid-time column as a nontemporal column. These
constraints ensure that the value for the constrained column in a row is unique amongst
all rows in the table. All open rows are prevented from having the same value in the
constrained columns.

Note: Nonsequenced PK/unique constraints are identical to PK/unique constraints on
nontemporal tables. These types of constraints are rarely useful on temporal tables, and
are not recommended. Due to the near duplication of rows that happens automatically as
rows are modified in temporal tables, a nonsequenced PK/unique constraint would be
violated very quickly. The same situation is true for USIs applied to temporal tables, which
are also not recommended.

Example
Assume that the TEMPORAL_DATE is November 2, 2006 (2006/11/02) and a valid-time table
is defined with columns: Col1, Col2, and VTCol where VTCol is a valid-time column. Assume
further that a CURRENT VALIDTIME UNIQUE constraint is defined on Col2. The following
row:

Col1 Col2 (unique) VTCol

5 24 ('2006/10/20', '2007/10/20')

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

Temporal Table Support 89

does not violate the constraint with the row:

because the valid-time periods do not overlap. The same first row would violate the current
unique constraint with the row:

because the time periods overlap from 2007/09/20 to 2007/10/20.

If the table also had a transaction-time as the fourth column, the following row:

would not violate the current constraint because the row is closed in transaction time (has an
end date prior to UNTIL_CLOSED), so this row is not considered for constraint checking.

Indexes for Primary Key and Unique Constraints
Because of the way rows are duplicated as a result of modifications to temporal tables, most
primary key and unique constraints defined on temporal tables are implemented by means of
system-defined join indexes (SJIs). These indexes enforce the uniqueness on an appropriate
subset of rows, according to whether the constraint is current, sequenced, or nonsequenced.

Example
A current unique constraint on a bitemporal table causes an SJI to be created and maintained
automatically from selected columns of the temporal table. The primary index of the SJI is the
constrained column or columns of the temporal table. The valid-time and transaction-time
columns are selected using an appropriately qualified WHERE clause that limits the rows in
the index to current and future rows:

CREATE JOIN INDEX tablename_TJInumber
AS SELECT ROWID, ConstrainedColumn, VTColumn, TTcolumn
FROM tablename
WHERE END(VTColumn >= CURRENT_DATE - INTERVAL '2' DAY
AND END(TTcolumn) IS UNTIL_CLOSED
PRIMARY INDEX (ConstrainedColumn);

INTERVAL ‘2’ DAY is required because current rows could be inserted in a time zone that
is up to two days prior to the date for the time zone in which the index is created.

SJIs are created in the same database as the constrained temporal table. They are named
automatically by the system using a naming convention of tablename_TJInumber, where
tablename is the name of the temporal table for which a PK or unique constraint has been
defined, and number is the index ID of the constraint, a unique number that identifies the SJI.

6 24 ('2008/01/20', '9999/12/31')

7 24 ('2007/09/20', '9999/12/31')

Col1 Col2 VTCol TTCol

8 24 ('2008/01/20', '9999/12/31') ('2006/09/20', '2006/09/25')

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

90 Temporal Table Support

Note: These indexes are created, maintained, and deleted automatically as needed by the
system. They should not be directly modified or deleted.

The PK or unique constraint is not allowed if the associated SJI would cause the maximum
permitted number of secondary indexes to be exceeded for the table.

As time passes, the values of CURRENT_DATE and CURRENT_TIMESTAMP differ from the
values that were used when the SJI was created. Because of this, current and future rows in SJIs
can, over time, become history rows, and therefore no longer needed in the index to enforce
the current constraint.

Use the ALTER TABLE TO CURRENT statement periodically to update SJIs and PPIs created
for temporal tables. ALTER TABLE TO CURRENT transitions history rows out the SJIs
created for current primary key and unique constraints. For more information on ALTER
TABLE TO CURRENT, see SQL Data Definition Language.

Because nonsequenced constraints treat temporal columns as if they were non-temporal, a
nonsequenced valid-time PK or unique constraint on a valid-time table is implemented
automatically by making the constrained column a USI. For bitemporal tables, a PK or unique
constraint must be limited to rows that are open in transaction time, so an SJI is used. The SJI
uses a WHERE clause to select only the open rows from the transaction-time column.

Note: Because identity columns are not allowed in join indexes, PK and unique constraints
cannot be defined on identity columns in temporal tables.

Temporal Referential Constraints
Referential constraints define a relationship between two tables whereby every value in the
constrained column or columns (the foreign key (FK)) of the child table must exist in the
corresponding referenced columns (the primary key (PK)) of the parent table. When a
referential constraint involves temporal tables, the relationship can also be defined with
respect to time.

Temporal referential constraints are not enforced by Teradata Database so are referred to as
“soft” referential integrity. Definitions of these constraints must be include WITH NO
CHECK OPTION on the child column REFERENCES constraint, and no uniqueness is
enforced on the referenced parent table columns. Although these constraints are not enforced,
the Optimizer can use them to eliminate redundant joins and improve query performance.

Note: It is the responsibility of the user to ensure that these constraints are not violated. For
more information and examples of validating and enforcing these constraints, see
“Appendix D Enforcing and Validating Temporal Referential Constraints” on page 217.

The following table describes the different types of temporal referential constraints. Note that
current time for valid-time columns is the value of TEMPORAL_TIMESTAMP or
TEMPORAL_DATE. For more information, see “Timestamping” on page 27.

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

Temporal Table Support 91

Temporal Referential
Constraint Form Description

CURRENT
TRANSACTIONTIME

Only open rows of the child and parent tables are considered.

Every FK value in the open rows of the child table must exist
somewhere in the PK column of the open rows in the parent table.

CURRENT VALIDTIME Current and future rows of the child table are considered. History
rows are not considered.

Every value in the child table FK column must exist in the parent
table PK column for the period starting from current time through
the entire future portion of the child row valid-time period.

If the child row value exists in more than one row in the parent
table, the valid-time periods of these parent rows, when combined,
must form a single, continuous period that includes current time,
and extends through the entire future portion of the child row
valid-time period.

SEQUENCED
TRANSACTIONTIME

Both open and closed rows of the child and parent tables are
considered.

Every FK value in the child table must exist in the parent table PK
column during the same period as the child-row transaction-time
period.

If the child row value exists in more than one row in the parent
table, the transaction-time periods of these parent rows, when
combined, must form a single, continuous period that contains the
entire transaction-time period of the child row.

SEQUENCED VALIDTIME History, current, and future rows of the child table are considered.

Every value in the child table FK column must exist in the parent
table PK column during the same period as the child row valid-time
period.

If the child row value exists in more than one row in the parent
table, the valid-time periods of these parent rows, when combined,
must form a single, continuous period that contains the entire
valid-time period of the child row.

NONSEQUENCED
VALIDTIME or
NONSEQUENCED
TRANSACTIONTIME

Ignores the time dimension, and behaves like a nontemporal
referential constraint. Every FK value in the child table, must exist
in the parent table:

• For child tables with valid time, history, current, and future rows
are considered.

• For child tables with transaction time, open and closed rows are
considered.

Nonsequenced referential constraints are only allowed between a
temporal child table and a nontemporal parent, or between a
temporal child table and a temporal parent that does not have the
same kind of temporal column as the child table.

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

92 Temporal Table Support

Example
Assume that a CURRENT VALIDTIME referential constraint is defined between the following
two valid-time tables.

As is true for any referential constraint, every value in the constrained referencing (FK)
column of the child table must exist in the referenced (PK) column of the parent table.
However, because these are temporal tables, and the constraint is CURRENT VALIDTIME,
the portion of the child row valid-time that begins at current time and extends through future
time must be contained in the valid-time of the corresponding parent table row or rows.

Whether the constraint is violated depends on the current time when the row is inserted in the
child table:

• If TEMPORAL_DATE is 2006/11/20 at the time of the insertion, the constraint is not
violated.

The parent row valid-time period contains the portion of the child row valid-time period
starting from current time.

Although the valid-time of the parent row does not include the portion of the child row
valid-time from 2006/05/20 through 2006/07/20), this is history, and the CURRENT
VALIDTIME relational constraint does not consider history.

The value in the parent table can exist in more than one row, provided that the valid-time
periods of all such rows combine to contain the current and future portions of the child
row valid time. The CURRENT VALIDTIME relational constraints would not be violated
if the parent table included the following rows.

• If TEMPORAL_DATE is 2006/06/20 at the time of the insertion, the constraint is violated.

The corresponding parent rows do not include the current portion of the child row valid
time from 2006/06/20 to 2006/07/20.

Col1 Col2 (FK) VTColA

100 5 ('2006/05/20', '2016/05/20')

ColA ColB (PK) VTColB

200 5 ('2006/07/20', '9999/12/31')

ColA ColB (PK) VTColB

150 5 ('2006/07/20', '2009/07/20')

250 8 ('2004/07/20', '2005/07/20')

350 5 ('2009/07/20', ‘2017/07/20’)

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

Temporal Table Support 93

CURRENT and SEQUENCED referential constraints can be defined only between tables
having the same types of time, valid time or transaction time. NONSEQUENCED referential
constraints can be defined between a child table having the type of time specified in the
constraint (VALIDTIME or TRANSACTION TIME) and a parent table that lacks the
corresponding time dimension.

The following table summarizes the kinds of referential constraints that can be created
between different parent and child table types.

Types of referential constraints represented in the table:
R=regular, nontemporal referential constraint
CVT=Current Valid Time
CTT=Current Transaction Time
SVT=Sequenced Valid Time
STT=Sequenced Transaction Time
NVT=Nonsequenced Valid Time
NTT=Nonsequenced Transaction Time
TRC=Temporal Relationship Constraint
(see “Temporal Relationship Constraint” on page 94)

Although temporal relational constraints are not enforced by Teradata Database, the following
table describes the relationship that is assumed to exist between the type of temporal
relational constraint on the child FK and the type of uniqueness constraint on the referenced
parent columns.

Child Table Type Parent Table Type

Non-temporal (USI) Valid Time Transaction Time Bitemporal

Non-temporal R TRC with open
parent rows

R TRC

Valid Time NVT CVT
SVT

Invalid CVT
SVT

Transaction Time NTT NTT TRC CTT
STT

CTT TRC
STT TRC

Bitemporal NTT
NVT

NTT
CVT
SVT

CTT
STT
NVT

CTT
STT
CVT
SVT

Temporal Qualifier on Child Table
Relational Constraint

Assumed Temporal Qualifier on Parent Table
PK/UNIQUE Constraint

CURRENT TRANSACTIONTIME CURRENT TRANSACTIONTIME or
SEQUENCED TRANSACTIONTIME

SEQUENCED TRANSACTIONTIME SEQUENCED TRANSACTIONTIME

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

94 Temporal Table Support

Temporal Relationship Constraint
A Temporal Relationship Constraint (TRC) is a referential relationship that is defined between
a child table that has no valid-time column and a parent table that has a valid-time column.
The FK in the child table must include a column of type timestamp or date, which references
the valid-time column in the parent table. The TRC constrains the child table in two ways:

• The values in the TRC column must be contained within the valid-time period of the
corresponding parent row.

• If the child row value exists in the PK column of multiple rows in the parent table, those
rows must have non-overlapping, contiguous valid time periods, with no gaps in the valid
time.

Note: If the PK value exists in more than one row of the parent table then the valid-time
values of these parent rows must be contiguous, having no gaps in the valid- time period.

Like other temporal referential constraints, TRC is a soft constraint that is not enforced by the
database. The primary reason to define TRC is to improve performance by allowing the
Optimizer to eliminate redundant joins.

Note: It is the responsibility of the user to ensure that these constraints are not violated. For
more information and examples of validating these constraints, see “Appendix D Enforcing
and Validating Temporal Referential Constraints” on page 217.

No special temporal syntax or qualifiers is required to create a TRC. Use the standard
REFERENCES WITH NO CHECK OPTION syntax for creating other types of soft referential
constraints. The difference is that the child table must not have a valid-time column, and the
parent table must have a valid-time column.

Examples
CREATE MULTISET TABLE sales (
 Id integer,
 Description varchar (100),
 Sale_date timestamp(6),
 FOREIGN KEY (id, sale_date)
 REFERENCES WITH NO CHECK OPTION product(prod_id, vtcol)
) primary index(id);

NONSEQUENCED TRANSACTIONTIME Parent table cannot have a transaction-time
column

CURRENT VALIDTIME CURRENT VALIDTIME or
SEQUENCED VALIDTIME

SEQUENCED VALIDTIME SEQUENCED VALIDTIME

NONSEQUENCED VALIDTIME Parent table cannot have a valid-time column

Temporal Qualifier on Child Table
Relational Constraint

Assumed Temporal Qualifier on Parent Table
PK/UNIQUE Constraint

Chapter 4: SQL Data Definition Language (Temporal Forms)
Using Constraints with Temporal Tables

Temporal Table Support 95

More than one TRC can be defined for a child table, but only one column can be the TRC
column:

CREATE MULTISET TABLE sales (
 id integer ,
 id2 integer,
 description varchar(100),
 sale_date timestamp(6),
 FOREIGN KEY (id, sale_date) REFERENCES WITH NO CHECK OPTION
 product(prod_id, vtcol) ,
 FOREIGN_KEY (id2, Sale_date) REFERENCES WITH NO CHECK OPTION
 product(prod_id2, vtcol) ,
) primary index(id);

When there are two DateTime columns in the foreign key, the one that corresponds to the
parent table valid-time column becomes the TRC column. In the example below column 'c'
will be treated as the TRC column:

CREATE MULTISET TABLE Parent_Table
(
 a int,
 b int,
 c date,
 vt period(date) not null as validtime, d date
)
PRIMARY INDEX(a);

CREATE MULTISET TABLE Child_Table(
 a int,
 b int,
 c date,
 d date,
 Foreign key (b, c, d)

references with no check option Parent_Table(b, vt, d)
);

Related Information

For more information on... See...

CREATE TABLE (temporal form) “CREATE TABLE, CREATE TABLE AS (Temporal
Forms)” on page 63

creating temporal tables Chapter 3: “Creating Temporal Tables”

join elimination SQL Request and Transaction Processing

validating temporal referential constraints “Appendix D Enforcing and Validating Temporal
Referential Constraints” on page 217

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TRIGGER/REPLACE TRIGGER (Temporal Form)

96 Temporal Table Support

CREATE TRIGGER/REPLACE TRIGGER
(Temporal Form)

Purpose
CREATE TRIGGER creates a trigger on a subject table that is a temporal table.

REPLACE TRIGGER redefines an existing trigger or, if the specified trigger does not exist,
creates a new trigger with the specified name.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TRIGGER/REPLACE TRIGGER (Temporal Form)

Temporal Table Support 97

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

1182A041

CREATE trigger_nameTRIGGER

CURRENT VALIDTIME

INSERT

DELETE

UPDATE

NONTEMPORAL

ON

REFERENCING

FOR EACH ROW

STATEMENT

OLD old_transition_variable_name

table_name
database_name.

SEQUENCED

NONSEQUENCED

VALIDTIME

BEFORE

AFTERENABLED

DISABLED

REPLACE

E

D E

DC

CB

B

A

;

database_name.

()
,

column_name

A

,
column_nameOF

ORDER integer

ROW AS

OLD_NEW_TABLE old_new_table_name (old_value, new_value)
AS

OLD_TABLE old_transition_table_name
OLD TABLE AS

NEW_TABLE new_transition_table_name
NEW TABLE AS

NEW new_transition_variable_name
ROW AS

WHEN

SQL_procedure_statement ;

(search_condition)

SQL_procedure_statement();

SQL_procedure_statementBEGIN ATOMIC END;

SQL_procedure_statement();

Syntax Element … Specifies …

database_name an optional qualifier for trigger_name.

trigger_name the name of the trigger to be created or replaced.

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TRIGGER/REPLACE TRIGGER (Temporal Form)

98 Temporal Table Support

ENABLED the keyword that enables a trigger to execute.

DISABLED the keyword that disables a trigger from executing.

BEFORE that the trigger performs before the triggering event, or
triggering statement, is executed.

AFTER that the trigger performs after the triggering event.

CURRENT VALIDTIME that the trigger fires when the triggering event is current in the
valid-time dimension.

The subject table must have valid time.

VALIDTIME that the trigger fires when the triggering event is sequenced in
the valid-time dimension.

The subject table must have valid time.
SEQUENCED VALIDTIME

NONSEQUENCED VALIDTIME that the trigger fires when the triggering event is
nonsequenced in the valid-time dimension.

The subject table must have valid time.

NONTEMPORAL that the trigger fires when the triggering event is nontemporal
in the transaction-time dimension. In this case, the triggering
statement must specify the NONTEMPORAL prefix.

The triggered action statement can modify values in the
transaction-time column.

The subject table must have transaction time. If the subject
table has valid time, the qualifier in the valid-time dimension
defaults to NONSEQUENCED VALIDTIME.

The NONTEMPORAL privilege is required to use the
NONTEMPORAL option.

INSERT that the triggering event for this trigger is one of the following:

• INSERT

• INSERT... SELECT

• Atomic Upsert

• MERGE

DELETE that the triggering event for this trigger is a DELETE.

UPDATE that the triggering statement for this trigger is one of the
following:

• UPDATE

• Atomic Upsert

• MERGE

Any number of rows, including none, can be updated.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TRIGGER/REPLACE TRIGGER (Temporal Form)

Temporal Table Support 99

Recursive Triggers and Multiset Tables
Temporal tables are multiset tables. If the subject table is referenced in the action, due to the
multiset nature of the subject table, recursive triggers can hit the recursion limit and cause an
error to be reported.

ON [database_name.]table_name the subject table with which this trigger is associated.

If the subject table has valid time, and the triggering statement
is not preceded by a valid-time qualifier, the default is
CURRENT VALIDTIME. If the subject table has transaction
time, and the triggering statement is not preceded by
NONTEMPORAL, the default is CURRENT
TRANSACTIONTIME.

ORDER integer the order of trigger execution within a request when multiple
triggers are defined on a subject table.

REFERENCING a transition table that the WHEN condition and the triggered
actions of a trigger can reference. The clause is optional and
has no default.

FOR EACH ROW keywords specifying that the trigger is to fire for each qualified
row. That is, each row that evaluates to TRUE for any WHEN
condition specified for the trigger.

FOR EACH STATEMENT keywords specifying that the trigger is to fire once per
processed SQL statement in the request whenever a WHEN
condition for the trigger evaluates to TRUE.

WHEN (search_condition) a search condition clause to refine the conditions that fire the
trigger.

SQL_procedure_statement one or more valid triggered action statements.

If the subject table is a nontemporal table and the trigger
action references a temporal table, a current qualifier is
applied to the trigger action statements.

If the subject table is a temporal table, all of the triggered
action statements inherit the qualifier of the triggering
statement. If an action requires a different qualifier, include
the statement in a stored procedure and call the stored
procedure in an action statement.

BEGIN ATOMIC a keyword introducing multiple triggered action statements.

If you begin the triggered SQL statement clause with BEGIN
ATOMIC, then you must also terminate it with the END
keyword.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE TRIGGER/REPLACE TRIGGER (Temporal Form)

100 Temporal Table Support

Related Information

For more information on... See...

CREATE TRIGGER (regular form) SQL Data Definition Language

NONTEMPORAL operations • “Nontemporal Operations” on page 25

• “NONTEMPORAL Privilege” on page 175

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE VIEW, REPLACE VIEW (Temporal Forms)

Temporal Table Support 101

CREATE VIEW, REPLACE VIEW
(Temporal Forms)

Purpose
CREATE VIEW defines a view on a set of tables or views or both.

REPLACE VIEW redefines an existing view or, if the specified view does not exist, creates a
new view with the specified name.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

1182A042

CREATE view_name
database_name.view_name

user_name.view_name

VIEW

REPLACE

AS select_statement
(

A

A

()
,

column_name

temporal qualifier) ;

temporal qualifier

valid time qualifier

valid time qualifier

transaction time qualifier

transaction time qualifier

AND

AND

AS OF date_timestamp_expression
1182A023

1182A016

valid time qualifier

CURRENT VALIDTIME

VALIDTIME AS OF date_timestamp_expression

SEQUENCED
VALIDTIME

NONSEQUENCED

period_expression

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE VIEW, REPLACE VIEW (Temporal Forms)

102 Temporal Table Support

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Syntax Element … Specifies …

view_name the name of the view.

database_name the name of the database or user to contain view_name if
something other than the current database or user.

user_name

column_name the name of a view column. If more than one column is specified,
list their names in the order in which each column is to be
displayed for the view.

CURRENT VALIDTIME that select_statement is a current query in the valid-time dimension.
The result set is a nontemporal table.

VALIDTIME AS OF
date_timestamp_expression

that select_statement retrieves rows where the period of validity
overlaps the specified AS OF expression. The result set is a
nontemporal table.

VALIDTIME that select_statement is a sequenced query. The result set is a valid-
time table that includes an extra column for the overlapped valid-
time period. If the list of columns for the view does not provide a
name for the extra column, the default name is “VALIDTIME”.

If select_statement is a sequenced query in the valid-time and
transaction-time dimensions, and the list of columns for the view
provides names for the extra columns, the first extra name is the
name of the resulting valid-time column and the second extra
name (if it exists) is the name of the resulting transaction-time
column.

SEQUENCED VALIDTIME

1182A025

transaction time qualifier

CURRENT TRANSACTIONTIME

TRANSACTIONTIME AS OF date_timestamp_expression

NONSEQUENCED TRANSACTIONTIME

SEQUENCED TRANSACTIONTIME

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE VIEW, REPLACE VIEW (Temporal Forms)

Temporal Table Support 103

SELECT Statement
All rules that apply to the temporal form of the SELECT statement are applicable for queries
specified in views.

If no temporal qualifier is specified for the view and the view references any temporal tables,
the temporal qualifier defaults to the applicable session temporal qualifier.

Selecting from a View on a Temporal Table
A query that selects from a view can specify a temporal qualifier that is different from the
temporal qualifier of the SELECT statement in the view definition.

NONSEQUENCED
VALIDTIME

that select_statement is a nonsequenced query in the valid-time
dimension. If period_expression is specified, the nonsequenced
query produces a table with valid time; otherwise, the result set is a
nontemporal table.

The result set for a valid-time table includes an extra column for
the overlapped valid-time period. If the list of columns for the view
does not provide a name for the extra column, the default name is
“VALIDTIME”.

If select_statement is a nonsequenced query in the valid-time
dimension and sequenced in the transaction-time dimension, and
the list of columns for the view provides names for the extra
columns, the first extra name is the name of the resulting valid-
time column and the second extra name (if it exists) is the name of
the resulting transaction-time column.

period_expression the period of applicability for the sequenced or nonsequenced
query.

CURRENT
TRANSACTIONTIME

that select_statement is a current query in the transaction-time
dimension. The result set is a nontemporal table.

TRANSACTIONTIME AS OF
date_timestamp_expression

that select_statement retrieves rows whose transaction-time
period in the row overlaps the specified AS OF expression. The
result set is a nontemporal table.

SEQUENCED
TRANSACTIONTIME

that select_statement is a sequenced query in the transaction-time
dimension. The result set is a table with transaction time.

There can only be one table referenced in select_statement and the
table must have transaction time.

NONSEQUENCED
TRANSACTIONTIME

that select_statement is a nonsequenced query in the transaction-
time dimension. A nonsequenced query produces a nontemporal
table as a result set.

AS OF
date_timestamp_expresion

that select_statement retrieves rows whose valid-time and
transaction-time periods overlap the specified AS OF expression.

select_statement existing SELECT statement syntax.

Syntax Element … Specifies …

Chapter 4: SQL Data Definition Language (Temporal Forms)
CREATE VIEW, REPLACE VIEW (Temporal Forms)

104 Temporal Table Support

Updatable Views
Views created on temporal tables are said to be updatable if they satisfy all the existing rules of
updatable views on nontemporal tables and:

• For a view on a valid-time table or on another view, the valid-time qualifier must be
SEQUENCED VALIDTIME with the restriction that it must not specify a period of
applicability.

• For a view on a transaction-time table or on another view, the transaction-time qualifier
must be SEQUENCED TRANSACTIONTIME.

• For a view on a bitemporal table or on another view, the valid-time qualifier must be
SEQUENCED VALIDTIME and the transaction-time qualifier must be SEQUENCED
TRANSACTIONTIME.

• The table must not be specified with an AS OF clause.

Sequenced updatable views permit current, sequenced, nonsequenced, and nontemporal
DML operations. A current or sequenced form of UPDATE issued on the view modifies the
valid-time and transaction-time column values. An update privilege on the valid-time column
is required in addition to those privileges normally required to perform UPDATE on an
updatable view. (No additional privilege is required for the transaction-time column.)

When the WITH CHECK OPTION is specified in the updatable view and the rows are
updated using the view, only the modified rows are checked for violations. Those rows that are
inserted by the system as part of the temporal semantics (for example close of a row in the
transaction-time dimension) are excluded from such checks as they are created to maintain
temporal semantics.

Related Information

For more information on... See...

CREATE VIEW (regular form) SQL Data Definition Language

CREATE RECURSIVE VIEW
(temporal form)

“CREATE RECURSIVE VIEW/REPLACE RECURSIVE
VIEW (Temporal Forms)” on page 60

temporal table views “Views on Temporal Tables” on page 205

Chapter 4: SQL Data Definition Language (Temporal Forms)
SET SESSION (Session Temporal Qualifiers)

Temporal Table Support 105

SET SESSION (Session Temporal Qualifiers)

Purpose
Sets the session temporal qualifier in the valid-time dimension, transaction-time dimension,
or valid-time and transaction-time dimensions.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

valid time qualifierSET SESSION

SS

valid time qualifier

transaction time qualifier

transaction time qualifier

AND

AND

AS OF date_timestamp_expression
1182A026

;

1182A016

valid time qualifier

CURRENT VALIDTIME

VALIDTIME AS OF date_timestamp_expression

SEQUENCED
VALIDTIME

NONSEQUENCED

period_expression

1182A017

transaction time qualifier

CURRENT TRANSACTIONTIME

TRANSACTIONTIME AS OF date_timestamp_expression

NONSEQUENCED TRANSACTIONTIME

Chapter 4: SQL Data Definition Language (Temporal Forms)
SET SESSION (Session Temporal Qualifiers)

106 Temporal Table Support

Usage Notes
When a SELECT or DML statement refers to a temporal table but does not explicitly specify a
valid-time qualifier, the system uses the session valid-time qualifier. Similarly, when a SELECT
statement refers to a temporal table but does not explicitly specify a transaction-time qualifier,
the system uses the session transaction-time qualifier.

The default session temporal qualifier is current in both dimensions.

Syntax Element … Specifies …

CURRENT VALIDTIME that the session valid-time qualifier is current.

VALIDTIME AS OF
date_timestamp_expression

that when a SELECT statement refers to a temporal table but omits a
valid-time qualifier, the default behavior extracts a snapshot of the
table in the valid-time dimension AS OF the date or timestamp value
specified by date_timestamp_expression, which is a constant
expression.

VALIDTIME that the session valid-time qualifier is sequenced.

SEQUENCED
VALIDTIME

NONSEQUENCED
VALIDTIME

that the session valid-time qualifier is nonsequenced.

period_expression the period of applicability for the sequenced or nonsequenced session
valid-time qualifier. The period value must be a constant expression
or built-in function and cannot reference any columns.

CURRENT
TRANSACTIONTIME

that the session transaction-time qualifier is current.

TRANSACTIONTIME AS
OF timestamp_expression

that when a SELECT statement refers to a temporal table but omits a
transaction-time qualifier, the default behavior extracts a snapshot of
the table in the transaction-time dimension AS OF the timestamp
value specified by timestamp_expression, which must be a constant
expression.

NONSEQUENCED
TRANSACTIONTIME

that the session transaction-time qualifier is nonsequenced.

AS OF
date_timestamp_expresion

that when a SELECT statement refers to a temporal table but omits
the valid-time qualifier, transaction-time qualifier, or both, the
default behavior extracts a snapshot of the table in the valid-time
dimension, transaction-time dimension, or both dimensions AS OF
the value specified by date_timestamp_expression, which must be a
constant expression.

Chapter 4: SQL Data Definition Language (Temporal Forms)
SET SESSION (Session Temporal Qualifiers)

Temporal Table Support 107

Related Information

For more information on... See...

SET SESSION (regular form) SQL Data Definition Language

session temporal qualifier • “Session Temporal Qualifiers” on page 27

• “Session Temporal Qualifier” on page 206

Chapter 4: SQL Data Definition Language (Temporal Forms)
SET SESSION SUBSCRIBER

108 Temporal Table Support

SET SESSION SUBSCRIBER

Purpose
Overrides the normal behavior of several SQL actions in the current session for replication
purposes.

Syntax

Usage Notes
Teradata Replication Services supports temporal tables. The SET SESSION SUBSCRIBER ON
statement enables a replication subscriber session to apply changes to temporal tables using
the transaction time of the source transaction.

Related Information

Syntax Element Description

OFF Disables the suppression of the normal SQL actions activated by a SET
SESSION SUBSCRIBER ON request.

ON Suppresses the normal behavior of the following SQL actions:

• Triggered actions invoked by SQL requests in the current session

• Automatic generation of values for identity columns to be overridden with
user-supplied values

This permits the values for all identity columns to be overridden with user-
supplied values.

1101A555

;
SET SESSION SUBSCRIBER ON

OFF

For more information on... See...

SET SESSION SUBSCRIBER Teradata Replication Services Using
Oracle GoldenGate

database replication and Teradata Database Teradata Replication Services Using
Oracle GoldenGate

Chapter 4: SQL Data Definition Language (Temporal Forms)
SQL HELP and SHOW Statements

Temporal Table Support 109

SQL HELP and SHOW Statements

HELP and SHOW statements display information that is relevant to temporal tables:

• HELP COLUMN output includes a Temporal Column field that displays V, T, R, or N, to
indicate a valid-time, transaction-time, temporal relational constraint, or nontemporal
column, respectively.

• HELP COLUMN also includes fields named Current ValidTime Unique, Sequenced
ValidTime Unique, NonSequenced ValidTime Unique, and Current TransactionTime
Unique, which indicate the type of primary key or unique temporal constraint, if any, that
is defined on the column. The values of these fields can be Y or N.

• HELP CONSTRAINT has a Type field that shows information about named constraints,
including temporal constraints.

• HELP SESSION includes a Temporal Qualifier field that shows information about
temporal session attributes.

• HELP TRIGGER includes ValidTime Type and TransactionTime Type fields that display C,
S, N, or T to indicate trigger types that are current, sequenced, nonsequenced, or
nontemporal, respectively. If there is no time dimension defined on the trigger, these fields
are NULL.

• SHOW TABLE indicates valid-time and transaction-time columns, and shows temporal
primary key and unique constraint definitions.

• SHOW JOIN INDEX shows the temporal qualifier associated with a join index created on
a temporal table, which is the temporal qualifier associated with the SELECT statement
that created the join index.

Chapter 4: SQL Data Definition Language (Temporal Forms)
SQL HELP and SHOW Statements

110 Temporal Table Support

Temporal Table Support 111

CHAPTER 5 SQL Data Manipulation Language
(Temporal Forms)

This chapter describes the SQL DML statements for temporal tables.

The material in this chapter covers the syntax, rules, and other details that are specific to
temporal table support.

The existing rules that apply to conventional DML statements also apply to the statements in
this chapter and are not repeated here. For more information on conventional, DML
statements, see SQL Data Manipulation Language.

Note: DML statements that do not use the NONTEMPORAL qualifier are applied only to
rows that are open in the transaction-time dimension.

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
ABORT (Temporal Form)

112 Temporal Table Support

ABORT (Temporal Form)

Purpose
Terminates the current transaction and rolls back its updates.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

AND

valid time qualifier

1182A011

transaction time qualifier

AND

ABORT

transaction time qualifier

valid time qualifier

AS OF date_timestamp_expression

FROM option WHERE abort_condition' message '

A

A

valid time qualifier

1182A018

CURRENT VALIDTIME

VALIDTIME AS OF date_timestamp_expression

SEQUENCED
VALIDTIME

NONSEQUENCED VALIDTIME

period_expression

1182A017

transaction time qualifier

CURRENT TRANSACTIONTIME

TRANSACTIONTIME AS OF date_timestamp_expression

NONSEQUENCED TRANSACTIONTIME

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
ABORT (Temporal Form)

Temporal Table Support 113

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Syntax Element … Specifies …

CURRENT VALIDTIME that only rows that are currently valid participate in the evaluation of
the abort condition.

At least one table referenced in the statement must have valid time.

VALIDTIME AS OF
date_timestamp_expression

a given time that must overlap the valid time of a row for that row to
participate in the evaluation of the abort condition.

At least one table referenced in the statement must have valid time.

SEQUENCED
VALIDTIME

a period of applicability that must overlap the period of validity of a
row for that row to participate in the evaluation of the abort
condition.

For more information see “Sequenced Valid-Time Queries” on
page 147.

period_expression the period of applicability for the sequenced abort.

The period of applicability must be a Period constant expression that
does not reference any columns, but can reference parameterized
values and the TEMPORAL_DATE or TEMPORAL_TIMESTAMP
built-in functions.

The period of applicability can also be a self-contained noncorrelated
scalar subquery that is always nonsequenced in the time dimensions
regardless of the temporal qualifier in the DELETE statement.

Note: If a period_expression is specified, the valid-time column
cannot be specified anywhere in the query.

If period_expression is omitted, the period of applicability defaults to
PERIOD'(0001-01-01, UNTIL_CHANGED)' if the target table valid-
time column data type is PERIOD(DATE) or PERIOD '(0001-01-01
00:00:00.000000+00:00, UNTIL_CHANGED)' if the type is
PERIOD(TIMESTAMP).

NONSEQUENCED
VALIDTIME

that rows that participate in the evaluation of the abort condition are
not further evaluated for qualification in the valid-time dimension.

At least one table referenced in the statement must have valid time.

AND a keyword for specifying both a valid-time qualifier and a
transaction-time qualifier.

CURRENT
TRANSACTIONTIME

that only rows that are open participate in the evaluation of the abort
condition.

At least one table referenced in the statement must have transaction
time.

TRANSACTIONTIME AS
OF timestamp_expression

a given time that must overlap the transaction time of a row for that
row to participate in the evaluation of the abort condition.

At least one table referenced in the statement must have transaction
time.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
ABORT (Temporal Form)

114 Temporal Table Support

Omitting a Valid-Time Qualifier
If no temporal qualifier is specified in the valid-time dimension in the statement, the system
uses the temporal qualifier of the session. If none is explicitly specified for the session, the
default of CURRENT is assumed and only rows that are currently valid participate in further
processing.

Omitting a Transaction-Time Qualifier
If no temporal qualifier is specified in the transaction-time dimension in the statement, the
system uses the temporal qualifier of the session. If none is specified for the session, the default
of CURRENT is assumed and only rows that are open participate in further processing.

Temporal Qualifier and Subqueries
The temporal qualifier of a statement applies to all subqueries; no separate temporal qualifier
is allowed for the subquery.

Related Information

NONSEQUENCED
TRANSACTIONTIME

that rows that participate in the evaluation of the abort condition are
not further evaluated for qualification in the transaction-time
dimension.

At least one table referenced in the statement must have transaction
time.

AS OF
date_timestamp_expression

that only rows that overlap date_timestamp_expression in the valid-
time and transaction-time dimension participate in the evaluation of
the abort condition.

'message' the text of the message to be returned when the transaction is
terminated.

FROM option the temporal tables that are further qualified in the WHERE clause.

WHERE abort_condition an expression where the result must evaluate to TRUE for Teradata
Database to roll back the transaction.

Syntax Element … Specifies …

For more information on... See...

ABORT statement SQL Data Manipulation Language

FROM clause syntax and usage “FROM Clause (Temporal Form)” on page 154

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
DELETE (Temporal Form)

Temporal Table Support 115

DELETE (Temporal Form)

Purpose
Deletes or modifies one or more rows from a temporal table.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Syntax Element … Specifies …

CURRENT
VALIDTIME

that the delete is current in the valid-time dimension if the target table
supports valid time.

Note: A current DELETE affects only current rows. Future rows with
valid-time periods that do not overlap TEMPORAL_TIMESTAMP or
TEMPORAL_DATE will not be deleted.

If the target table does not support valid time, at least one of the
referenced tables must be a table with valid time. The delete is not a
current delete. The CURRENT VALIDTIME qualifier is used to qualify
rows from the referenced tables in the valid-time dimension. In the
transaction-time dimension, open rows qualify.

Caution: CURRENT DML modifications can cause serializability issues
for concurrent transactions. See Appendix C: “Potential
Concurrency Issues with Current Temporal DML” for
information on avoiding these issues.

1182A005

CURRENT VALIDTIME

SEQUENCED
VALIDTIME

DELETE FROM table_name

NONSEQUENCED VALIDTIME

NONTEMPORAL

period_expression

AS
correlation_name conditionWHERE

joined_table_name,

A

A

;

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
DELETE (Temporal Form)

116 Temporal Table Support

Required Privileges
The privileges required are the same as those required for a conventional DELETE statement.

If the DELETE statement specifies the NONTEMPORAL qualifier, the NONTEMPORAL
privilege is also required on the temporal table.

VALIDTIME that the delete is sequenced in the valid-time dimension if the target table
supports valid time.

If the target table does not support valid time, at least one of the
referenced tables must be a table with valid time. The delete is not a
sequenced delete. The VALIDTIME or SEQUENCED VALIDTIME
qualifier is used to qualify rows from the referenced tables in the valid-
time dimension. In the transaction-time dimension, open rows qualify.

SEQUENCED
VALIDTIME

period_expression the period of applicability for the sequenced delete.

The period of applicability must be a Period constant expression that does
not reference any columns, but can reference parameterized values and
the TEMPORAL_DATE or TEMPORAL_TIMESTAMP built-in
functions.

The period of applicability can also be a self-contained noncorrelated
scalar subquery that is always nonsequenced in the time dimensions
regardless of the temporal qualifier in the DELETE statement.

Note: If a period_expression is specified, the valid-time column cannot be
specified anywhere in the query.

If period_expression is omitted, the period of applicability defaults to
PERIOD'(0001-01-01, UNTIL_CHANGED)' if the target table valid-time
column data type is PERIOD(DATE) or PERIOD '(0001-01-01
00:00:00.000000+00:00, UNTIL_CHANGED)' if the type is
PERIOD(TIMESTAMP).

NONSEQUENCED
VALIDTIME

that the delete is nonsequenced in the valid-time dimension if the target
table supports valid time.

If the target table does not support valid time, at least one of the
referenced tables must be a table with valid time. The delete is not a
nonsequenced delete. The NONSEQUENCED VALIDTIME qualifier is
used to qualify rows from the referenced tables in the valid-time
dimension. In the transaction-time dimension, open rows qualify.

NONTEMPORAL that the delete is nonsequenced in the valid-time dimension and
nontemporal in the transaction-time dimension.

The target table must support transaction time.

table_name the name of the target table from which the delete operation is to remove
rows.

[AS] correlation_name an optional table alias name.

joined_table_name the name of a joined table referenced in the WHERE clause.

WHERE condition a condition for filtering the rows to be deleted.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
DELETE (Temporal Form)

Temporal Table Support 117

Usage Notes
Unless the NONTEMPORAL qualifier is specified, deletion on temporal tables with a
transaction-time column is always limited to only those rows that are open in transaction
time.

Current Delete

Caution: CURRENT DML modifications can cause serializability issues for concurrent transactions.
See Appendix C: “Potential Concurrency Issues with Current Temporal DML” for
information on avoiding these issues.

For a table with valid time, current rows qualify for deletion. Any additional search conditions
are applied only on these rows. The conditions in the WHERE clause or join ON conditions
can be specified on valid-time or transaction-time columns.

Note: A current DELETE affects only current rows. Future rows with valid-time periods that
do not overlap TEMPORAL_TIMESTAMP or TEMPORAL_DATE will not be deleted.

The following table describes the current delete operation of a qualified row.

IF the table is a … AND the beginning bound is … THEN the …

valid-time table and
the element type of
the valid-time
column is DATE

equal to TEMPORAL_DATE qualified row is physically deleted.

less than TEMPORAL_DATE period of validity of the qualified row is
modified with the ending bound set to
TEMPORAL_DATE.

valid-time table and
the element type of
the valid-time
column is
TIMESTAMP

equal to
TEMPORAL_TIMESTAMP

qualified row is physically deleted.

less than
TEMPORAL_TIMESTAMP

period of validity of the qualified row is
modified with the ending bound set to
TEMPORAL_TIMESTAMP.

bitemporal table and
the element type of
the valid-time
column is DATE

equal to TEMPORAL_DATE qualified row is closed out in transaction
time; that is, it is logically deleted.

less than TEMPORAL_DATE qualified row is closed out in transaction
time and a copy of the old row is inserted
with the beginning bound of the period
of validity set to the same value as the
closed out row and the ending bound of
the period of validity set to
TEMPORAL_DATE.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
DELETE (Temporal Form)

118 Temporal Table Support

Sequenced Delete
For a table with valid time, rows that overlap with the period of applicability qualify for
deletion. Any additional search conditions are applied only on these rows. The conditions in
the WHERE clause or join ON conditions can be specified on valid-time or transaction-time
columns.

Sequenced delete on a table with transaction time operates only on open rows.

The following table describes the sequenced delete operation of a qualified row.

bitemporal table and
the element type of
the valid-time
column is
TIMESTAMP

equal to
TEMPORAL_TIMESTAMP

qualified row is closed out in transaction
time; that is, it is logically deleted.

less than
TEMPORAL_TIMESTAMP

qualified row is closed out in transaction
time and a copy of the old row is inserted
with the beginning bound of the period
of validity set to the same value as the
closed out row and the ending bound of
the period of validity set to
TEMPORAL_TIMESTAMP.

IF the table is a … AND the beginning bound is … THEN the …

IF the table
is a …

AND the period of
applicability … THEN …

valid-time
table

contains the period of validity
of the qualified row, including
the case where they are equal

the qualified row is physically deleted.

does not contain the period of
validity of the qualified row

If a portion of the period of validity exists before
the beginning of the period of applicability, a copy
of the row is inserted with the beginning bound of
its period of validity set to the same value as the
qualified row and the ending bound set to the
beginning bound of the period of applicability.

If a portion of the period of validity exists after the
end of the period of applicability, a copy of the row
is inserted with the ending bound of its period of
validity set to the same value as the qualified row
and the beginning bound set to the ending bound
of the period of applicability.

Note that two rows can be inserted if the preceding
conditions are both true.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
DELETE (Temporal Form)

Temporal Table Support 119

Nonsequenced Delete
A nonsequenced DELETE statement deletes the specified rows across all states. This ignores
valid-time semantics when deleting rows from a table with valid time.

A nonsequenced delete operates on open rows only. A nonsequenced delete treats a valid-time
column like a regular column.

For a bitemporal table, a nonsequenced delete of a row closes out the existing qualified row.
For a valid-time table, the nonsequenced delete is like a conventional delete statement that
physically deletes the qualified row.

Nontemporal Delete
Note: Rows that are closed in transaction time provide a history of all modifications and
deletions on tables that have a transaction-time column. The automatic history that tables
with transaction time provide can be used for regulatory compliance auditing, so these rows
are generally inaccessible to DML modifications. Because NONTEMPORAL DML statements
can modify closed rows, the special NONTEMPORAL privilege is required. For more
information on the NONTEMPORAL privilege, see “NONTEMPORAL Privilege” on
page 175.

A nontemporal delete, also referred to as vacuuming the table, physically deletes the qualifying
rows from the table.

Caution: The best practice is to back up the data before performing a nontemporal delete. Tracking of
any deleted rows will be lost.

bitemporal
table

contains the period of validity
of the qualified row, including
the case where they are equal

the qualified row is closed out (logically deleted) in
transaction time.

does not contain the period of
validity of the qualified row

the qualified row is closed out in transaction time.

If a portion of the period of validity exists before
the beginning of the period of applicability, a copy
of the row is inserted with the beginning bound of
its period of validity set to the same value as the
qualified row and the ending bound set to the
beginning bound of the period of applicability.

If a portion of the period of validity exists after the
end of the period of applicability, a copy of the row
is inserted with the ending bound of its period of
validity set to the same value as the qualified row
and the beginning bound set to the ending bound
of the period of applicability.

Note that two rows can be inserted if the preceding
conditions are both true.

IF the table
is a …

AND the period of
applicability … THEN …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
DELETE (Temporal Form)

120 Temporal Table Support

All rows, both open and closed, are considered for qualification conditions specified in the
DELETE statement. If multiple transaction-time tables are referenced, they are joined using
nonsequenced select semantics.

If the table being deleted has valid time, both valid and rows that are no longer valid are
considered for qualification conditions specified in the query.

The only difference between a nonsequenced delete and a nontemporal delete on a table with
transaction time is that a nonsequenced delete performs a logical delete of rows whereas a
nontemporal delete performs a physical delete of rows.

Related Information

For more information on... See...

DELETE statement SQL Data Manipulation Language

deleting rows from temporal tables “Modifying Temporal Tables” on page 193

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
INSERT/INSERT … SELECT (Temporal Forms)

Temporal Table Support 121

INSERT/INSERT … SELECT (Temporal Forms)

Purpose
Adds a new row to a named temporal table by directly specifying the row data to be inserted
(valued form) or by retrieving the new row data from another table (selected, or
INSERT … SELECT form).

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Syntax Element … Specifies …

CURRENT VALIDTIME that the insert is current in valid time.

At least one of the referenced tables or the target table must be
a table with a valid-time column. The CURRENT
VALIDTIME qualifier is used to qualify rows from the
referenced tables in the valid-time dimension. In the
transaction-time dimension, open rows qualify.

1182A003

INSERT INTO

VALUES

()
,

subquery

column_name

VALIDTIME

CURRENT VALIDTIME

NONSEQUENCED VALIDTIME

NONTEMPORAL

table_name

A

A

;

SEQUENCED period_expression

DEFAULT VALUES

()
,

expression

()
,

column_name = expression

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
INSERT/INSERT … SELECT (Temporal Forms)

122 Temporal Table Support

Required Privileges
The privileges required are the same as those required for a conventional INSERT statement.

VALIDTIME that the insert is sequenced in valid time.

At least one of the referenced tables or the target table must be
a table with a valid-time column. The VALIDTIME or
SEQUENCED VALIDTIME qualifier is used to qualify rows
from the referenced tables in the valid-time dimension. In the
transaction-time dimension, open rows qualify.

Use a sequenced valid-time insert to insert history, current, or
future rows.

SEQUENCED VALIDTIME

period_expression a Period constant expression for the period of applicability of
the sequenced insert.

The period of applicability can be specified only for an
INSERT…SELECT statement, where the statement specifies a
subquery.

The period of applicability can also be a self-contained,
noncorrelated scalar subquery that is always nonsequenced in
the time dimensions, regardless of the temporal qualifier in
the INSERT statement.

The period expression must not reference any columns, but
can reference parameterized values and built-in functions
such as TEMPORAL_DATE or TEMPORAL_TIMESTAMP.

Note: If a period_expression is specified, the valid-time
column cannot be specified anywhere in the query.

NONSEQUENCED VALIDTIME that the insert is nonsequenced in valid time.

At least one of the referenced tables or the target table must be
a table with a valid-time column.

Use a nonsequenced valid-time insert to insert history,
current, or future rows.

NONTEMPORAL that the insert is a nontemporal insert on a table with
transaction time.

table_name the name of a temporal table.

column_name [… , column_name] a named list of columns in the target table.

expression [… , expression] a positional assignment list of values to insert into the target
table.

column_name = expression
[… , column_name = expression]

an assignment list of column names in the target table and the
values to assign them.

DEFAULT VALUES that a row consisting of default values is to be added to
table_name.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
INSERT/INSERT … SELECT (Temporal Forms)

Temporal Table Support 123

If the INSERT statement specifies the NONTEMPORAL qualifier, the NONTEMPORAL
privilege is required on the temporal table.

Usage Notes
All check, primary key, and temporal unique (current, sequenced, nonsequenced) constraints
defined on the table are checked only on rows that are open in transaction time.

General Rules
The following general rules apply to any variant of INSERT into a temporal table. Rules for
specific types of inserts appear in succeeding sections.

• If a valid-time qualifier is neither specified for the session nor specified in the INSERT
statement, the statement is a current INSERT statement.

• The value assigned to validtime-column cannot use CURRENT_DATE or
CURRENT_TIMESTAMP.

• If the AS OF temporal qualifier is set as the session temporal qualifier, and an INSERT
with no temporal qualifier is issued on a temporal table, the session temporal attribute is
ignored and the INSERT defaults to current.

• If the target table is a table without a valid-time column, and multiple other tables that
support valid time are specified in the INSERT … SELECT statement, the qualifier for the
valid-time dimension defaults to current (unless the NONTEMPORAL qualifier was
specified). In the transaction-time dimension, only open rows qualify.

• No qualifier can be specified for the transaction-time dimension. The session attribute is
not applied to the transaction-time dimension. (The NONTEMPORAL qualifier can be
used to specify a transaction time if the user has the NONTEMPORAL privilege. For more
information see “NONTEMPORAL Privilege” on page 175.)

Current Inserts
When an INSERT or INSERT ... SELECT statement is issued on a temporal table, and the
statement either specifies the CURRENT VALIDTIME qualifier or does not specify any
temporal qualifier, the insert is a current insert.

Note: You should always explicitly specify the value of the valid-time column when
performing a current insert on a table that has a valid-time column. The valid-time period
must overlap TEMPORAL_TIMESTEMP or TEMPORAL_DATE, depending on the type of
the valid-time column.

The following information applies to current inserts:

• Do not use a positional assignment list to specify column values for a current insert.

If an INSERT statement uses a positional assignment list, the list can not include a value
for the valid-time column. The valid-time column position is skipped when mapping
values to the columns, and the column is always set to the system-defined default value.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
INSERT/INSERT … SELECT (Temporal Forms)

124 Temporal Table Support

The system-defined default values for a valid-time column are
(TEMPORAL_TIMESTAMP to UNTIL_CHANGED) and (TEMPORAL_DATE to
UNTIL_CHANGED), depending on the period data type of the column.

If an INSERT … SELECT statement uses a positional assignment list, the values of the
valid-time and transaction-time columns from the source table are not copied into the
target table, but are replaced by the system-defined default value. This is true even if the
statement specifies SELECT * in the SELECT statement or projects the valid-time and
transaction-time columns explicitly.

• If an INSERT statement uses a named list or assignment list, the list can specify a value for
the valid-time column. If the named list or assignment list does not specify the valid-time
column, the valid-time value is set to the system-defined default value.

IF an INSERT ... SELECT statement uses a named list, a valid-time column value or any
Period column value can be copied into the target table if the named list specifies a valid-
time column. If the SELECT * asterisk notation is used in combination with explicitly
specification of a temporal column, use the table_name.* notation. For more information
see “Asterisks in Select Lists” on page 144.

Note: If a CURRENT VALIDTIME INSERT specifies a value for the valid-time column,
the period must overlap the current time. To insert valid-time history or future rows into a
table, use the SEQUENCED VALIDTIME qualifier to the INSERT statement.

• Values can never be specified for a transaction-time column, unless the NONTEMPORAL
qualifier is used. This column is automatically maintained by the system. For current
inserts, the system defined default value for the transaction-time column is
(TT_TIMESTAMP to UNTIL_CLOSED), where TT_TIMESTAMP is the timestamp value
read from the system clock by each AMP during timestamping. The transaction-time
column position is always skipped when mapping the inserted values to columns.

• The SELECT statement of an INSERT … SELECT is executed as a current SELECT. The
result rows of a current SELECT are inserted into the target table with period of validity set
to (TEMPORAL_DATE to UNTIL_CHANGED) or (TEMPORAL_TIMESTAMP to
UNTIL_CHANGED).

Sequenced Inserts
A sequenced insert is similar to a current insert, but allows the user to specify the valid-time of
the inserted rows. Inserted rows can be history, current, or future rows.

The INSERT statement cannot specify explicit values for the transaction-time column if the
table has transaction time. The system maintains the transaction time. The transaction-time
column name cannot be specified in the named list or assignment list of a sequenced INSERT
statement. The system skips the transaction-time column position when mapping the values
to the columns.

The period value specified for the valid-time column must be assignable to the valid-time
column of the target table, and cannot be NULL.

For a target table with valid time where the INSERT statement does not specify a SELECT:

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
INSERT/INSERT … SELECT (Temporal Forms)

Temporal Table Support 125

• If a positional assignment list is specified, the valid-time value is read from the value list in
the same position as that of the valid-time column position. If a value is specified, the
value is assigned to the valid-time column. If no value is specified for the valid-time
column in the positional assignment list, its value is set to the default value of the valid-
time column.

• The valid-time column name can be specified in a named list or assignment list to specify
a value. If the named list or assignment list does not specify a valid-time column, the valid-
time value is set to its default value.

Note: If a SEQUENCED VALIDTIME INSERT specifies a value for the valid-time column, the
period must not be NULL. To insert a row that has NULL in the valid-time column, use a
NONSEQUENCED VALIDTIME INSERT statement.

For a target table with valid time and an INSERT … SELECT statement:

• The SELECT subquery must reference a table that has a valid-time column.

• Do not specify the valid-time column or value in the select list. If the target is a bitemporal
table, do not specify the valid-time or transaction-time column names or values in the
select list. The values from the SELECT list are positionally assigned to the corresponding
columns in the target table as if valid-time and transaction-time columns do not exist in
the target.

• The SELECT statement is executed as a sequenced SELECT if at least one table is a table
with valid time. The result rows of a SELECT are inserted into the target table with their
valid time period set to the overlap (P_INTERSECT) of the source row period of validity
with the SELECT statement period of applicability. The precision of the resulting
overlapped valid-time value must be assignable to the valid-time period of the target table.

Nonsequenced Inserts
For a table with transaction time, the INSERT statement cannot specify a value for the
transaction-time column. The system maintains the transaction time. If the INSERT
statement uses a positional assignment list, the transaction-time column position is skipped
when mapping the values to the columns.

The Period value specified for the valid-time column must be assignable to the valid-time
column of the target table; otherwise, an appropriate Period data type error is reported.

The SELECT statement of a nonsequenced INSERT … SELECT is executed as a nonsequenced
SELECT. The result rows of the SELECT are inserted into the target table with the period of
validity set to the corresponding Period value in the selected list.

If the valid-time column is not specified in the positional assignment list or in the named list
and no default value is specified for the valid-time column, it defaults to NULL. A NULL in a
valid-time column can be modified only by using a nonsequenced update because a current or
sequenced update can never qualify this row.

Nontemporal Inserts
Note: Rows that are closed in transaction time provide a history of all modifications and
deletions on tables that have a transaction-time column. The automatic history that tables

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
INSERT/INSERT … SELECT (Temporal Forms)

126 Temporal Table Support

with transaction time provide can be used for regulatory compliance auditing, so these rows
are generally inaccessible to DML modifications. Because NONTEMPORAL DML statements
can modify closed rows, the special NONTEMPORAL privilege is required. For more
information on the NONTEMPORAL privilege, see “NONTEMPORAL Privilege” on
page 175.

The positional assignment list or named list of the INSERT statement can specify the valid-
time and transaction-time column values. The values must be assignable to the appropriate
columns or the system reports an error.

The following rules apply to the transaction-time column value in an INSERT statement:

• The beginning bound must not be greater than the value read from the system clock
during the insert.

• The ending bound must be UNTIL_CLOSED or must be less than or equal to the value
read from the system clock during the insert.

The SELECT statement of a nontemporal INSERT…SELECT is executed as a nonsequenced
SELECT in both the valid-time and transaction-time dimensions. The result rows of the
SELECT are inserted into the target table.

INSERT … SELECT and Error Logging Tables
You can create an error logging table that you associate with a temporal table when you want
Teradata Database to log information about insert errors that occur during an
INSERT … SELECT operation on the temporal table.

To create an error logging table, use the CREATE ERROR TABLE statement. Error logging
tables are nontemporal tables. When you create an error logging table that you associate with a
temporal table, the temporal columns in the temporal table are included in the error logging
table as regular period data type columns.

To enable error logging for an INSERT … SELECT statement, specify the LOGGING ERRORS
option. The behavior of the error logging facilities for INSERT … SELECT errors is the same
for nontemporal and temporal tables.

For details on how to create an error logging table, see “CREATE ERROR TABLE” in SQL
Data Definition Language. For details on how to specify error handling for the
INSERT … SELECT statement, see SQL Data Manipulation Language.

Related Information

For more information on... See...

INSERT statement SQL Data Manipulation Language

inserting rows into temporal tables “Modifying Temporal Tables” on page 193

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
MERGE (Temporal Form)

Temporal Table Support 127

MERGE (Temporal Form)

Purpose
Performs a temporal merge of a source row set into a target table based on the temporal
qualifier and whether any target rows satisfy a specified matching condition with the source
row.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Syntax Element … Specifies …

CURRENT
VALIDTIME

that the merge is current in the valid-time dimension.

Either the target table or the source table must support the valid-time
dimension.

Caution: CURRENT DML modifications can cause serializability issues for
concurrent transactions. See Appendix C: “Potential
Concurrency Issues with Current Temporal DML” for
information on avoiding these issues.

VALIDTIME that the merge is sequenced in the valid-time dimension.

Either the target table or the source table must support the valid-time
dimension.

SEQUENCED
VALIDTIME

1182A006

CURRENT VALIDTIME

SEQUENCED
VALIDTIME

merge_statement

NONSEQUENCED VALIDTIME

period_expression

;

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
MERGE (Temporal Form)

128 Temporal Table Support

Required Privileges
The temporal form of MERGE requires the same privileges as the conventional form of
MERGE.

Usage Notes
For a table that supports transaction time, the temporal qualifier in the transaction-time
dimension is CURRENT TRANSACTIONTIME.

All check, primary key, and temporal unique (current, sequenced, nonsequenced) constraints
defined on the table are checked only on rows that are open in transaction time.

If either the target table or source table is a temporal table and the MERGE statement does not
specify a temporal qualifier, the value of the session valid-time qualifier is used for the
temporal table.

If the source row set is specified by a value list, the source is considered nontemporal.

A select subquery or a table specified as a source row set in the merge statement can reference
a temporal table. The derived table can result in a temporal or nontemporal table, depending
on the temporal qualifier used.

The UPDATE portion of the MERGE statement follows the rules of the temporal UPDATE
statement semantics and the INSERT portion of the MERGE statement follows the rules of the
temporal INSERT statement semantics.

period_expression the period of applicability for the sequenced merge.

The period of applicability must be a Period constant expression that does
not reference any columns, but can reference parameterized values and the
TEMPORAL_DATE or TEMPORAL_TIMESTAMP built-in functions.

The period of applicability can also be a self-contained noncorrelated scalar
subquery that is always nonsequenced in the time dimensions regardless of
the temporal qualifier in the merge statement.

Note: If a period_expression is specified, the valid-time column cannot be
specified anywhere in the query.

If period_expression is omitted, the period of applicability defaults to
PERIOD'(0001-01-01, UNTIL_CHANGED)' for a PERIOD(DATE) valid-
time column or PERIOD '(0001-01-01 00:00:00.000000+00:00,
UNTIL_CHANGED)' for a PERIOD(TIMESTAMP) valid-time column.

NONSEQUENCED
VALIDTIME

that the merge is nonsequenced in the valid-time dimension.

Either the target table or the source table must support the valid-time
dimension.

merge_statement the syntax for the conventional form of the MERGE statement.

For details, see SQL Data Manipulation Language.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
MERGE (Temporal Form)

Temporal Table Support 129

Merging into a Valid-Time Table with a PPI
For all MERGE statements, an ON clause match condition must specify an equality constraint
on the primary index of the target table. To qualify for the ANSI MERGE path, which provides
enhanced optimization, if the target table has a PPI, the equality must also include the
partitioning column to qualify a single partition. For information about the ANSI MERGE
optimizer path, see SQL Data Manipulation Language.

Because the recommended partitioning expressions for temporal tables use only the END
bound of the temporal column time periods, the match condition can similarly use the END
condition in the equality constraint. END (valid_time_column) IS UNTIL_CHANGED and
END (transaction_time_column) IS UNTIL_CLOSED can be used as equality constraints on
temporal columns for temporal tables that use the recommended partitioning expressions
(see “Partitioning Expressions for Temporal Tables” on page 84).

The ending bound of the valid-time of the target rows is seldom known in advance. A solution
is to pre-join the source and target tables, using the same conditions in the USING clause, to
determine the valid-time values in the target table.

The pre-join should use the NONSEQUENCED VALIDTIME qualifier (AND CURRENT
TRANSACTIONTIME, if applicable). The pre-join must be a left outer join from the source
in order to preserve the non-matching row set for insertion into the target table.

Example
The following example uses a nontemporal source table for the merge. Note that the values to
be inserted can be any values, even those that would go into a different partition.

CREATE MULTISET TABLE bi_tgt_tbl
(
pkey_field INTEGER,
int2_field INTEGER,
vtcol PERIOD(DATE) NOT NULL AS VALIDTIME,
ttcol PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME)
PRIMARY INDEX (pkey_field)
PARTITION BY CASE_N(
((END(vtcol)) >= DATE) AND ((END(ttcol)) >= CURRENT_TIMESTAMP(6)),
((END(vtcol)) < DATE) AND ((END(ttcol)) >= CURRENT_TIMESTAMP(6)),
(END(ttcol)) < CURRENT_TIMESTAMP(6));

CREATE SET TABLE src_tbl
(
pkey_field INTEGER,
int2_field INTEGER)

PRIMARY INDEX (pkey_field);

SEQUENCED VALIDTIME
MERGE INTO bi_Tgt_tbl
USING /* This block prejoins and determines the target valid time

values */
(

NONSEQUENCED VALIDTIME PERIOD (DATE'2009-12-15', DATE'2009-12-18')
AND CURRENT TRANSACTIONTIME
SELECT s.pkey_field, s.int2_field, END(b_t.vtcol) vtend,

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
MERGE (Temporal Form)

130 Temporal Table Support

END(b_t.ttcol) ttend
FROM src_tbl s LEFT OUTER JOIN bi_tgt_tbl b_t
ON s.pkey_field = b_t.pkey_field

) AS nonbi_srct (pkey, int2, vtend, ttend)
ON (pkey_field = nonbi_srct.pkey)
AND END(vtcol) = vtend
AND END(ttcol) = ttend

WHEN MATCHED THEN
UPDATE SET int2_field = nonbi_srct.int2

WHEN NOT MATCHED THEN
INSERT (nonbi_srct.pkey, nonbi_srct.int2,

PERIOD(TEMPORAL_DATE, UNTIL_CHANGED)
);

Matching Process
The following table describes the merge matching process when the target table is a temporal
table.

Temporal Merge Type Matching Process

Current The matching condition is applied on all current rows in the target table.
For a target table with transaction time, all conditions and modifications
are applied only on open rows.

If the source table is temporal, only the current rows from the source table
participate in the merge process. For a source table that has transaction
time, only open rows participate in the merge process. To get the source
row set, the system rewrites the source to be a derived table.

Sequenced The matching condition is applied on all target rows that overlap the
optional period of applicability. For a target table with transaction time,
all conditions and modifications are applied only on open rows.

If the source table is temporal, only those source rows that overlap the
optional period of applicability participate in the merge process. For a
source table that has transaction time, only open rows participate in the
merge process. To get the source row set, the system rewrites the source to
be a derived table.

When both the source and target tables are temporal, sequenced join
semantics are applied, meaning that the matching condition of the ON
clause additionally includes the system-added overlap condition on the
temporal columns of the source and target.

Nonsequenced All of the existing restrictions that apply to the matching condition of the
ON clause for the conventional form of MERGE apply in the valid-time
dimension in a nonsequenced merge.

For a target table with transaction time, all conditions and modifications
are applied only on open rows. For a source table that has transaction
time, only open rows participate in the merge process. To get the source
row set, the system rewrites the source to be a derived table.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
MERGE (Temporal Form)

Temporal Table Support 131

Modification of Rows
The following table describes the modification of rows for a temporal merge:

Temporal Merge Type Modification Details

Current A current merge results in a current update if matching rows are found;
otherwise, it results in a current insert.

The SET clause of the UPDATE portion cannot reference the valid-time
column or the transaction-time column as the name of a column to
update.

The system may modify the temporal columns during an update of the
matched row. In a PPI table, if the modification of the temporal columns
causes the rows to change partitions within the same AMP, the plan is sub-
optimal since the row must be deleted and a new row inserted. The insert
requires a spool.

The specification of a valid-time value is allowed in the INSERT portion in
the merge when the INSERT uses a named list or assignment list. This
inserted row can be into a different partition from the matched partition
within the same AMP. This can be achieved if the row to be inserted is
spooled in the same way as done when the matched row changes partition.

Sequenced If the source and target rows satisfy the matching condition for a
sequenced merge, a sequenced update is performed.

• When both tables are temporal, the valid-time portion updated is the
intersection of period of applicability, the period of validity of the target
table row, and the period of validity of the source row.

The intersection of the period of validity of the source row and the
period of applicability must be contained in the period of validity of the
target row.

• When only the target table is temporal, the valid-time portion updated
is the intersection of the period of applicability and the period of
validity of the target table row.

• The SET clause of the UPDATE portion cannot reference the valid-time
column or the transaction-time column as the name of a column to
update.

If the source and target rows do not satisfy the matching condition, a
sequenced insert is performed. The period of applicability, if specified, is
ignored for the insert. The insert specification follows the rules for a
simple sequenced insert and INSERT can specify a valid-time column
value. The inserted row with the specified valid-time column value can be
into a different partition from the matched partition within the same
AMP.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
MERGE (Temporal Form)

132 Temporal Table Support

Error Logging Tables
You can create an error logging table that you associate with a temporal table when you want
Teradata Database to log information about update and insert errors that occur during a
MERGE operation on the temporal table.

To create an error logging table, use the CREATE ERROR TABLE statement. Error logging
tables are nontemporal tables. When you create an error logging table that you associate with a
temporal table, the temporal columns in the temporal table are included in the error logging
table as regular period data type columns.

To enable error logging for a MERGE statement, specify the LOGGING ERRORS option.

For the temporal form of MERGE, the Teradata Database error logging facilities consider the
following errors as local errors:

• Sequenced duplicate rows

• Check constraint violations

• Errors during row build such as division by zero

Nonlocal errors are complex updates and nonsequenced USI updates. Unique constraint
violations on a temporal table are join index errors instead of nonlocal errors as on a
nontemporal table.

For details on how to create an error logging table, see “CREATE ERROR TABLE” in SQL
Data Definition Language. For details on how to specify error handling for the
INSERT … SELECT statement, see SQL Data Manipulation Language.

Related Information

Nonsequenced If matching rows are found for a nonsequenced merge, a nonsequenced
update is performed; otherwise, a nonsequenced insert is performed.

The SET clause of the UPDATE portion can reference the valid-time
column as the name of a column to update.

For a PPI table where partitioning is on the valid-time column, the valid-
time column can be modified.

The insert specification follows the rules of nonsequenced simple insert
and the valid-time column value can be specified. The inserted row with
the specified valid-time column value can be into a different partition
from the matched partition within the same AMP.

Temporal Merge Type Modification Details

For more information on... See...

MERGE statement SQL Data Manipulation Language

INSERT (temporal form) “INSERT/INSERT … SELECT (Temporal Forms)” on
page 121

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
MERGE (Temporal Form)

Temporal Table Support 133

partitioning temporal tables “Partitioning Expressions for Temporal Tables” on page 84

UPDATE (temporal form) “UPDATE (Temporal Form)” on page 158

For more information on... See...

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
ROLLBACK (Temporal Form)

134 Temporal Table Support

ROLLBACK (Temporal Form)

Purpose
Terminates and rolls back the current transaction.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

AND

valid time qualifier

1182A010

transaction time qualifier

AND

ROLLBACK

transaction time qualifier

valid time qualifier

AS OF date_timestamp_expression

FROM option WHERE abort_conditionWORK ' message '

A

A

valid time qualifier

1182A018

CURRENT VALIDTIME

VALIDTIME AS OF date_timestamp_expression

SEQUENCED
VALIDTIME

NONSEQUENCED VALIDTIME

period_expression

1182A017

transaction time qualifier

CURRENT TRANSACTIONTIME

TRANSACTIONTIME AS OF date_timestamp_expression

NONSEQUENCED TRANSACTIONTIME

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
ROLLBACK (Temporal Form)

Temporal Table Support 135

Syntax Element … Specifies …

CURRENT VALIDTIME that only rows that are currently valid participate in the evaluation of
the abort condition.

At least one table referenced in the statement must have valid time.

VALIDTIME AS OF
date_timestamp_expression

a given time that must overlap the valid time of a row for that row to
participate in the evaluation of the abort condition.

At least one table referenced in the statement must have valid time.

SEQUENCED VALIDTIME a period of applicability that must overlap the period of validity of a
row for that row to participate in the evaluation of the abort
condition.

For more information see “Sequenced Valid-Time Queries” on
page 147.

period_expression the period of applicability for the sequenced rollback.

The period of applicability must be a Period constant expression that
does not reference any columns, but can reference parameterized
values and the TEMPORAL_DATE or TEMPORAL_TIMESTAMP
built-in functions.

The period of applicability can also be a self-contained noncorrelated
scalar subquery that is always nonsequenced in the time dimensions
regardless of the temporal qualifier in the DELETE statement.

Note: If a period_expression is specified, the valid-time column
cannot be specified anywhere in the query.

If period_expression is omitted, the period of applicability defaults to
PERIOD'(0001-01-01, UNTIL_CHANGED)' if the target table valid-
time column data type is PERIOD(DATE) or PERIOD '(0001-01-01
00:00:00.000000+00:00, UNTIL_CHANGED)' if the type is
PERIOD(TIMESTAMP).

NONSEQUENCED
VALIDTIME

that rows that participate in the evaluation of the abort condition are
not further evaluated for qualification in the valid-time dimension.

At least one table referenced in the statement must have valid time.

AND a keyword for specifying both a valid-time qualifier and a
transaction-time qualifier.

CURRENT
TRANSACTIONTIME

that only rows that are open participate in the evaluation of the abort
condition.

At least one table referenced in the statement must have transaction
time.

TRANSACTIONTIME AS
OF timestamp_expression

a given time that must overlap the transaction time of a row for that
row to participate in the evaluation of the abort condition.

At least one table referenced in the statement must have transaction
time.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
ROLLBACK (Temporal Form)

136 Temporal Table Support

Omitting a Valid-Time Qualifier
If no temporal qualifier is specified in the valid-time dimension in the statement, the system
uses the temporal qualifier of the session. If none is explicitly specified for the session, the
default of CURRENT is assumed and only rows that are currently valid participate in further
processing.

Omitting a Transaction-Time Qualifier
If no temporal qualifier is specified in the transaction-time dimension in the statement, the
system uses the temporal qualifier of the session. If none is specified for the session, the default
of CURRENT is assumed and only rows that are open participate in further processing.

Temporal Qualifier and Subqueries
The temporal qualifier of a statement applies to all subqueries; no separate temporal qualifier
is allowed for a subquery.

Related Information

NONSEQUENCED
TRANSACTIONTIME

that rows that participate in the evaluation of the abort condition are
not further evaluated for qualification in the transaction-time
dimension.

At least one table referenced in the statement must have transaction
time.

AS OF
date_timestamp_expression

that only rows that overlap date_timestamp_expression in the valid-
time and transaction-time dimension participate in the evaluation of
the abort condition.

WORK an optional keyword.

'message' the text of the message to be returned when the transaction is
terminated.

FROM option the temporal tables that are further qualified in the WHERE clause.

WHERE abort_condition an expression where the result must evaluate to TRUE for Teradata
Database to roll back the transaction.

Syntax Element … Specifies …

For more information on... See...

ROLLBACK statement SQL Data Manipulation Language

FROM clause syntax and usage “FROM Clause (Temporal Form)” on page 154

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 137

SELECT/SELECT ... INTO (Temporal Forms)

Purpose
SELECT returns specific row data from a temporal table in the form of a result table.

SELECT … INTO selects at most one row from a temporal table and assigns the values in that
row to local variables or parameters in stored procedures.

Syntax - SELECT

Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

AND

valid time qualifier

1182A002

transaction time qualifier

AND

transaction time qualifier

valid time qualifier

AS OF date_timestamp_expression

select_statement

1182A016

valid time qualifier

CURRENT VALIDTIME

VALIDTIME AS OF date_timestamp_expression

SEQUENCED
VALIDTIME

NONSEQUENCED

period_expression

1182A017

transaction time qualifier

CURRENT TRANSACTIONTIME

TRANSACTIONTIME AS OF date_timestamp_expression

NONSEQUENCED TRANSACTIONTIME

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

138 Temporal Table Support

Syntax - SELECT … INTO

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Syntax Element … Specifies …

CURRENT VALIDTIME that the query is current in the valid-time dimension.

At least one table referenced in the query, including tables or views or
derived tables mentioned in the FROM clause of a subquery, must be
a table that supports valid time.

1182A001

AND

valid time qualifier

transaction time qualifier

AND

transaction time qualifier

valid time qualifier

AS OF date_timestamp_expression

select_into_statement

1182A016

valid time qualifier

CURRENT VALIDTIME

VALIDTIME AS OF date_timestamp_expression

SEQUENCED
VALIDTIME

NONSEQUENCED

period_expression

1182A017

transaction time qualifier

CURRENT TRANSACTIONTIME

TRANSACTIONTIME AS OF date_timestamp_expression

NONSEQUENCED TRANSACTIONTIME

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 139

VALIDTIME AS OF
date_timestamp_expression

that the query is AS OF in the valid-time dimension.

The expression can be any DATE or TIMESTAMP[(n)] [WITH
TIME ZONE] expression, including parameterized values and built-
in functions such as CURRENT_DATE or TEMPORAL_DATE, that
does not reference any columns. One exception to this rule is that the
expression can be a self-contained noncorrelated scalar subquery. A
noncorrelated scalar subquery is always assumed to be nonsequenced
in the time dimensions regardless of the temporal query qualifier.

If the date_timestamp_expression specifies TEMPORAL_DATE or
TEMPORAL_TIMESTAMP, the values of these built-in functions
evaluate to the time of the transaction.

At least one table referenced in the query, including tables or views or
derived tables mentioned in the FROM clause of a subquery, must be
a table that supports valid time.

VALIDTIME that the query is sequenced in the valid-time dimension.

At least one table referenced in the query, including tables or views or
derived tables mentioned in the FROM clause of a subquery, must be
a table that supports valid time.

A sequenced valid-time query results in a valid-time table. The valid-
time period for each row in the result set is the overlap of original
row valid-time with the period_expression specified in the query. The
valid-time column in the result set a new column named
VALIDTIME, which is automatically appended to the results.

If period_expression is omitted, the period of applicability for a
sequenced query defaults to PERIOD'(0001-01-01,
UNTIL_CHANGED)' where the data type is PERIOD(DATE) or
PERIOD'(0001-01-01 00:00:00.000000+00:00,
UNTIL_CHANGED)’ where the data type is
PERIOD(TIMESTAMP). In these cases, the valid-time periods of the
rows in the result set matches the valid-time periods of the original
rows in the queried temporal table.

SEQUENCED
VALIDTIME

NONSEQUENCED
VALIDTIME

that the query is nonsequenced in the valid-time dimension. The
system does not associate any special meaning to the valid-time
column. The query can use the valid-time column like any other
column.

At least one table referenced in the query, including tables or views or
derived tables mentioned in the FROM clause of a subquery, must be
a table that supports valid time.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

140 Temporal Table Support

period_expression the period of applicability for the sequenced or nonsequenced query.

For a sequenced query, the period of applicability can be any period
expression, including parameterized values and built-in functions
such as TEMPORAL_DATE or TEMPORAL_DATE, that does not
reference any columns. One exception to this rule is that
period_expression can be a self-contained noncorrelated scalar
subquery. A noncorrelated scalar subquery is always assumed to be
nonsequenced in the time dimensions regardless of the temporal
query qualifier.

For a nonsequenced query, the period of applicability can either be a
period value expression that does not reference any column names or
an alias name to a period column or period expression.

Note: If a period_expression is specified, the valid-time column
cannot be specified anywhere in the query.

When an SELECT … INTO statement specifies period_expression,
the number of elements in the INTO target list (that specifies the
variables into which the selected values must be saved) must be one
more than the projected elements in the select list. This additional
target element saves the resulting period of validity of the output
row.

AND a keyword for specifying both a valid-time qualifier and a
transaction-time qualifier.

CURRENT
TRANSACTIONTIME

that the query is current in the transaction-time dimension.

At least one table referenced in the query, including tables or views or
derived tables mentioned in the FROM clause of a subquery, must be
a table that supports transaction time.

TRANSACTIONTIME AS
OF timestamp_expression

that the query is AS OF in the transaction-time dimension.

At least one table referenced in the query, including tables or views or
derived tables mentioned in the FROM clause of a subquery, must be
a table that supports transaction time.

NONSEQUENCED
TRANSACTIONTIME

that the query is nonsequenced in the transaction-time dimension.

In a nonsequenced query, the system does not associate any special
meaning to the transaction-time column. The query can use the
transaction-time column like any other column.

At least one table referenced in the query, including tables or views or
derived tables mentioned in the FROM clause of a subquery, must be
a table that supports transaction time.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 141

Usage Notes
A temporal qualifier can be specified for the outermost SELECT statement, in a derived table,
view, join index and other DDL statements.

A temporal qualifier cannot be specified in a subquery. A subquery inherits the temporal
qualifier of its parent query, with one exception. When the qualifier is NONSEQUENCED
VALIDTIME period_expression, the subquery does not inherit the specified period of
applicability.

The absence of a valid-time qualifier in the statement makes the query current in the valid-
time dimension if no session valid-time qualifier is available. The absence of a transaction-
time qualifier in the statement makes the query current in the transaction-time dimension if
no session transaction-time qualifier is available.

The following table provides the meanings for the various combinations of qualifiers for the
temporal form of a query.

AS OF
date_timestamp_expression

the query is an AS OF query in both the valid-time and transaction-
time dimensions. All tables with valid time referenced in the query
use the specified qualifier to qualify in the valid-time dimension.
Similarly, all tables with transaction time referenced in the query use
the qualifier to qualify in the transaction-time dimension.

At least one table referenced in the query must be a temporal table. If
only valid-time tables and nontemporal tables are referenced, the AS
OF qualifier is equivalent to specifying VALIDTIME AS OF
date_timestamp_expression. If only transaction-time tables and
nontemporal tables are referenced, the AS OF qualifier is equivalent
to specifying TRANSACTIONTIME AS OF
date_timestamp_expression. If both valid-time and transaction-time
tables are referenced, the AS OF qualifier is equivalent to specifying
VALIDTIME AS OF date_timestamp_expression AND
TRANSACTIONTIME AS OF date_timestamp_expression.

select_statement conventional SELECT statement syntax, with temporal table support
enhancements to the FROM clause.

For details on FROM, see “FROM Clause (Temporal Form)” on
page 154.

select_into_statement conventional SELECT … INTO statement syntax, with temporal
table support enhancements to the FROM clause.

For details on FROM, see “FROM Clause (Temporal Form)” on
page 154.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

142 Temporal Table Support

Temporal SELECT and Options Meaning

• SELECT

• CURRENT VALIDTIME SELECT

• CURRENT TRANSACTIONTIME SELECT

• CURRENT VALIDTIME AND CURRENT
TRANSACTIONTIME SELECT

Query is current in valid time and
current in transaction time.

• VALIDTIME SELECT

• SEQUENCED VALIDTIME SELECT

• VALIDTIME AND CURRENT
TRANSACTIONTIME SELECT

• SEQUENCED VALIDTIME AND CURRENT
TRANSACTIONTIME SELECT

Query is sequenced in valid time and
current in transaction time.

• VALIDTIME period_expression SELECT

• SEQUENCED VALIDTIME
period_expression SELECT

• VALIDTIME period_expression AND
CURRENT TRANSACTIONTIME SELECT

• SEQUENCED VALIDTIME
period_expression AND CURRENT
TRANSACTIONTIME SELECT

Query is sequenced in valid time and
current in transaction time. The rows of
interest in the valid-time dimension are
all those rows whose valid time overlaps
the specified period_expression.

• NONSEQUENCED VALIDTIME SELECT

• NONSEQUENCED VALIDTIME AND CURRENT
TRANSACTIONTIME SELECT

Query is nonsequenced in valid time and
current in transaction time.

• NONSEQUENCED VALIDTIME
period_expression SELECT

• NONSEQUENCED VALIDTIME
period_expression AND CURRENT
TRANSACTIONTIME SELECT

Query is nonsequenced in valid time and
current in transaction time. The result of
the query is a valid-time result with the
valid-time value set as the specified
period_expression.

• VALIDTIME AS OF
date_timestamp_expression SELECT

• VALIDTIME AS OF
date_timestamp_expression AND
CURRENT TRANSACTIONTIME SELECT

Query is AS OF in valid time and current
in transaction time.

• NONSEQUENCED TRANSACTIONTIME SELECT

• CURRENT VALIDTIME AND NONSEQUENCED
TRANSACTIONTIME SELECT

Query is nonsequenced in transaction
time and current in valid time.

• VALIDTIME AND NONSEQUENCED
TRANSACTIONTIME SELECT

• SEQUENCED VALIDTIME AND
NONSEQUENCED TRANSACTIONTIME SELECT

Query is nonsequenced in transaction
time and sequenced in valid time.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 143

• VALIDTIME period_expression AND
NONSEQUENCED TRANSACTIONTIME SELECT

• SEQUENCED VALIDTIME
period_expression AND NONSEQUENCED
TRANSACTIONTIME SELECT

Query is nonsequenced in transaction
time and sequenced in valid time. The
rows of interest in the tables with valid
time support are those rows whose valid
time overlaps the specified
period_expression.

NONSEQUENCED VALIDTIME AND NONSEQUENCED
TRANSACTIONTIME SELECT

Query is nonsequenced in transaction
time and nonsequenced in valid time.

NONSEQUENCED VALIDTIME period_expression
AND NONSEQUENCED TRANSACTIONTIME SELECT

Query is nonsequenced in transaction
time and nonsequenced in valid time.
The result of the query is a valid-time
result with the valid-time value set to the
specified period_expression.

VALIDTIME AS OF date_timestamp_expression
AND NONSEQUENCED TRANSACTIONTIME SELECT

Query is nonsequenced in transaction
time and AS OF in valid time.

• TRANSACTIONTIME AS OF
timestamp_expression SELECT

• CURRENT VALIDTIME AND
TRANSACTIONTIME AS OF
timestamp_expression SELECT

Query is AS OF in transaction time and
current in valid time.

• VALIDTIME AND TRANSACTIONTIME AS OF
timestamp_expression SELECT

• SEQUENCED VALIDTIME AND
TRANSACTIONTIME AS OF
timestamp_expression SELECT

Query is AS OF in transaction time and
sequenced in valid time.

• VALIDTIME period_expression AND
TRANSACTIONTIME AS OF
timestamp_expression SELECT

• SEQUENCED VALIDTIME
period_expression AND
TRANSACTIONTIME AS OF
timestamp_expression SELECT

Query is AS OF in transaction time and
sequenced in valid time. The rows of
interest in the valid-time tables are those
rows whose valid time overlaps the
specified period_expression.

NONSEQUENCED VALIDTIME AND
TRANSACTIONTIME AS OF
timestamp_expression SELECT

Query is AS OF in transaction time and
nonsequenced in valid time.

NONSEQUENCED VALIDTIME period_expression
AND TRANSACTIONTIME AS OF
timestamp_expression SELECT

Query is AS OF in transaction time and
nonsequenced in valid time. The result
of the query is a valid-time result with
the valid-time value in the rows set to
period_expression value.

• VALIDTIME AS OF
date_timestamp_expression AND
TRANSACTIONTIME AS OF
timestamp_expression SELECT

• AS OF date_timestamp_expression
SELECT

Query is AS OF in transaction time and
AS OF in valid time.

Temporal SELECT and Options Meaning

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

144 Temporal Table Support

Asterisks in Select Lists
For non-temporal tables, an asterisk (*) in a select list causes all table columns to be returned
by the SELECT statement. For temporal tables with any qualifier other than nonsequenced,
only the non-temporal columns are returned. To have temporal columns returned with
SELECT statements that use the asterisk to return all non-temporal columns, preface the
asterisk with the table name and a period, and follow the asterisk with a comma, then list the
temporal columns to be returned with the non-temporal columns.

Examples
SELECT *
FROM policy;

Policy_ID Customer_ID Policy_Type Policy_Details
--------- ----------- ----------- ------------------

541077 766492008 AU STD-CH-344-YXY-00
541008 246824626 AU STD-CH-345-NXY-00
541145 616035020 AU STD-CH-348-YXN-01

SELECT policy.*, validity
FROM Policy;

Policy_ID Customer_ID Policy_Type Policy_Details Validity
--------- ----------- ----------- ----------------- ------------------------
541077 766492008 AU STD-CH-344-YXY-00 ('09/12/21', '99/12/31')
541008 246824626 AU STD-CH-345-NXY-00 ('09/10/01', '99/12/31')
541145 616035020 AU STD-CH-348-YXN-01 ('09/12/03', '10/12/01')

Current Valid-Time Queries
A current valid-time query on a table with valid time considers only open rows where the
period of validity overlaps with TEMPORAL_DATE or TEMPORAL_TIMESTAMP in the
valid-time dimension. Such rows are called current rows of a table with valid time.

Current valid-time queries on tables with valid time produce snapshot tables as result sets.

The following rules apply to current valid-time queries on valid-time tables.

• If the session valid-time qualifier is implicitly or explicitly set to current, a conventional
SELECT statement that does not specify a temporal qualifier is current in the valid-time
dimension for a valid-time table. If the query references a valid-time table, the SELECT
can specify an optional CURRENT VALIDTIME.

• A current query can reference the valid-time column anywhere in the query. The valid-
time column is treated as a conventional Period column. All conditions, including those
specified on valid-time columns, apply only to the current rows. Temporal column
references can appear in conditions to further filter the output.

• An asterisk (*) in the projection list includes nontemporal columns only.

• Current query processing is as follows:

a Extract the current rows of each of the valid-time tables specified in the query and treat
the query as if it is specified on a nontemporal table. The resulting table, regardless of
whether the projection list includes the valid-time column, is a nontemporal table
without the valid-time dimension.

b Execute the query as if it were a conventional query that was issued on tables without
valid time.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 145

Because current query processing considers a snapshot of valid time, all operations, such as
joins and aggregations, are the same as they are for conventional queries.

A current query supports the join of two temporal tables of the same or differing valid-time
granularities.

If the query involves a bitemporal or transaction-time table, refer to the following topics for
additional information that applies to the transaction-time dimension:

• “Current Transaction-Time Queries” on page 150

• “As Of Transaction-Time Queries” on page 151

• “Nonsequenced Transaction-Time Queries” on page 151

Caution: CURRENT DML modifications can cause serializability issues for concurrent transactions.
See Appendix C: “Potential Concurrency Issues with Current Temporal DML” for
information on avoiding these issues.

Changing the Behavior of CURRENT VALIDTIME SELECT
CURRENT VALIDTIME SELECT statements normally qualify rows for selection by choosing
rows where the valid time overlaps TEMPORAL_TIMESTAMP. Within the transaction that
contains the SELECT statement, TEMPORAL_TIMESTAMP reflects the time the transaction
was begun, and remains fixed throughout the transaction.

For lengthy transactions this behavior may not be desirable, because rows inserted or changed
after the transaction is begun would not be selected. Such rows would have a valid time period
that begins after TEMPORAL_TIMESTAMP, and would therefore be considered future rows,
not current rows. For example, if another user adds a row to a table after a transaction is
begun, and the transaction performs a CURRENT VALIDTIME SELECT, the new row would
not be selected.

The following statement changes the behavior of CURRENT VALIDTIME SELECT
statements to qualify rows for selection according to whether the valid time of the row
overlaps CURRENT_TIMESTAMP. This allows the SELECT to match rows with the latest
timestamps.

Because CURRENT_TIMESTAMP is not fixed at the time the transaction was begun, this
causes CURRENT VALIDTIME SELECT statements to match even the latest rows that were
added or changed after the transaction containing the SELECT statement was begun.

This setting affects SELECT statements and subqueries, derived tables, and views within those
SELECT statements. It has no effect on other types of DML, or on subqueries, derived tables,
and views within those DML statements. The setting is in effect until it is explicitly disabled
using the NOT form of the statement.

Note: Cached SELECT statements are not affected by this diagnostic statement.

DIAGNOSTIC SET CURRENT VALIDTIME SELECT AS LATEST ON FOR SESSION

NOT

1182A047

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

146 Temporal Table Support

As Of Valid-Time Queries
When the AS OF clause is specified as a temporal qualifier either explicitly in the statement or
implicitly as a session temporal qualifier, its usage covers the entire query. (The AS OF clause
can also be specified in the FROM clause, but such usage covers only the corresponding table
in the FROM clause. For details, see “FROM Clause (Temporal Form)” on page 154.)

The following rules apply to As Of valid-time queries on valid-time tables:

• As Of valid-time queries on valid-time tables produce snapshot tables as results.

• When the AS OF temporal qualifier is specified in the valid-time dimension, it applies to
all valid-time tables in the query. The valid-time columns of the valid-time tables are in the
scope of the query and they can be used anywhere in the query block, including the
WHERE condition and JOIN condition.

• The behavior of a query with an AS OF temporal qualifier is as if a current query was
issued at the specified AS OF time. However, a current query reads only valid rows and an
As Of query can read rows that are no longer valid.

• Specifying the AS OF qualifier in the valid-time dimension serves as an additional
qualification criteria that only rows with a period of validity that overlaps the specified
time are eligible to participate in the query. Thereafter, the query treats all the underlying
tables as non-valid-time tables. Operations such as joins, aggregations, and set operations
are not impacted by this qualifier.

• The data type of date_time_expression must be comparable with the element type of the
valid-time columns. The following rules apply.

Data Type of
date_time_expression

Element Type of
Temporal Column Details

DATE DATE The data types are comparable.

DATE TIMESTAMP[(n)]
[WITH TIME ZONE]

The DATE value is cast to TIMESTAMP(n)
and used for qualification. The time portion
of the converted timestamp value is 00:00:00
(hh:mi:ss) in the session time zone. The row
is qualified based on the UTC timestamp
values.

TIMESTAMP[(n)]
[WITH TIME ZONE]

DATE The temporal column value is cast to
TIMESTAMP and used for qualification. The
time portion of the converted timestamp
value is 00:00:00 (hh:mi:ss) in the session
time zone. The row is qualified based on the
UTC timestamp values.

TIMESTAMP[(n)]
[WITH TIME ZONE]

TIMESTAMP[(m)]
[WITH TIME ZONE]

The timestamp value with coarser precision
is converted to the finer precision and then
the rows are qualified.

Any other data type DATE Teradata Database reports an error.

TIMESTAMP[(n)]
[WITH TIME ZONE]

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 147

If the query involves a bitemporal or transaction-time table, refer to the following topics
for additional information that applies to the transaction-time dimension:

• “Current Transaction-Time Queries” on page 150

• “As Of Transaction-Time Queries” on page 151

• “Nonsequenced Transaction-Time Queries” on page 151

Sequenced Valid-Time Queries
Sequenced temporal queries allow the extraction of the past, current, or future sequence of
states of a temporal table. A query that is sequenced in valid time spans those rows with a
period of validity that overlaps the period of applicability of the query. Additional conditions
can be specified on the valid-time column to further filter the rows as required.

A query that is sequenced in valid time extracts the states of the tables at each point of time as
specified in the period of applicability. The resulting table is a valid-time table. The query is
over one or more valid-time tables and produces a valid-time result.

Rows having NULL in the valid-time column are not in the result.

The result set includes a new column named VALIDTIME, which is automatically appended
by the system. VALIDTIME shows the valid time of the rows in the result set of the query. This
is different from the valid times that were originally defined for the rows. Because a sequenced
query specifies a particular time period of applicability, the period of validity of the results is
limited by that period of applicability. Therefore, the valid time of each row in the result set is
the intersection of the period of applicability of the query with the periods of validity of the
qualified rows.

Example
SEQUENCED VALIDTIME PERIOD '(2009-01-01, 2009-12-31)'
SELECT *
FROM Policy;

Policy_ID Customer_ID Policy_Type Policy_Details VALIDTIME
--------- ----------- ----------- ------------------- ------------------------

541077 766492008 AU STD-CH-344-YXY-00 ('09/12/21', '09/12/31')
541008 246824626 AU STD-CH-345-NXY-00 ('09/10/01', '09/12/31')
541145 616035020 AU STD-CH-348-YXN-01 ('09/12/03', '09/12/31')

Although VALIDTIME is the valid-time column of the result set, Validity is the valid-time
column of the originally queried Policy table. To show the Validity column in the results
requires a subquery, because the valid-time column name cannot appear anywhere in a query
that includes a PA. Use a sequenced validtime subquery that does not specify a PA. Because the
Validity column is not the valid-time column of the derived table, it can be retrieved using a
sequenced outer query that includes a PA:

Example
SEQUENCED VALIDTIME PERIOD '(2009-01-01, 2009-12-31)'
SELECT Policy_ID, Customer_ID, Validity FROM (
 SEQUENCED VALIDTIME SELECT Policy.*, Validity
 FROM Policy) AS my_derived_table;

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

148 Temporal Table Support

Policy_ID Customer_ID Validity VALIDTIME
----------- ----------- ----------------------- ------------------------

541077 766492008 ('09/12/21', '99/12/31') ('09/12/21', '09/12/31')
541008 246824626 ('09/10/01', '99/12/31') ('09/10/01', '09/12/31')
541145 616035020 ('09/12/03', '10/12/01') ('09/12/03', '09/12/31')

Comparing the Validity and VALIDTIME columns demonstrates that the valid-time period of
the result set is the intersection of the valid-time period in the original Policy table Validity
column with the PA specified in the sequenced select statement.

This example uses the SELECT * asterisk notation in combination with explicit specification
of a temporal column. For more information on the asterisk see “Asterisks in Select Lists” on
page 144

Other clauses of the SELECT statement, such as WHERE, cannot reference the new
VALIDTIME column, and VALIDTIME cannot be used as an alias for any other projected
columns.

If a view or a derived table results in a valid-time table, it is treated like any other valid-time
table specified in the query. Otherwise, it is treated like a nontemporal table.

The sequenced form of a temporal query is limited to a simple select from a single valid-time
table or a simple select with inner joins from multiple tables. A noncorrelated scalar subquery
can be used in the temporal query.

The following are not supported for sequenced queries:

• Outer joins

• Set operations

• Aggregations, ordered analytic functions

• Subqueries other than noncorrelated scalar subqueries

• WITH, WITH RECURSIVE, TOP n, GROUP BY or DISTINCT

The following rules apply to sequenced inner joins:

• The term row or rows mentioned in the context of sequenced inner joins implies all the
rows of a table where the period of validity overlaps with the period of applicability of the
query and satisfies any specified single table conditions.

• The joined row contains the projected columns in the specified order and a valid-time
column whose value is set to the result of the intersection of the period of applicability, the
period of validity of the left row, and the period of validity of the right row.

• If the valid-time column of each table involved in the join has the same granularity as the
period of applicability, the granularity of the resulting period of validity is the same as the
granularity of the period of applicability. Otherwise, the granularity of the result period of
validity is the finest amongst them and each valid-time column is implicitly converted to
the finest valid-time granularity before the join is performed.

For example, consider a sequenced join with a PERIOD(DATE) period of applicability, a
table with a PERIOD(TIMESTAMP(3)) valid-time column, and a table with a
PERIOD(TIMESTAMP(5)) valid-time column. The resulting VALIDTIME column has a
PERIOD(TIMESTAMP(5)) data type.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 149

• For a sequenced inner join, the left row is joined with a matching row from the right table
only if the periods of validity of the rows overlap.

A sequenced query with an ORDER BY clause may specify ordering on the resulting
VALIDTIME column. To specify this column in the ORDER BY clause, use the VALIDTIME
keyword or use its name delimited by double quotation marks ("VALIDTIME"). If the
ordering clause does not specify VALIDTIME, the resulting VALIDTIME column is
automatically made a part of the ORDER BY list as the last element in the list with ASC
default ordering

If the query involves a bitemporal or transaction-time table, refer to the following topics for
additional information that applies to the transaction-time dimension:

• “Current Transaction-Time Queries” on page 150

• “As Of Transaction-Time Queries” on page 151

• “Nonsequenced Transaction-Time Queries” on page 151

Nonsequenced Valid-Time Queries
A nonsequenced query operates on all the valid-time states of the underlying table (history,
current, future) simultaneously. Such a query is very powerful because it can link across states.

Use a nonsequenced valid-time query to ignore the time-varying nature of a table or when the
computation of a single state of the result table utilizes the information from a state at a
different time.

A nonsequenced query treats the valid-time column as if it is simply a regular column that
contains a period value. The query can specify this column anywhere in the query, just as any
column.

A nonsequenced query can select rows with NULL in the valid-time column. None of the
other temporal SELECT qualifiers will select such rows.

If the NONSEQUENCED VALIDTIME qualifier does not specify period_expression, the
nonsequenced query on a valid-time table results in a non-valid-time table.

If period_expression is specified, the result of the query is a valid-time table. However, the
valid-time column of the results table is not the same column as the valid-time column in the
queried table. The results table includes an additional column named VALIDTIME, that
serves as the valid-time column. The value of VALIDTIME in each row is the period of
applicability that was specified in the query. This form of a nonsequenced valid-time query
can be used to convert a nontemporal table to a table with valid time. Such a query is not
permitted in a request that specifies a SET operator (UNION, INTERSECT and MINUS).

If the projection list is *, the valid-time column is projected with all other non-valid-time
columns.

A reference to VALIDTIME in the same select block in other clauses such as WHERE
condition follows the existing resolution rules, and cannot reference the system-projected
column. For example, if none of the referenced tables has a column named VALIDTIME an
error results. No column in the projection list can use VALIDTIME as an alias.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

150 Temporal Table Support

If an alias name is specified as the period of applicability, the alias name must be in the scope
of the select (projection) list and unambiguously referenced in the projection list.

If the query involves a bitemporal or transaction-time table, refer to the following topics for
additional information that applies to the transaction-time dimension:

• “Current Transaction-Time Queries” on page 150

• “As Of Transaction-Time Queries” on page 151

• “Nonsequenced Transaction-Time Queries” on page 151

Current Transaction-Time Queries
A query that specifies CURRENT TRANSACTIONTIME or a query that omits a temporal
qualifier and the session does not set a session temporal qualifier is a current query in the
transaction-time dimension if the query references a temporal table with transaction time.

A current query on a temporal table with transaction time considers only those rows in the
table that are open in the transaction-time dimension. The result is a snapshot table without
transaction time.

References to a transaction-time column can appear anywhere in the query that references to a
non-transaction-time column can appear. A transaction-time column is treated as a
conventional Period column on the selected current rows whenever it is used. Using this
column in conditions can further filter the output over the current rows.

A projection list of * indicates all nontemporal columns only.

A current transaction-time query can join a table with transaction time to a table without
transaction time.

The following rules apply to current transaction-time queries on transaction-time tables:

• Current query processing is as follows:

a Extract the current rows of each of the transaction-time tables specified in the query
and treat the query as if the current snapshot equivalent table is specified in the query.
The resulting table, regardless of whether the projection list includes the transaction-
time column, is a nontemporal table without the transaction-time dimension.

b Execute the query as if it were a conventional query that was issued on nontemporal
tables.

If the query involves a bitemporal or valid-time table, refer to the following topics for
additional information that applies to the valid-time dimension:

• “Current Valid-Time Queries” on page 144

• “As Of Valid-Time Queries” on page 146

• “Sequenced Valid-Time Queries” on page 147

• “Nonsequenced Valid-Time Queries” on page 149

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 151

As Of Transaction-Time Queries
The data type of date_time_expression must be comparable with TIMESTAMP(6) WITH
TIME ZONE. The following rules apply.

References to a transaction-time column can appear anywhere in the scope of the query and
anywhere in the query block, including a WHERE condition or JOIN condition.

The AS OF qualifier serves as an additional qualification criteria such that only rows with a
transaction-time value that overlaps the given time are eligible to participate in the query.
Thereafter, the query treats all the underlying tables as non-transaction-time tables.
Operations such as joins, aggregation, set operations, and so forth are not impacted by this
qualifier.

If date_timestamp_expression in the transaction-time dimension uses TEMPORAL_DATE or
TEMPORAL_TIMESTAMP, the value of the built-in function evaluates to the time of the
transaction. If date_timestamp_expression is a value that is in the future, the qualifier is as if it
is current in the transaction-time dimension.

If the query involves a bitemporal or valid-time table, refer to the following topics for
additional information that applies to the valid-time dimension:

• “Current Valid-Time Queries” on page 144

• “As Of Valid-Time Queries” on page 146

• “Sequenced Valid-Time Queries” on page 147

• “Nonsequenced Valid-Time Queries” on page 149

Nonsequenced Transaction-Time Queries
Nonsequenced transaction-time queries on transaction-time tables produce nontemporal
tables as a result. Use the NONSEQUENCED TRANSACTIONTIME qualifier to query and
compare across all transaction-time states simultaneously.

The nonsequenced query treats a transaction-time table as a table with a regular Period
column with no special temporal semantics. References to the transaction-time column can
appear anywhere in the query.

Data Type of date_time_expression Details

DATE The DATE value is cast to TIMESTAMP(6) WITH TIME
ZONE and used for qualification. The time portion of the
converted timestamp value is 00:00:00 (hh:mi:ss) in the
session time zone. The row is qualified based on the UTC
timestamp values.

TIMESTAMP[(n)]
[WITH TIME ZONE]

If the timestamp value has a coarser precision, it is
converted to TIMESTAMP(6) WITH TIME ZONE and
then the rows are qualified.

Any other data type Teradata Database reports an error.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

152 Temporal Table Support

If the projection list specifies *, the transaction-time column is also projected.

If the query involves a bitemporal or valid-time table, refer to the following topics for
additional information that applies to the valid-time dimension:

• “Current Valid-Time Queries” on page 144

• “As Of Valid-Time Queries” on page 146

• “Sequenced Valid-Time Queries” on page 147

• “Nonsequenced Valid-Time Queries” on page 149

Temporal Queries in Set Operations
When temporal tables are referenced in queries involving set operations (UNION,
INTERSECT, MINUS, and EXCEPT) all queries inherit the temporal qualifier from the
topmost query.

If temporal qualifications are required at the level of individual queries, add them to the
FROM clause or place the query with the required qualification in a derived table.

Example
The following query would yield an error:

VALIDTIME AS OF DATE '2009-05-06'
SELECT *
FROM v1

MINUS

VALIDTIME AS OF DATE '2009-05-05'
SELECT *
FROM v1

ORDER BY 1;

The following query would run properly to yield the desired results:

SELECT *
FROM v1 VALIDTIME AS OF DATE '2009-05-06'

MINUS

SELECT *
FROM v1 VALIDTIME AS OF DATE '2009-05-05'

ORDER BY 1;

EXPLAIN Request Modifier
You can use the EXPLAIN request modifier to report temporal semantic operations. The
explain text provides the type of qualifier applied on the temporal tables being operated upon.
It reports whether the query is current, sequenced, or nonsequenced.

Here is an example of the EXPLAIN report for a current query on a bitemporal, PPI table:

EXPLAIN SELECT * FROM Policy;

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
SELECT/SELECT ... INTO (Temporal Forms)

Temporal Table Support 153

Explanation

 1) First, we lock a distinct DBASE."pseudo table" for read on a
 RowHash to prevent global deadlock for DBASE.Policy.
 2) Next, we lock DBASE.Policy for read.
 3) We do an all-AMPs RETRIEVE step from a single partition of
 DBASE.Policy (with temporal qualifier as "CURRENT
 VALIDTIME AND CURRENT TRANSACTIONTIME") with a condition of (
 "((BEGIN(DBASE.Policy.Validity))<= DATE '2010-02-18')
 AND (((END(DBASE.Policy.Policy_Duration))= TIMESTAMP
 '9999-12-31 23:59:59.999999+00:00') AND
 ((END(DBASE.Policy.Validity))> DATE '2010-02-18'))")
 into Spool 1 (group_amps), which is built locally on the AMPs.
 The size of Spool 1 is estimated with no confidence to be 1 row (
 85 bytes). The estimated time for this step is 0.03 seconds.
 4) Finally, we send out an END TRANSACTION step to all AMPs involved
 in processing the request.
 -> The contents of Spool 1 are sent back to the user as the result of
 statement 1. The total estimated time is 0.03 seconds.

Time Series Expansion Support
Time series expansion is indicated using the EXPAND ON clause for SELECT statements, and
provides the ability to create a regular time series of rows based on period values in the input
rows. The intent is to expand a period column and produce value equivalent rows, one for
each granule in a given period of interest.

For example, suppose an application uses PERIOD(DATE) values to record inventory data of
slowly moving items. A SELECT statement can use the EXPAND ON clause to expand the
period values by one-week intervals to get the moving average by week of the inventory cost
for a specified period of interest.

To expand the system-generated VALIDTIME column that is automatically appended to the
result set of a SEQUENCED VALIDTIME query, the EXPAND ON clause can include the
VALIDTIME column name in the expand expression.

Related Information

For more information on... See...

SELECT statement SQL Data Manipulation Language

SELECT ... INTO statement SQL Stored Procedures and Embedded SQL

EXPAND ON clause SQL Data Manipulation Language

querying temporal tables “Querying Temporal Tables” on page 191

types of temporal table queries “Temporal Table Queries” on page 25

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
FROM Clause (Temporal Form)

154 Temporal Table Support

FROM Clause (Temporal Form)

Purpose
Defines the set of tables, derived tables, or views that are referenced by the SELECT request.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

as of
FROM

A

A

table_name
correlation_name

AS

as of
(subquery) derived_table_name

AS
((

,

,

column_name

as of
joined_table ON search_condition

as of
joined_table CROSS JOIN

JOIN
INNER

LEFT

RIGHT OUTER

FULL

single_table

1182A043

as of

1182A044

AS OF date_timestamp_expression

(date_timestamp_expression)

valid time as of

transaction time as ofAND

transaction time as of

valid time as ofAND

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
FROM Clause (Temporal Form)

Temporal Table Support 155

Syntax Element … Specifies …

table_name the name of a base table, temporal table, derived table, or
view.

VALIDTIME AS OF
date_timestamp_expression

that the retrieval of rows from table_name only includes
rows where the period of validity overlaps the specified AS
OF date or timestamp.

The data type of date_timestamp_expression must be
comparable with the element type of the valid-time column
and the expression must not reference any columns.

VALIDTIME AS OF
(date_timestamp_expression)

AND a keyword for specifying both a valid-time AS OF qualifier
and a transaction-time AS OF qualifier.

TRANSACTIONTIME AS OF
date_timestamp_expression

that the retrieval of rows from table_name only includes
rows where the transaction-time period in the rows overlaps
the specified AS OF date or timestamp.

The data type of date_timestamp_expression must be
comparable with the element type of the transaction-time
column and the expression must not reference any columns.

TRANSACTIONTIME AS OF
(date_timestamp_expression)

AS OF date_timestamp_expression a date or timestamp value that qualifies the retrieval of rows
from table_name in all existing time dimensions.

The data type of date_timestamp_expression must be
comparable with the element types of all temporal columns
and the expression must not reference any columns.

AS OF (date_timestamp_expression)

[AS] correlation_name an alias for the table that is referenced by table_name.

(subquery) the subquery that defines the derived table contents.

[AS] derived_table_name an assigned name for the temporary derived table.

column_name a list of column names or expressions listed in the subquery.
Allows referencing subquery columns by name.

joined_table either a single table name with optional alias name, or a
joined table, indicating nested joins.

Note: AS OF is valid only when joined_table is a single table
name with optional alias name.

valid time as of

1182A045

VALIDTIME AS OF date_timestamp_expression

(date_timestamp_expression)

transaction time as of

1182A046

TRANSACTIONTIME AS OF date_timestamp_expression

(date_timestamp_expression)

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
FROM Clause (Temporal Form)

156 Temporal Table Support

AS OF Qualifier Usage Notes
Use the AS OF qualifier in the FROM clause to view data as a snapshot at any point in time.

You can apply the AS OF qualifier to valid-time and transaction-time dimensions
independently.

CROSS JOIN a cross join.

A CROSS JOIN is an unconstrained, or extended, Cartesian
join.

Cross joins return the concatenation of all rows from the
tables specified in its arguments. Two joined tables can be
cross joined.

single_table the name of a single base or derived table or view on a single
table to be cross joined with joined_table.

[INNER] JOIN a join in which qualifying rows from one table are combined
with qualifying rows from another table according to some
join condition.

This is the default join type.

LEFT OUTER JOIN a left outer join.

LEFT indicates the table that was listed first in the FROM
clause.

In a LEFT OUTER JOIN, matching rows as well as the rows
from the left table that are not returned in the result of the
inner join of the two tables, are returned in the outer join
result and extended with nulls.

RIGHT OUTER JOIN a right outer join.

RIGHT indicates the table that was listed second in the
FROM clause.

In a RIGHT OUTER JOIN, matching rows as well as the
rows from the right table that are not returned in the result
of the inner join of the two tables, are returned in the outer
join result and extended with nulls.

FULL OUTER JOIN a full outer join.

FULL OUTER JOIN returns rows from both tables.

In a FULL OUTER JOIN, matching rows as well as rows
from both tables that have not been returned in the result of
the inner join, are returned in the outer join result and
extended with nulls.

ON search_condition one or more conditional expressions that must be satisfied
by the result rows.

An ON condition clause is required for each INNER JOIN or
OUTER JOIN specified in an outer join expression.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
FROM Clause (Temporal Form)

Temporal Table Support 157

Valid-Time AS OF
The valid-time AS OF qualifier can only follow a valid-time table or a view or derived table.

A valid-time AS OF qualifier in the FROM clause overrides the temporal qualifier on valid
time specified explicitly at the query level or implicitly by a session attribute for the specified
table, view, or derived table only.

The valid-time column of the AS OF table, view, or derived table can appear anywhere in the
query block. For example, the valid-time column can appear as a WHERE condition or JOIN
condition.

Transaction-Time AS OF
The transaction-time AS OF qualifier can only follow a transaction-time table or a view or
derived table.

A transaction-time AS OF qualifier in the FROM clause overrides the temporal qualifier on
transaction time specified explicitly at the query level or implicitly by a session attribute for
the specified table, view, or derived table only.

The transaction-time column of the AS OF table, view, or derived table can appear anywhere
in the query block. For example, the transaction-time column can appear as a WHERE
condition or JOIN condition.

Restrictions on AS OF for DELETE and UPDATE
The table associated with an AS OF qualifier in the FROM clause of an UPDATE or DELETE
statement cannot be the table that the DELETE or UPDATE statement is modifying.

Related Information

For more information on... See...

FROM clause SQL Data Manipulation Language

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

158 Temporal Table Support

UPDATE (Temporal Form)

Purpose
Modifies column values in existing rows of a temporal table.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Syntax Element … Specifies …

CURRENT
VALIDTIME

that the update is current in the valid-time dimension if the target table
supports valid time.

Note: A current UPDATE affects only current rows. Future rows with valid-
time periods that do not overlap TEMPORAL_TIMESTAMP or
TEMPORAL_DATE will not be updated.

If the target table does not support valid time, at least one of the referenced
tables must be a table with valid time. The update is not a current update.
The CURRENT VALIDTIME qualifier is used to qualify rows from the
referenced tables in the valid-time dimension. In the transaction-time
dimension, open rows qualify.

If the session temporal qualifier is not set and the temporal qualifier is
omitted from the UDPATE statement, the default qualifier is CURRENT
VALIDTIME.

Caution: CURRENT DML modifications can cause serializability issues for
concurrent transactions. See Appendix C: “Potential Concurrency
Issues with Current Temporal DML” for information on avoiding
these issues.

1182A007

CURRENT VALIDTIME

SEQUENCED
VALIDTIME

update_statement

NONSEQUENCED VALIDTIME

NONTEMPORAL

period_expression

;

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

Temporal Table Support 159

VALIDTIME that the update is sequenced in the valid-time dimension if the target table
supports valid time.

If the target table does not support valid time, at least one of the referenced
tables must be a table with valid time. The update is not a sequenced update.
The VALIDTIME or SEQUENCED VALIDTIME qualifier is used to qualify
rows from the referenced tables in the valid-time dimension. In the
transaction-time dimension, open rows qualify.

A sequenced update on a target table that supports valid time sets the valid-
time value to the intersection of the valid-time column value and
period_expression.

SEQUENCED
VALIDTIME

period_expression the period of applicability for the sequenced update.

The period of applicability must be a Period constant expression that does
not reference any columns, but can reference parameterized values and the
TEMPORAL_DATE or TEMPORAL_TIMESTAMP built-in functions.

The period of applicability can also be a self-contained noncorrelated scalar
subquery that is always nonsequenced in the time dimensions regardless of
the temporal qualifier in the UPDATE statement.

Note: If a period_expression is specified, the valid-time column cannot be
specified anywhere in the query.

If period_expression is omitted, the period of applicability defaults to
PERIOD'(0001-01-01, UNTIL_CHANGED)' for a PERIOD(DATE) valid-
time column or PERIOD '(0001-01-01 00:00:00.000000+00:00,
UNTIL_CHANGED)' for a PERIOD(TIMESTAMP) valid-time column.

NONSEQUENCED
VALIDTIME

that the update is nonsequenced in the valid-time dimension if the target
table supports valid time.

If the target table does not support valid time, at least one of the referenced
tables must be a table with valid time. The update is not a nonsequenced
update. The NONSEQUENCED VALIDTIME qualifier is used to qualify
rows from the referenced tables in the valid-time dimension. In the
transaction-time dimension, open rows qualify.

NONTEMPORAL that the update is nonsequenced in the valid-time dimension and
nontemporal in the transaction-time dimension.

A nontemporal update treats the transaction-time column as a nontemporal
column.

The table must support transaction time.

update_statement conventional syntax for the UPDATE statement.

For a current or sequenced update on a table with valid time, the SET clause
cannot reference the valid-time column as the name of the column whose
data is to be updated.

For an update on a table with transaction time, the SET clause cannot
reference the transaction-time column as the name of the column whose data
is to be updated, unless the NONTEMPORAL qualifier is used.

The SET clause cannot use CURRENT_DATE or CURRENT_TIMESTAMP
in the expressions that are used to assign a value to the valid-time column.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

160 Temporal Table Support

Required Privileges
The following privileges are required in addition to those privileges required for a
conventional UPDATE statement:

• If the UPDATE statement specifies the NONTEMPORAL qualifier, the NONTEMPORAL
privilege is also required on the temporal table.

• For a current or sequenced update to a table with valid time, the UPDATE privilege is
required on the valid-time column of the table.

Usage Notes
Unless the NONTEMPORAL qualifier is specified, updates on temporal tables are always
current in the transaction-time dimension.

All check, primary key, and temporal unique (current, sequenced, nonsequenced) constraints
defined on the table are checked only on rows that are open in transaction time.

Current Updates

Caution: CURRENT DML modifications can cause serializability issues for concurrent transactions.
See Appendix C: “Potential Concurrency Issues with Current Temporal DML” for
information on avoiding these issues.

A current update affects only rows that are valid at the current time. These are rows in valid-
time or bitemporal tables with a PV that overlaps current time at the time of the update: Rows
that have a valid-time period that contains or begins at TEMPORAL_TIMESTAMP (or
TEMPORAL_DATE, depending on the type of the valid-time column).

If additional search conditions are specified in the UPDATE statement, they are applied to
these current rows. The search condition may specify conditions on both the valid-time and
transaction-time columns.

The following types of rows do not qualify for current updates:

• Rows in valid-time or bitemporal tables with a PV that ends before or at current time.
These rows are history rows in valid time, so do not qualify for a current update.

• Rows in valid-time or bitemporal tables with a PV that begins after current time. These
rows are future rows in valid time, so do not qualify for a current update.

• Rows in bitemporal tables with a transaction-time period that ends before
UNTIL_CLOSED (before 9999-12-31 23:59:59.999999+00:00). These rows are considered
closed in transaction time, and are unavailable to most SQL. They are part of the
automatic internal history of changes maintained by the database for tables with
transaction time, and do not qualify for a current update.

A current update to a row can result in zero, one, or two additional rows being added to the
database, depending on the relationship between the PV of the qualifying row and the current
time, and on whether the table is a valid-time or bitemporal table.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

Temporal Table Support 161

Current Updates to Qualifying Rows in Valid-Time Tables
If the PV of the row contains the current time at the time of the update, the operation
modifies one row and inserts a new row into the table:

• The valid-time period for the original row, is set to end at the time of the update
(TEMPORAL_TIMESTAMP or TEMPORAL_DATE, depending on the type of the valid-
time column). No other column values are changed.

This means that the original row is no longer valid. It becomes a history row, showing the
original column values that were valid before the update.

• A copy of the original row is inserted which has the new values in the updated columns.
The valid-time period of this row is set to begin at the time of the update, and end at the
same time as the original row.

If the PV of the row begins at the time of the update:

• The current update operation updates the row.

The PA of a current update begins at TEMPORAL_TIMESTAMP at the time of the update,
and ends at UNTIL_CHANGED, an indefinite time in the future when the row is changed
or deleted. Because this PA matches or contains the PV of the qualified row, the change is
valid for the entire PV of the row. New rows do not need to be inserted in the database to
account for row states that existed before or after the change.

Current updates to Qualifying Rows in Bitemporal Tables
Bitemporal tables include both a valid-time column and a transaction-time column. The
results of a current update operation on a bitemporal table with respect to the valid-time
column are the same as those for a valid-time table. Due to the transaction-time column,
every row that is changed as a result of the current update generates an additional row in the
database to track the change in transaction time by creating a snapshot of the row prior to the
change:

If the PV of the row contains the current time at the time of the update, the operation
modifies one row and inserts two new rows into the table:

• The transaction-time period for the original row is set to end at the time of the update
(TT_TIMESTAMP), marking the row as closed in the transaction-time dimension. No
other values are changed in the row.

This preserves the original row with the original values that existed before the
modification, including the original period of validity. Because the row is closed in
transaction-time, it becomes inaccessible to further modifications.

• A copy of the original row is inserted. The row has the valid-time period set to end at the
time of the update (TEMPORAL_TIMESTAMP or TEMPORAL_DATE, depending on the
type of the valid-time column). No other column values are changed.

This means that the original row is no longer valid. It becomes a history row, showing the
original column values that were valid before the update.

The value of the transaction-time column is set to (TT_TIMESTAMP, UNTIL_CLOSED),
as it is for any new row that is inserted to a table having a transaction-time dimension. The

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

162 Temporal Table Support

row is therefore open in transaction time, and remains accessible as a history row to valid-
time SQL.

• A copy of the original row, which has the new values in the updated columns, is inserted.

The valid-time period of this row is set to begin at the time of the update and end at the
same time as the original row.

The value of the transaction-time column is set to (TT_TIMESTAMP, UNTIL_CLOSED),
as it is for any new row that is inserted to a table having a transaction-time dimension. The
row is therefore open in transaction time, and remains accessible to valid-time SQL.

If the PV of the row begins at the time of the update, the operation modifies one row and
inserts one new row into the table:

• The transaction-time period for the original row is set to end at the time of the update
(TT_TIMESTAMP), marking the row as closed in the transaction-time dimension. No
other values are changed in the row.

This preserves the original row with the original values that existed before the
modification, including the original period of validity. Because the row is closed in
transaction-time, it becomes inaccessible to further modifications.

• The current update operation updates the row.

A copy of the original row is inserted. The row has the new values in the updated columns.
The PA of a current update begins at TEMPORAL_TIMESTAMP at the time of the update,
and ends at UNTIL_CHANGED, an indefinite time in the future when the row is changed
or deleted. Because this PA matches or contains the PV of the qualified row, the change is
valid for the entire PV of the row. New rows do not need to be inserted in the database to
account for row states that existed before or after the change.

The value of the transaction-time column is set to (TT_TIMESTAMP, UNTIL_CLOSED),
as it is for any new row that is inserted to a table having a transaction-time dimension. The
row is therefore open in transaction time, and remains accessible to valid-time SQL.

Usage Notes
• The value of TEMPORAL_TIMESTAMP used to stamp the valid-time column is the same

for all rows produced as a result of a single update operation.

• The value of TT_TIMESTAMP used to stamp the transaction-time column is the same for
all rows produced as a result of a single update operation.

• If an update to a qualified row does not actually change any column values in a row,
temporal operations that close, open, and create new rows are not performed on the row.
However, the activity count of the update operation includes these rows, and an update
trigger qualifies these rows.

• The modified and inserted rows must not violate any constraints on the table. If there are
no uniqueness constraints, inserted rows are not checked for duplicates. If the table has
any constraints defined, inserted rows are validated to ensure that the rows do not violate
the constraints.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

Temporal Table Support 163

Sequenced Updates
A sequenced update modifies the specified rows at each point in time that is covered in the
period of applicability. That is, rows whose period of validity overlaps the period of
applicability are modified for the overlapping portion.

A sequenced update can modify current, history, or future rows in the valid-time dimension
depending on the selection time period (period of applicability) specified in UPDATE
statement. For bitemporal tables, which include a transaction-time dimension, only rows that
are open in transaction time can qualify for the sequenced update.

If the columns modified in the SET clause do not change the values for a row, the row is not
changed with any temporal update semantics. The activity count of the update includes the
row and an update trigger qualifies such a row but the modification semantics that close,
open, or create new rows are not performed.

Only open rows whose period of validity overlaps the period of applicability of the sequenced
update are candidates for the update. Optionally, additional qualifications can be placed on
the values of valid-time and transaction-time columns to further filter the rows that will
qualify for the update.

A sequenced update of a row in a valid-time table results in the modification of the old row
and, potentially, the insertion of new rows, depending on the relationship between the period
of validity of the row and the period of applicability of the update.

A sequenced update of a row in a bitemporal table first closes out the old row in transaction
time. A copy of the row is made, open in transaction time, and modifications are made
appropriate to the update syntax. These modifications can include simply updating the row,
or splitting the row into two or three rows, depending on the relationship between the period
of validity of the row and the period of applicability specified by the update statement.

The following table describes the sequenced update operation in a table with valid time.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

164 Temporal Table Support

Temporal constraints that are defined on a table being updated apply to both the existing row
that is modified and to the rows that are newly inserted.

IF the period of applicability of the
update … THEN …

is contained within the period of
validity of a row

the row qualifies for the update, but only during the portion
of the period of validity that overlaps the period of
applicability of the update.

Because the row values are updated for only a portion of the
original row period of validity, the original row values remain
valid before and after the period of applicability of the update.
Therefore, the update operation results in three rows:

• The original row that qualified for the update is modified
to have the valid time period end at the beginning of the
period of applicability of the update.

• A new row is inserted with the updated values. Its valid
time period reflects the entire period of applicability of the
update.

• A new row is inserted with the same values as the original
row that qualified for the update. However, the valid-time
period is set to reflect the portion of the original row valid-
time period that remains after the period of applicability of
the update. The valid-time period begins at the end of the
update period of applicability, and ends at the time the
original row valid-time period ended.

overlaps the period of validity such
that the beginning bound of the
period of applicability is between
the beginning and ending bounds
of the period of validity

the update results in one new row and one old existing row:

• The new row contains the modified columns with its
period of validity set to the portion that is common
between the period of applicability and the period of
validity.

• The period of validity of the existing row is set to the
portion of the period of validity that exists before the
beginning of the period of applicability.

overlaps the period of validity such
that the ending bound of the
period of applicability is between
the beginning and ending bounds
of the period of validity

the update results in one new row and one old existing row:

• The new row contains the modified columns and the
period of validity is set to the portion that is common
between the period of applicability and the period of
validity.

• The period of validity of the old existing row is set to the
portion of the period of validity that exists after the ending
of the period of applicability.

contains the period of validity,
including the case where the period
of applicability equals the period of
validity

the existing row is updated for the specified columns. The
result is an in-place update of the existing row and there is no
change in the period of validity.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

Temporal Table Support 165

Nonsequenced Updates
A nonsequenced update modifies the specified rows across all states or any state. A
nonsequenced update ignores valid-time semantics when updating a row of a table with valid
time.

A nonsequenced update operates on only open rows for a table with transaction time. A
nonsequenced update treats a valid-time column like a regular column for a table with valid
time. For a valid-time table, a nonsequenced update does not create multiple rows like in a
current or sequenced update.

For a table with transaction time, a nonsequenced update of a row first closes out the existing
qualified row and inserts a new row with the updated columns only when the column values
change. If there are no changes made to the row, the existing row is not closed. For a valid-
time table, a nonsequenced update modifies the existing qualified row like a regular update.

Because a nonsequenced update permits updates to the valid-time column like a conventional
Period column, the valid-time column can be used in the assignment list.

All modifications on a transaction-time table or a bitemporal table cause changes to be
recorded, regardless of whether the modifications are in the same transaction.

A nonsequenced update that joins two or more tables is like a regular join. The valid-time
column may participate in the join like a regular column.

Nontemporal Updates
Note: Rows that are closed in transaction time provide a history of all modifications and
deletions on tables that have a transaction-time column. The automatic history that tables
with transaction time provide can be used for regulatory compliance auditing, so these rows
are generally inaccessible to DML modifications. Because NONTEMPORAL DML statements
can modify closed rows, the special NONTEMPORAL privilege is required. For more
information on the NONTEMPORAL privilege, see “NONTEMPORAL Privilege” on
page 175.

A nontemporal update is similar to a conventional update, but the transaction-time column is
treated as any other column in the table. The transaction-time column values can be explicitly
specified in the SET clause of the statement. A nontemporal update can be issued to update
closed or open rows.

The qualification condition in the UPDATE statement considers both the open and closed
rows in the table. Additionally, for a table with valid time, both valid and no-longer-valid rows
participate in the update. If the statement references multiple temporal tables, a
nonsequenced form of join is performed on the tables.

If the transaction-time column is modified, the following rules apply:

• The beginning bound must not be greater than the system time at the time of the update.

• The ending bound must be UNTIL_CLOSED or less than or equal to the system time at
the time of the update.

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Form)

166 Temporal Table Support

Related Information

For more information on... See...

UPDATE statement SQL Data Manipulation Language

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Upsert Form)

Temporal Table Support 167

UPDATE (Temporal Upsert Form)

Purpose
Updates column values in a specified row or, if the row does not exist, inserts it into the table
with a specified set of initial column values.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Note: To ensure application portability to future ANSI standards for temporal SQL, Teradata
recommends explicit specification of all temporal qualifiers.

Syntax Element … Specifies …

CURRENT
VALIDTIME

that the upsert is current in the valid-time dimension.

The CURRENT VALIDTIME qualifier is used to qualify rows from the
referenced tables in the valid-time dimension. In the transaction-time
dimension, open rows qualify.

If the session temporal qualifier is not set and the temporal qualifier is
omitted from the upsert statement, the default qualifier is CURRENT
VALIDTIME.

For a table that supports transaction time, the temporal qualifier in the
transaction-time dimension is CURRENT TRANSACTIONTIME.

Caution: CURRENT DML modifications can cause serializability issues
for concurrent transactions. See Appendix C: “Potential
Concurrency Issues with Current Temporal DML” for
information on avoiding these issues.

1182A004

CURRENT VALIDTIME

SEQUENCED
VALIDTIME

upsert_statement

NONSEQUENCED VALIDTIME

period_expression

;

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Upsert Form)

168 Temporal Table Support

VALIDTIME that the upsert is sequenced in the valid-time dimension if the target table
supports valid time.

The target table must have a valid-time column.

A sequenced upsert on a target table that supports valid time sets the valid-
time value to period_expression, or, if omitted, to PERIOD'(0001-01-01,
UNTIL_CHANGED)' for a PERIOD(DATE) valid-time column or PERIOD
'(0001-01-01 00:00:00.000000+00:00, UNTIL_CHANGED)' for a
PERIOD(TIMESTAMP) valid-time column.

For a table that supports transaction time, the temporal qualifier in the
transaction-time dimension is CURRENT TRANSACTIONTIME.

SEQUENCED
VALIDTIME

period_expression the period of applicability for the sequenced upsert.

The period of applicability must be a Period constant expression that does
not reference any columns, but can reference parameterized values and the
TEMPORAL_DATE or TEMPORAL_TIMESTAMP built-in functions.

The period of applicability can also be a self-contained noncorrelated scalar
subquery that is always nonsequenced in the time dimensions regardless of
the temporal qualifier in the upsert statement.

Note: If a period_expression is specified, the valid-time column cannot be
specified anywhere in the query.

If period_expression is omitted, the period of applicability defaults to
PERIOD'(0001-01-01, UNTIL_CHANGED)' for a PERIOD(DATE) valid-
time column or PERIOD '(0001-01-01 00:00:00.000000+00:00,
UNTIL_CHANGED)' for a PERIOD(TIMESTAMP) valid-time column.

NONSEQUENCED
VALIDTIME

that the upsert is nonsequenced in the valid-time dimension if the target
table supports valid time.

The target table must have a valid-time column.

For a table that supports transaction time, the temporal qualifier in the
transaction-time dimension is CURRENT TRANSACTIONTIME.

upsert_statement existing UPDATE (Upsert Form) statement syntax.

For details, see SQL Data Manipulation Language.

The following restrictions apply to the SET clause of the UPDATE portion of
upsert_statement:

• For a current or sequenced update on a table with valid time, the SET
clause cannot reference the valid-time column as the name of the column
whose data is to be updated.

• For an update on a table with transaction time, the SET clause cannot
reference the transaction-time column as the name of the column whose
data is to be updated.

• The SET clause cannot use CURRENT_DATE or
CURRENT_TIMESTAMP in the expressions that are used to assign a
value to the valid-time column.

• For a table that has a PPI, the SET clause cannot reference a partitioning
column.

Syntax Element … Specifies …

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Upsert Form)

Temporal Table Support 169

Required Privileges
UPDATE (Temporal Upsert Form) requires the same privileges as conventional UPDATE
(Upsert Form).

Usage Notes
The UPDATE portion of upsert follows the semantics described for the temporal form of
UPDATE. The INSERT portion of upsert follows the semantics described for the temporal
form of INSERT. All restrictions that apply to the conventional form of upsert also apply to
the temporal form of upsert, with the exception of the relaxed restrictions documented in the
following topics.

If the upsert does not require any temporal operations, such as opening or closing a row, use a
NONSEQUENCED VALIDTIME UPSERT. The SET clause can reference the valid-time
column to set the valid-time value.

All check, primary key, and temporal unique (current, sequenced, nonsequenced) constraints
defined on the table are checked only on rows that are open in transaction time.

Qualifying a Row for Upsert
In addition to the conditions specified in the UPDATE statement, the test for qualification of a
row is also based on the overlap of the valid-time column value with the period of
applicability. For a sequenced upsert, the row is considered for the update even if the period of
validity is contained in the period of applicability; no row is inserted for the extra period of
applicability.

The UPDATE portion of the upsert must qualify a single row.

When qualifying a row for a nonsequenced upsert, all of the restrictions that apply to the
conventional form of upsert apply in the valid-time and transaction-time dimensions.

The following rules apply to temporal tables that have a partitioned primary index:

• The UPDATE portion of a current upsert must qualify a single row from a single current
partition.

• The UPDATE portion of a sequenced upsert with an optional period of applicability and a
matching PI value must also qualify a single row from single partition.

• For a current or sequenced upsert, when partitioning is defined on the valid-time column,
transaction-time column, or valid-time and transaction-time columns, the upsert can
omit the equality condition on the valid-time and transaction-time columns. The equality
condition can be specified on the bound functions that were used in the partitioning
expression. The conditions IS UNTIL_CHANGED and IS UNTIL_CLOSED are also
considered equality conditions on the END bound function (these conditions are valid
only on the END bound function).

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
UPDATE (Temporal Upsert Form)

170 Temporal Table Support

Modification of a Row for Upsert
A current upsert results in a current update if the qualified current row is found; otherwise, it
results in a current insert. For a table that has a PPI, a current update must not result in rows
moving to different partitions.

The insert portion of a current upsert can specify values for the valid-time or transaction-time
column and the insert must be to the same partition as referenced by the update portion.

In a sequenced upsert, if the qualified row overlaps with the specified (or default) period of
applicability, a sequenced form of update is performed on that row; otherwise, a sequenced
form of insert is performed. For a table that has PPI, the sequenced form of update must not
result in rows moving to different partitions.

The insert portion of a sequenced upsert can specify values for the valid-time or transaction-
time column and the insert must be to the same partition as referenced by the update portion.
If the insert portion of a sequenced upsert specifies a value for the valid-time column, the
specified period of applicability in the temporal qualifier is ignored for the insert portion of
the upsert.

For a nonsequenced upsert, a nonsequenced update is performed if a row is found; otherwise,
a nonsequenced insert is performed.

Related Information

For more information on... See...

UPDATE statement (upsert form) SQL Data Manipulation Language

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
Cursors and Temporal Queries

Temporal Table Support 171

Cursors and Temporal Queries

A cursor is a data structure that stored procedures and Preprocessor2 use at runtime to point
to the result rows in a response set returned by an SQL query. Stored procedures and
embedded SQL also use cursors to manage inserts, updates, execution of multistatement
requests, and SQL macros.

The DML semantics described for temporal tables apply to DML associated with a cursor,
with some limitations that relate to positioned (updatable) cursors:

• Only the current form of positioned cursors is allowed. The SELECT statement specified
in the iteration statement FOR, DECLARE CURSOR, and positioned DELETE and
UPDATE statements must all be qualified as CURRENT.

• A SELECT statement on a temporal table can open an updatable cursor if the statement
conforms to all existing rules on updatable cursors.

• A SELECT statement that opens an updatable cursor has the same syntax as described in
“SELECT/SELECT ... INTO (Temporal Forms)” on page 137 when the statement
references a temporal table, but the FROM clause must not specify an AS OF clause in the
transaction-time dimension.

• A positioned DELETE must be a CURRENT delete, and must not specify an AS OF clause
as part of the FROM clause.

• A positioned UPDATE must be a CURRENT update.

Related Information

For more information on... See...

cursors SQL Stored Procedures and Embedded SQL

Chapter 5: SQL Data Manipulation Language (Temporal Forms)
Cursors and Temporal Queries

172 Temporal Table Support

Temporal Table Support 173

CHAPTER 6 SQL Data Control Language
(Temporal Forms)

This chapter describes the GRANT and REVOKE statements for temporal tables.

The material in this chapter covers the syntax, rules, and other details that are specific to
temporal table support.

The existing rules that apply to conventional DCL statements also apply to the statements in
this chapter and are not repeated here. For details, see SQL Data Control Language.

Chapter 6: SQL Data Control Language (Temporal Forms)
GRANT (Temporal Form)

174 Temporal Table Support

GRANT (Temporal Form)

Purpose
Assigns the NONTEMPORAL and other explicit privileges on a database, user, table, or view
to a user or group of users.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Syntax Element … Specifies …

ALL [PRIVILEGES] that the specified user is to receive all privileges that can be granted
on the specified object.

GRANT ALL includes the NONTEMPORAL privilege if the
InclNTforGrntOrRevokAll field of the DBS Control utility is set to
TRUE. Otherwise, GRANT ALL excludes the NONTEMPORAL
privilege.

All of the privileges, including the NONTEMPORAL privilege, that
the grantor has on the object are granted if a user has them with
WITH GRANT OPTION.

NONTEMPORAL that the user can use the NONTEMPORAL prefix to perform
nontemporal operations on transaction-time and bitemporal tables
contained in database_name or user_name, on table_name, or on
view_name.

ON

TO user_name

;WITH GRANT OPTION

A

, 25

ALL

PUBLIC

A

1182A049

database_name

user_name

view_name
database_name.
user_name.

table_name
database_name.
user_name.

GRANT ALL

NONTEMPORAL

privilege

,
PRIVILEGES

ALL BUT NONTEMPORAL

privilege

,

Chapter 6: SQL Data Control Language (Temporal Forms)
GRANT (Temporal Form)

Temporal Table Support 175

NONTEMPORAL Privilege
The NONTEMPORAL privilege is required to use the NONTEMPORAL prefix with ALTER
TABLE, CREATE TABLE AS, DELETE, INSERT, and UPDATE statements.

These nontemporal operations allow modifications to closed rows, which are normally
prohibited on tables that have transaction time. For example, they allow direct modification of
the transaction time column values, even for rows that are closed in transaction time. They
also allow physical deletion of rows that are closed in transaction time. Closed rows are
normally inaccessible to modifications. They provide a history of prior row modifications and
deletions, and are saved indefinitely in the table.

Because nontemporal operations can be used to circumvent the normal processing of tables
with transaction time, the use of nontemporal operations is discouraged. However,
nontemporal operations may be required for certain kinds of database maintenance, as when
very old history rows must be archived and deleted for space considerations, and for
correcting problems or corruptions in temporal tables.

The availability of nontemporal operations at the system level is controlled by the
NONTEMPORAL privilege and by the EnabNonTempoOp setting in DBS Control. By
default, nontemporal operations are not allowed, regardless of the NONTEMPORAL
privilege. To enable nontemporal operations for users with the NONTEMPORAL privilege,
use the DBS Control utility. For details, see Utilities.

privilege a privilege other than NONTEMPORAL.

For details, see GRANT in SQL Data Control Language.

ALL BUT that the named user is to receive all privileges that can be granted on
the specified object except for those specified in the privilege list. As
in ALL, only those object privileges owned by the grantor WITH
GRANT OPTION are granted.

ON database_name the name of a database that contains or may contain transaction-time
or bitemporal tables or both.

ON user_name the name of a user that contains or may contain transaction-time
tables, bitemporal tables, or both.

ON table_name the name of a transaction-time or bitemporal table.

ON view_name the name of an updatable view created on a transaction-time or
bitemporal table.

TO [ALL] username the name of an existing database or user that identifies the recipient.

If you specify ALL, then the object privileges are granted to the
named database or user and to every database or user owned by that
database or user now and in the future.

WITH GRANT OPTION that the grantee receives the granted privileges WITH GRANT
OPTION.

Syntax Element … Specifies …

Chapter 6: SQL Data Control Language (Temporal Forms)
GRANT (Temporal Form)

176 Temporal Table Support

Usage Notes
A NONTEMPORAL privilege is a table and view level privilege and can also be granted at the
database or user level. This privilege is not an automatic privilege and must be explicitly
granted by user DBC or another user who has sufficient privileges.

The NONTEMPORAL privilege is granted implicitly to DBC with GRANT OPTION. The
system does not grant the NONTEMPORAL privilege implicitly to any other users or
databases.

The NONTEMPORAL privilege follows the system convention that it can be granted by an
owner on any owned objects. Note that an owner must explicitly grant the NONTEMPORAL
privilege to itself in order to use the NONTEMPORAL qualifier on owned objects.

For example, assume user john123 has created a table, MyTemporalTable, and is logged in to
the database. In order to perform nontemporal operations to this table, john123 would first
need to send the following request:

GRANT NONTEMPORAL ON mytemporaltable TO john123;

The privilege is recorded as 'NT' in the AccessRight column in the DBC.AccessRights table.

Any use of the NONTEMPORAL privilege, whether successful or denied by the system, is
automatically logged in the access logging tables. Nontemporal logging requires no explicit
BEGIN LOGGING statement, and cannot be disabled.

For statements that include the NONTEMPORAL prefix, the system checks the
NONTEMPORAL privilege in addition to those that the statement normally requires. For
example, to execute NONTEMPORAL DELETE requires both NONTEMPORAL and
DELETE privileges.

Related Information

For more information on... See...

GRANT (regular form) SQL Data Control Language

REVOKE (temporal form) “REVOKE (Temporal Form)” on page 177

DBS Control utility Utilities

DELETE (temporal form) “DELETE (Temporal Form)” on page 115

INSERT (temporal form) “INSERT/INSERT … SELECT (Temporal Forms)” on page 121

Nontemporal operations “Nontemporal Operations” on page 25

UPDATE (temporal form) “UPDATE (Temporal Form)” on page 158

Chapter 6: SQL Data Control Language (Temporal Forms)
REVOKE (Temporal Form)

Temporal Table Support 177

REVOKE (Temporal Form)

Purpose
Revokes the NONTEMPORAL and other explicit privileges on a database, user, table, or view.

Syntax
Note: Temporal Table Support describes syntax that is especially relevant to temporal tables.
Syntax that is not required, or that is not otherwise specific to temporal tables is generally not
shown in this manual. For additional syntax, see SQL Data Definition Language, SQL Data

Manipulation Language, and SQL Data Control Language.

Syntax Element … Specifies …

GRANT OPTION FOR that only the GRANT authority is removed from the specified
privileges for the specified grantees for the corresponding explicit
privileges they have.

ALL [PRIVILEGES] to revoke from the specified user all explicitly granted privileges that
can be granted on the specified object, and that are held, either
implicitly or explicitly, WITH GRANT OPTION by the user
executing the REVOKE.

REVOKE ALL includes the NONTEMPORAL privilege if the
InclNTforGrntOrRevokAll field of the DBS Control utility is set to
TRUE. Otherwise, REVOKE ALL excludes the NONTEMPORAL
privilege.

REVOKE
GRANT OPTION FOR

ALL

ALL BUT

NONTEMPORAL

privilege

NONTEMPORAL

privilege

,

PRIVILEGES
A

1182A048

A ON TO user_name

FROM ALL
;

database_name

user_name

view_name
database_name.
user_name.

table_name
database_name.
user_name.

Chapter 6: SQL Data Control Language (Temporal Forms)
REVOKE (Temporal Form)

178 Temporal Table Support

Related Information

ALL BUT to revoke all explicit database privileges from the specified user,
except those listed, that can be granted on the specified object and
that are held, either implicitly or explicitly, WITH GRANT OPTION
by the user performing the REVOKE statement.

NONTEMPORAL that the user cannot use the NONTEMPORAL prefix to perform
nontemporal operations on table_name or view_name or on any
transaction-time tables, bitemporal tables, or updatable views
contained in database_name or user_name.

For details on the NONTEMPORAL privilege, see
“NONTEMPORAL Privilege” on page 175.

privilege a privilege other than NONTEMPORAL.

For details, see REVOKE in SQL Data Control Language.

ON database_name the name of a database that contains or may contain transaction-time
tables, bitemporal tables, or both.

ON user_name the name of a user that contains or may contain transaction-time
tables, bitemporal tables, or both.

ON table_name the name of a bitemporal or transaction-time table.

ON view_name the name of an updatable view created on a bitemporal table or
transaction-time table.

TO [ALL] username the name of an existing database or user that identifies the recipient.

If you specify ALL, then the object privileges are revoked from the
named database or user and from every database or user owned by
that database or user.

FROM [ALL] username

Syntax Element … Specifies …

For more information on... See...

REVOKE (regular form) SQL Data Control Language

GRANT (temporal form) “GRANT (Temporal Form)” on page 174

DBS Control utility Utilities

DELETE (temporal form) “DELETE (Temporal Form)” on page 115

INSERT (temporal form) “INSERT/INSERT … SELECT (Temporal Forms)” on page 121

Nontemporal operations “Nontemporal Operations” on page 25

UPDATE (temporal form) “UPDATE (Temporal Form)” on page 158

Temporal Table Support 179

CHAPTER 7 Administration

This chapter provides information on any required administration for temporal table support.

System Clocks

Temporal table support in Teradata Database depends on all system nodes running network
time protocol (NTP). Install the teradata-ntp package, which is available from Teradata @
Your Service (www.teradataatyourservice.com). To configure NTP, see Knowledge Article
KAP1A9C72, also available from Teradata @ Your Service. NTP keeps the system node clocks
synchronized within 100 milliseconds. If NTP is unavailable on the system, or is not running
on any system node, temporal table support is disabled.

Note: NTP is not required on SMP systems.

Teradata Database can manage the small differences between node clocks due to the minute
drift that NTP allows. In the unlikely event that an update is made to an existing row such that
the beginning of a time period is after the end time, the transaction is automatically aborted.

Teradata recommends synchronizing the system to an external master time source, such as a
Web-based or government sponsored standard time service.

Warning: Do not make manual changes to individual node clocks. Circumventing NTP, as by the use of
operating system commands to directly change the current time on a node, will compromise
temporal table support, and could result in incorrect data or a loss of data.

When new nodes are added to the system, the database administrator must manually set the
initial time on those nodes. The time must closely match the time on the other nodes in the
system. If a node must be replaced, the initial time set on the replacement must be greater (later)
than the time the previous node went down.

Nontemporal Operations

To allow operations that are otherwise not allowed on tables with transaction time, statements
can specify the NONTEMPORAL prefix. Such operations on tables with transaction time
require the NONTEMPORAL privilege.

Here is an example that grants the NONTEMPORAL privilege to user simon573 on a
transaction-time table named Policy_Types:

GRANT NONTEMPORAL ON Policy_Types TO simon573;

To disable all nontemporal operations, use the EnabNonTempoOp field of the DBS Control
utility.

www.teradataatyourservice.com

Chapter 7: Administration
Capacity Planning for Temporal Tables

180 Temporal Table Support

For details on the DBS Control utility, see Utilities.

Capacity Planning for Temporal Tables

Temporal tables typically contain more rows than otherwise equivalent nontemporal tables.
This is due to the way rows are automatically added to temporal tables as a result of most
kinds of modifications. Furthermore, under normal conditions, “deleted” rows are not truly
physically deleted from temporal tables that have a transaction time dimension.

For the same reasons, temporal tables can grow faster than nontemporal tables, depending on
how frequently they are modified, and on the nature of those modifications. Tables with
transaction-time columns grow monotonically, never shrinking, because rows are never
physically deleted from these tables.

The following tables show how temporal tables that have a transaction-time column can grow
depending on the nature and frequency of table modifications. Valid-time tables are likely to
experience less growth, because rows in valid-time tables can be physically deleted from the
tables.

Use these examples to estimate annual growth of temporal tables for capacity planning.

Table and Row Size Calculation forms are available in Database Design for nontemporal tables.

Notes:

• Sequenced modifications are typically historical in nature.

• To reflect conservative estimates, the table size increase calculation is based on the
maximum number of rows that can be produced by each type of modification.

Example 1: Lightly Modified Table

Transaction-time Table Bitemporal Table Bitemporal Table

Table Size Before
Modifications (rows)

100 100 100

Modification Type Current Current Sequenced (historical)

Modifications per Year
(percent of rows)

10% (0.19% weekly) 10% (0.19% weekly) 10% (0.19% weekly)

Number of Additional
Rows Produced per
Modification

1 1 or 2 1, 2, or 3

Largest Table Size
After Modifications
(rows)

110 120 130

Annual Increase in
Table Size

10% 20% 30%

Chapter 7: Administration
Archiving Temporal Tables

Temporal Table Support 181

Example 2: Moderately Modified Table

Example 3: Heavily Modified Table

Archiving Temporal Tables

The Archive/Recovery utility can be used to archive and restore all types of temporal tables.
Archive operations on temporal tables use the same syntax as non-temporal tables. For
temporal tables, the ARCHIVE, RESTORE, and COPY commands can operate on:

Transaction-time Table Bitemporal Table Bitemporal Table

Table Size Before
Modifications (rows)

100 100 100

Modification Type Current Current Sequenced (historical)

Modifications per Year
(percent of rows)

30% (0.58% weekly) 30% (0.58% weekly) 30% (0.58% weekly)

Number of Additional
Rows Produced per
Modification

1 1 or 2 1, 2, or 3

Largest Table Size
After Modifications
(rows)

130 160 190

Annual Increase in
Table Size

30% 60% 90%

Transaction-time Table Bitemporal Table Bitemporal Table

Table Size Before
Modifications (rows)

100 100 100

Modification Type Current Current Sequenced (historical)

Modifications per Year
(percent of rows)

50% (0.96% weekly) 50% (0.96% weekly) 50% (0.96% weekly)

Number of Additional
Rows Produced per
Modification

1 1 or 2 1, 2, or 3

Largest Table Size
After Modifications
(rows)

150 200 250

Annual Increase in
Table Size

50% 100% 150%

Chapter 7: Administration
Archiving Temporal Tables

182 Temporal Table Support

• Entire temporal tables

Archiving an entire temporal table saves all rows to the archive, including history, current,
future, open, and closed rows.

• Specified partitions of a temporal table

An archive operation can be limited to specified partitions. For example, a bitemporal
table that is partitioned using the recommended partitioning expression has rows
separated into the following partitions:

• open rows with valid-time periods that are current and future

• open rows with valid-time periods that are history

• closed rows

The archive can be limited to store only the current and history open rows from the first
partition.

Use the following guidelines when archiving temporal tables that have been partitioned into
current and history rows:

• History rows are automatically formed in partitions containing current and future rows,
and in partitions containing open rows when current, open rows are modified. The ALTER
TABLE TO CURRENT statement repartitions the table, moving history rows out of the
current partition.

If archiving the current and future rows, ensure the current partition includes only current
and future rows by issuing an ALTER TABLE TO CURRENT statement on the table
immediately prior to the ARCHIVE operation.

If restoring only current and future rows to an existing temporal table, issue an ALTER
TABLE TO CURRENT statement on the table immediately prior to the restore operation.

• Archive the complete partition that isolates the open current and future rows, or archive
the entire table. Do not archive a history partition alone, or a subset of the partition for
open current and future rows.

• RESTORE the entire temporal archive. Never restore only a portion of the archive.

• If only the current partition is restored for a temporal table, the existing history partition
for that table is deleted, and a new history is begun starting from the time of the restore.
This loses historical information from the existing table.

Teradata recommends a dual archive strategy for temporal tables. Save entire temporal
tables in one archive, and the current temporal partitions in a separate archive. The archive
containing entire tables can be used to restore temporal tables including history
information. The archive containing current partitions can be used for disaster recovery,
when restoring history rows is not desired.

Chapter 7: Administration
Archiving Temporal Tables

Temporal Table Support 183

Related Information

For information on... See...

Archive/Recovery Utility Teradata Archive/Recovery Utility Reference

Partitioning temporal tables “Partitioning Temporal Tables” on page 37

ALTER TABLE TO CURRENT • “Partitioning Expressions for Temporal Tables” on page 84

• SQL Data Definition Language

Chapter 7: Administration
Archiving Temporal Tables

184 Temporal Table Support

Temporal Table Support 185

APPENDIX A How to Read Syntax Diagrams

This appendix describes the conventions that apply to reading the syntax diagrams used in
this book.

Syntax Diagram Conventions

Notation Conventions

Paths
The main path along the syntax diagram begins at the left with a keyword, and proceeds, left
to right, to the vertical bar, which marks the end of the diagram. Paths that do not have an
arrow or a vertical bar only show portions of the syntax.

The only part of a path that reads from right to left is a loop.

Item Definition / Comments

Letter An uppercase or lowercase alphabetic character ranging from A through Z.

Number A digit ranging from 0 through 9.

Do not use commas when typing a number with more than 3 digits.

Word Keywords and variables.

• UPPERCASE LETTERS represent a keyword.

Syntax diagrams show all keywords in uppercase, unless operating system
restrictions require them to be in lowercase.

• lowercase letters represent a keyword that you must type in lowercase, such as a
Linux command.

• Mixed Case letters represent exceptions to uppercase and lowercase rules. The
exceptions are noted in the syntax explanation.

• lowercase italic letters represent a variable such as a column or table name.

Substitute the variable with a proper value.

• lowercase bold letters represent an excerpt from the diagram. The excerpt is
defined immediately following the diagram that contains it.

• UNDERLINED LETTERS represent the default value.

This applies to both uppercase and lowercase words.

Spaces Use one space between items such as keywords or variables.

Punctuation Type all punctuation exactly as it appears in the diagram.

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

186 Temporal Table Support

Continuation Links
Paths that are too long for one line use continuation links. Continuation links are circled
letters indicating the beginning and end of a link:

When you see a circled letter in a syntax diagram, go to the corresponding circled letter and
continue reading.

Required Entries
Required entries appear on the main path:

If you can choose from more than one entry, the choices appear vertically, in a stack. The first
entry appears on the main path:

Optional Entries
You may choose to include or disregard optional entries. Optional entries appear below the
main path:

FE0CA002

A

A

FE0CA003

SHOW

FE0CA005

SHOW

VERSIONS

CONTROLS

FE0CA004

SHOW

CONTROLS

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

Temporal Table Support 187

If you can optionally choose from more than one entry, all the choices appear below the main
path:

Some commands and statements treat one of the optional choices as a default value. This
value is UNDERLINED. It is presumed to be selected if you type the command or statement
without specifying one of the options.

Strings
String literals appear in apostrophes:

Abbreviations
If a keyword or a reserved word has a valid abbreviation, the unabbreviated form always
appears on the main path. The shortest valid abbreviation appears beneath.

In the above syntax, the following formats are valid:

• SHOW CONTROLS

• SHOW CONTROL

Loops
A loop is an entry or a group of entries that you can repeat one or more times. Syntax
diagrams show loops as a return path above the main path, over the item or items that you can
repeat:

JC01A010
SHARE
READ

ACCESS

JC01A004

'msgtext '

FE0CA042

SHOW

CONTROL
CONTROLS

JC01B012

(

, 4

cname)

, 3

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

188 Temporal Table Support

Read loops from right to left.

The following conventions apply to loops:

Excerpts
Sometimes a piece of a syntax phrase is too large to fit into the diagram. Such a phrase is
indicated by a break in the path, marked by (|) terminators on each side of the break. The
name for the excerpted piece appears between the terminators in boldface type.

The boldface excerpt name and the excerpted phrase appears immediately after the main
diagram. The excerpted phrase starts and ends with a plain horizontal line:

IF... THEN...

there is a maximum number of
entries allowed

the number appears in a circle on the return path.

In the example, you may type cname a maximum of 4 times.

there is a minimum number of
entries required

the number appears in a square on the return path.

In the example, you must type at least three groups of column
names.

a separator character is required
between entries

the character appears on the return path.

If the diagram does not show a separator character, use one
blank space.

In the example, the separator character is a comma.

a delimiter character is required
around entries

the beginning and end characters appear outside the return
path.

Generally, a space is not needed between delimiter characters
and entries.

In the example, the delimiter characters are the left and right
parentheses.

LOCKING excerpt

where_cond

A

cname

excerpt

JC01A014

A

HAVING con

,

col_pos

,

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

Temporal Table Support 189

Multiple Legitimate Phrases
In a syntax diagram, it is possible for any number of phrases to be legitimate:

In this example, any of the following phrases are legitimate:

• dbname

• DATABASE dbname

• tname

• TABLE tname

• vname

• VIEW vname

Sample Syntax Diagram

JC01A016

DATABASE
dbname

TABLE
tname

VIEW
vname

JC01A018

viewnameCREATE VIEW AS
cname

A

C

CV

,

LOCKING
LOCK

ACCESSA
DATABASE

dbname

TABLE
tname

VIEW
vname

FOR
IN

B
SHARE
READ
WRITE

EXCLUSIVE
EXCL

MODE

FROMB SEL C
.aname

expr

,

tname

,

qual_cond

qual_cond

WHERE cond

cname

,

col_pos

,
GROUP BY

HAVING cond ;

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

190 Temporal Table Support

Diagram Identifier
The alphanumeric string that appears in the lower right corner of every diagram is an internal
identifier used to catalog the diagram. The text never refers to this string.

Temporal Table Support 191

APPENDIX B Examples

This appendix provides examples of various operations that involve temporal tables.

Some of the examples use the following tables:

CREATE MULTISET TABLE Policy(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME
)

PRIMARY INDEX(Policy_ID);

CREATE MULTISET TABLE Policy_Types (
Policy_Name VARCHAR(20),
Policy_Type CHAR(2) NOT NULL PRIMARY KEY,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME
)

PRIMARY INDEX (Policy_Name);

CREATE MULTISET TABLE Policy_History(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME)
)

PRIMARY INDEX(Policy_ID);

Policy is a valid-time table, Policy_Types is a transaction-time table, and Policy_History is a
bitemporal table. These tables are simplified forms of tables that might be used by an
insurance application.

Creating Temporal Tables

For examples of creating temporal tables, see Chapter 3: “Creating Temporal Tables.”

Querying Temporal Tables

The following examples demonstrate the basic kinds of temporal queries.

Appendix B: Examples
Querying Temporal Tables

192 Temporal Table Support

Example 1: Current Query on a Valid-Time Table
To query a valid-time table for the rows that are valid at the current time (rows that overlap
with current time), use the CURRENT VALIDTIME temporal qualifier in the SELECT
statement. For example:

CURRENT VALIDTIME
SELECT *
FROM Policy
WHERE Policy_Type = 'AU';

The result is a nontemporal result set. (The result set does not include the valid-time column.)

Policy_ID Customer_ID Policy_Type Policy_Details
--------- ----------- ----------- -----------------

541077 766492008 AU STD-CH-344-YXY-00
541145 616035020 AU STD-CH-348-YXN-01
541008 246824626 AU STD-CH-345-NXY-00

Example 2: Current Query on a Transaction-Time Table
To query a transaction-time table for the current rows, use the CURRENT
TRANSACTIONTIME temporal qualifier in the SELECT statement. For example:

CURRENT TRANSACTIONTIME
SELECT *
FROM Policy_Types;

The result is a nontemporal result set. (The result set does not include the transaction-time
column.)

Policy_Name Policy_Type
-------------------- -----------
Premium Automobile AP
Basic Homeowner HM
Basic Automobile AU
Premium Homeowner HP

Example 3: Sequenced Query on a Valid-Time Table
To query a valid-time table for the rows that are valid at a specific time period, use the
SEQUENCED VALIDTIME temporal qualifier in the SELECT statement. For example:

SEQUENCED VALIDTIME PERIOD '(2009-01-01, 2009-12-31)'
SELECT Policy_ID, Customer_ID
FROM Policy
WHERE Policy_Type = 'AU';

The result set is a temporal table that includes rows that are valid for a period of applicability
specified by PERIOD '(2009-01-01, 2009-12-31)':

Policy_ID Customer_ID VALIDTIME
--------- ----------- ------------------------

541077 766492008 ('09/12/21', '09/12/31')
541145 616035020 ('09/12/03', '09/12/31')
541008 246824626 ('09/10/01', '09/12/31')

Appendix B: Examples
Modifying Temporal Tables

Temporal Table Support 193

Note: The valid-time column for the result set, VALIDTIME, which is automatically
appended to the results of a sequenced valid-time query, is different from the valid-time
column of the temporal table that was queried. The valid time for the results of the query is
the intersection of the PA of the query and the original valid-time periods of the rows.

Example 4: Nonsequenced Query on a Valid-Time Table
To query a valid-time table such that no special semantics are placed on the valid-time
column, use the NONSEQUENCED VALIDTIME temporal qualifier in the SELECT
statement. For example:

NONSEQUENCED VALIDTIME SELECT * FROM Policy;

Example 5: Nonsequenced Query on a Transaction-Time Table
To query a transaction-time table such that no special semantics are placed on the
transaction-time column, use the NONSEQUENCED TRANSACTIONTIME temporal
qualifier in the SELECT statement. For example:

NONSEQUENCED TRANSACTIONTIME SELECT * FROM Policy_Types;

Example 6: As Of Query on a Valid-Time Table
To get a snapshot of a valid-time table where the valid-time period in the result rows overlap a
specific time, use the VALIDTIME AS OF temporal qualifier in the SELECT statement. For
example:

VALIDTIME AS OF DATE '2009-01-01' SELECT * FROM Policy;

Example 7: As Of Query on a Transaction-Time Table
To get a snapshot of a transaction-time table where the transaction-time period in the result
rows overlap a specific time, use the TRANSACTIONTIME AS OF temporal qualifier in the
SELECT statement. For example:

TRANSACTIONTIME AS OF DATE '2009-01-01' SELECT * FROM Policy_Types;

Modifying Temporal Tables

The following examples demonstrate basic modifications to temporal tables.

Example 1: Current Valid-Time Insert into a Valid-Time Table
To perform a current valid-time insert into a valid-time table, use the CURRENT
VALIDTIME qualifier.

Consider the following valid-time table:

CREATE MULTISET TABLE Policy(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,

Appendix B: Examples
Modifying Temporal Tables

194 Temporal Table Support

Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME
)

PRIMARY INDEX(Policy_ID);

The following statement performs a current valid-time insert into the Policy table. Because the
INSERT uses a positional assignment list (where no column names are provided), no value for
the valid-time column can be specified. The system timestamps the value of the valid-time
column.

CURRENT VALIDTIME INSERT INTO Policy
VALUES (541077, 766492008, 'AU', 'STD-CH-344-YXY-00');

The following statement also performs a current valid-time insert into the Policy table.
Because the INSERT uses a named list, a value for the valid-time column can be specified.

CURRENT VALIDTIME INSERT INTO Policy
(Policy_ID, Customer_ID, Policy_Type, Policy_Details, Validity)
VALUES (541145, 616035020, 'AU', 'STD-CH-348-YXN-01',

PERIOD '(2009-12-03, 2010-12-01)');

Example 2: Sequenced Valid-Time Insert into a Valid-Time Table
Use a sequenced valid-time insert to insert history, current, or future rows into a valid-time
table. A sequenced valid-time insert is similar to a conventional insert where the valid-time
column is treated as any other column in the table.

Consider the same valid-time table as in the previous example. The following statements
perform sequenced valid-time inserts into the Policy table.

SEQUENCED VALIDTIME INSERT INTO Policy
VALUES (232540, 909234455, 'BM', 'STD-CH-344-YYY-00',

PERIOD (DATE '1999-01-01', DATE '1999-12-31'));

SEQUENCED VALIDTIME INSERT INTO Policy
(Policy_ID, Customer_ID, Policy_Type, Policy_Details, Validity)
VALUES (944540, 344567123, 'BM', 'STD-PL-332-YXY-01',

PERIOD (DATE '2007-02-03', DATE '2008-02-02'));

Example 3: Nonsequenced Valid-Time Insert into a Valid-Time Table
A nonsequenced valid-time insert is similar to a conventional insert where the valid-time
column is treated as any other column in the table.

Consider the same valid-time table as in the previous examples. The following statements The
following statements perform nonsequenced valid-time inserts into the Policy table.

NONSEQUENCED VALIDTIME INSERT INTO Policy
VALUES (540232, 455909234, 'AU', 'STD-CH-344-YYY-00',

PERIOD (DATE '2009-01-01', DATE '2009-12-31'));

NONSEQUENCED VALIDTIME INSERT INTO Policy
(Policy_ID, Customer_ID, Policy_Type, Policy_Details, Validity)
VALUES (540944, 123344567, 'AU', 'STD-PL-332-YXY-01',

PERIOD (DATE '2007-02-03', DATE '2008-02-02'));

Appendix B: Examples
Modifying Temporal Tables

Temporal Table Support 195

Example 4: Current Valid-Time Insert into a Bitemporal Table
To insert data into a bitemporal table that is open in the transaction-time dimension and
current in the valid-time dimension, use the CURRENT VALIDTIME qualifier.

Consider the following bitemporal table:

CREATE MULTISET TABLE Policy_History(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME)
PRIMARY INDEX(Policy_ID);

The following statement performs a current valid-time insert into the Policy_History table.
Because the INSERT uses a positional assignment list (where no column names are provided),
no value for the valid-time column can be specified. Because the system inserts the value for
the transaction-time column, no value for the transaction-time column can be specified.

CURRENT VALIDTIME INSERT INTO Policy_History
VALUES (541077, 766492008, 'AU', 'STD-CH-344-YXY-00');

The following statement also performs a current valid-time insert into the Policy_History
table. Because the INSERT uses a named list, a value for the valid-time column can be
specified. Because the system inserts the value for the transaction-time column, no value for
the transaction-time column can be specified.

CURRENT VALIDTIME INSERT INTO Policy_History
(Policy_ID, Customer_ID, Policy_Type, Policy_Details, Validity)
VALUES (541145, 616035020, 'AU', 'STD-CH-348-YXN-01',

PERIOD '(2009-12-03, 2010-12-01)');

Example 5: Sequenced Valid-Time Insert into a Bitemporal Table
A sequenced valid-time insert is similar to a conventional insert, where the valid-time column
is treated as any other column in the table. Use a sequenced valid-time insert to insert rows
that are history, current, or future in the valid-time dimension.

All such insertions are open in the transaction-time dimension. Because the system
automatically inserts the value for the transaction-time column, the INSERT statement
cannot specify a value for the transaction-time column.

Consider the following bitemporal table:

CREATE MULTISET TABLE Policy_History(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME)
PRIMARY INDEX(Policy_ID);

Appendix B: Examples
Modifying Temporal Tables

196 Temporal Table Support

The following statements perform sequenced valid-time inserts that are open in the
transaction-time dimension into the Policy_History table.

SEQUENCED VALIDTIME INSERT INTO Policy_History
VALUES (232540, 909234455, 'BM', 'STD-CH-344-YYY-00',

PERIOD (DATE '1999-01-01', DATE '1999-12-31'));

SEQUENCED VALIDTIME INSERT INTO Policy_History
(Policy_ID, Customer_ID, Policy_Type, Policy_Details, Validity)
VALUES (944540, 344567123, 'BM', 'STD-PL-332-YXY-01',

PERIOD (DATE '2007-02-03', DATE '2008-02-02'));

Example 6: Nonsequenced Valid-Time Insert into a Bitemporal Table
A nonsequenced valid-time insert is similar to a conventional insert where the valid-time
column is treated as any other column in the table. Because the system automatically inserts
the value for the transaction-time column, the INSERT statement cannot specify a value for
the transaction-time column.

Consider the following bitemporal table:

CREATE MULTISET TABLE Policy_History(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME)
PRIMARY INDEX(Policy_ID);

The following statements perform nonsequenced valid-time inserts that are open in the
transaction-time dimension into the Policy_History table.

NONSEQUENCED VALIDTIME INSERT INTO Policy_History
VALUES (540232, 450909234, 'AU', 'STD-CH-344-YYY-00',

PERIOD (DATE '2009-11-01', UNTIL_CHANGED));

NONSEQUENCED VALIDTIME INSERT INTO Policy_History
(Policy_ID, Customer_ID, Policy_Type, Policy_Details, Validity)
VALUES (540944, 120344567, 'AU', 'STD-PL-332-YXY-01',

PERIOD (DATE '2010-02-03', DATE '2011-02-02'));

Example 7: Nontemporal Insert into a Bitemporal Table
A nontemporal insert in to a bitemporal table is similar to a conventional insert, where the
valid-time and transaction-time columns are treated as any other column in the table. You can
use a nontemporal insert to insert closed or open rows.

To perform a nontemporal insert, you must have the NONTEMPORAL privilege on the target
table.

Consider the following bitemporal table:

CREATE MULTISET TABLE Policy_History(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,

Appendix B: Examples
Modifying Temporal Tables

Temporal Table Support 197

Policy_Details CHAR(40),
Validity PERIOD(DATE) NOT NULL AS VALIDTIME,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME)
PRIMARY INDEX(Policy_ID);

The following nontemporal INSERT statements insert rows into Policy_History, explicitly
specifying values for the valid-time and transaction-time columns:

NONTEMPORAL INSERT INTO Policy_History
VALUES (411458, 160350204, 'AU', 'STD-CH-340-YXN-01',

PERIOD '(2009-12-03, 2010-12-01)',
PERIOD (TIMESTAMP '2004-01-01 00:00:00.000000', UNTIL_CLOSED));

NONTEMPORAL INSERT INTO Policy_History
VALUES (114583, 603502048, 'AU', 'STD-CH-920-YXD-01',

PERIOD '(2009-12-08, 2010-12-07)',
PERIOD (TIMESTAMP '2004-01-01 00:00:00.000000', UNTIL_CLOSED));

Example 8: Current Insert into a Transaction-Time Table
The following INSERT statement inserts an open row into the Policy_Types table. Because the
system automatically inserts the value for the transaction-time column, no value for the
transaction-time column can be specified.

INSERT INTO Policy_Types
VALUES ('Basic Motorcycle', 'BM');

Example 9: Nontemporal Insert into a Transaction-Time Table
A nontemporal insert is similar to a conventional insert, where the transaction-time column is
treated as any other column in the table. You can use a nontemporal insert to insert closed or
open rows.

Note: To perform a nontemporal insert, you must have the NONTEMPORAL privilege on the
target table.

Consider the following transaction-time table:

CREATE MULTISET TABLE Policy_Types (
Policy_Name VARCHAR(20),
Policy_Type CHAR(2) NOT NULL PRIMARY KEY,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME
)

PRIMARY INDEX (Policy_Name);

The following nontemporal INSERT statements insert rows into Policy_Types, explicitly
specifying values for the transaction-time column:

NONTEMPORAL INSERT INTO Policy_Types
VALUES ('Premium Automobile', 'AP',

PERIOD (TIMESTAMP '2004-01-01 00:00:00.000000', UNTIL_CLOSED));

NONTEMPORAL INSERT INTO Policy_Types
(Policy_Name, Policy_Type, Policy_Duration)
VALUES ('Basic Homeowner', 'HM',
PERIOD (TIMESTAMP '2004-01-01 00:00:00.000000', UNTIL_CLOSED));

Appendix B: Examples
Modifying Temporal Tables

198 Temporal Table Support

Example 10: Current Delete from a Valid-Time Table
To perform a current delete, use the CURRENT VALIDTIME qualifier in the DELETE
statement.

For a table with valid time, current rows qualify for deletion. Depending on the period of
validity of a qualified row and whether the table also supports transaction time, the delete
operation may physically delete a row, logically delete a row, modify the period of validity for a
row, or logically delete a row and create a new row. Consider the following data in the Policy
table:

NONSEQUENCED VALIDTIME
SELECT Policy_ID, Customer_ID, Validity
FROM Policy
WHERE Policy_Type = 'AU';

Policy_ID Customer_ID Validity
--------- ----------- ------------------------

497201 304779902 ('05/02/14', '06/02/13')
540944 123344567 ('07/02/03', '08/02/02')
541077 766492008 ('09/12/21', '99/12/31')
541145 616035020 ('09/12/03', '10/12/01')
541008 246824626 ('09/10/01', '99/12/31')

Suppose the value of TEMPORAL_DATE is the following:

SELECT TEMPORAL_DATE;

Temporal Date

09/12/21

The following current DELETE statement physically deletes the qualified row from the table
because the beginning bound of the period of validity is equal to TEMPORAL_DATE:

CURRENT VALIDTIME DELETE
FROM Policy
WHERE Policy_ID = 541077;

Example 11: Current Delete from a Valid-Time Table
The following current DELETE statement modifies the period of validity for the qualified row
from the table because the beginning bound of the period of validity is less than
TEMPORAL_DATE. The row becomes a history row.

CURRENT VALIDTIME DELETE
FROM Policy
WHERE Policy_ID = 541145;

NONSEQUENCED VALIDTIME
SELECT Policy_ID, Customer_ID, Validity
FROM Policy
WHERE Policy_Type = 'AU';

Policy_ID Customer_ID Validity
--------- ----------- ------------------------

497201 304779902 ('05/02/14', '06/02/13')

Appendix B: Examples
Modifying Temporal Tables

Temporal Table Support 199

540944 123344567 ('07/02/03', '08/02/02')
541145 616035020 ('09/12/03', '09/12/21')
541008 246824626 ('09/10/01', '99/12/31')

Example 12: Current Modifications Do Not Apply to Future Rows
This example demonstrates that current data modifications do not apply to future rows.
Assume the following tables describe a company’s employees and departments:

CREATE MULTISET TABLE employee ,NO FALLBACK ,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT
 (
 eid INTEGER NOT NULL,
 ename VARCHAR(50) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
 bdate DATE FORMAT 'yyyy/mm/dd',
 job_duration PERIOD(DATE) NOT NULL AS VALIDTIME,
 deptid INTEGER,
 mid INTEGER)
PRIMARY INDEX (eid);

CREATE MULTISET TABLE dept ,NO FALLBACK ,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT
 (
 deptid INTEGER NOT NULL,
 deptname VARCHAR(100) CHARACTER SET LATIN NOT CASESPECIFIC)
UNIQUE PRIMARY INDEX (deptid);

Assume the company management must cut down the staff of the SUPPORT department.
Employees who have been with the company for less than three months must be discharged.
The following query removes employees with job durations of less than three months:

CURRENT VALIDTIME
DELETE employee
FROM dept
WHERE dept.deptname = 'SUPPORT' AND

Dept.deptid = employee.deptid AND
BEGIN(job_duration) > CURRENT_DATE - interval '3' month;

Now assume that the system includes employee entries for new employees who have not yet
started working at the company. The DELETE statement above will not remove these future
employees. To remove them together with the current employees, the following statement
could be used:

BT;
/* delete currently employees in department with less than 3 months
work*/
CURRENT VALIDTIME
DELETE employee
FROM dept
WHERE dept.deptname = 'SUPPORT' AND

Dept.deptid = employee.deptid AND
BEGIN(job_duration) > current_date - interval '3' month;

Appendix B: Examples
Modifying Temporal Tables

200 Temporal Table Support

/* delete all future employees */
SEQUENCED VALIDTIME
DELETE employee
FROM dept
WHERE dept.deptname = 'SUPPORT' AND

dept.deptid = employee.deptid AND
BEGIN(job_duration) > TEMPORAL_DATE;

ET;

Alternatively, the following SQL would accomplish the same:

REPLACE VIEW v1 AS
NONSEQUENCED VALIDTIME
SELECT employee.eid, dept.deptid
FROM employee, dept
WHERE dept.deptname = 'SUPPORT' AND
dept.deptid = employee.deptid AND

BEGIN(job_duration) > CURRENT_DATE - interval '3' month
AND job_duration OVERLAPS PERIOD(TEMPORAL_DATE, UNTIL_CHANGED);

SEQUENCED VALIDTIME PERIOD(TEMPORAL_DATE, UNTIL_CHANGED)
DELETE employee FROM v1 WHERE v1.eid = employee.eid AND
v1.deptid = employee.deptid;

Example 13: Sequenced Delete from a Valid-Time Table
To perform a sequenced delete, use the VALIDTIME or SEQUENCED VALIDTIME qualifier
in the DELETE statement.

For a table with valid time, any row with a period of validity that overlaps with the period of
applicability qualifies for deletion. The delete operation may physically delete a row, logically
delete a row, modify the period of validity for a row, or delete a row and create a new row.
Consider the following data in the Policy table:

NONSEQUENCED VALIDTIME
SELECT Policy_ID, Customer_ID, Validity
FROM Policy
WHERE Policy_Type = 'AU';

Policy_ID Customer_ID Validity
--------- ----------- ------------------------

497201 304779902 ('05/02/14', '06/02/13')
540944 123344567 ('07/02/03', '08/02/02')
541077 766492008 ('09/12/21', '99/12/31')
541145 616035020 ('09/12/03', '10/12/01')
541008 246824626 ('09/10/01', '99/12/31')

The following sequenced DELETE statement physically deletes one row from the table. The
period of validity for policy 540944 (PERIOD '(2007-02-03, 2008-02-02)') is fully contained
within the period of applicability of the sequenced delete statement (PERIOD '(2007-01-01,
2008-03-01)'):

SEQUENCED VALIDTIME PERIOD '(2007-01-01, 2008-03-01)' DELETE
FROM Policy;

Appendix B: Examples
Modifying Temporal Tables

Temporal Table Support 201

Example 14: Sequenced Delete from a Valid-Time Table
The following sequenced DELETE statement modifies the period of validity for one row from
the table. The period of validity for policy 497201(PERIOD '(2005-02-14, 2006-02-13)')
begins before and overlaps the period of applicability of the sequenced delete statement
(PERIOD '(2005-11-01, 2006-08-01)'). Because only that portion of the policy that overlaps
the period of applicability of the sequenced delete statement is deleted, the period of validity
for the row is modified to end when the deletion begins (2005-11-01):

SEQUENCED VALIDTIME PERIOD '(2005-11-01, 2006-08-01)' DELETE
FROM Policy;

NONSEQUENCED VALIDTIME
SELECT Policy_ID, Customer_ID, Validity
FROM Policy
WHERE Policy_Type = 'AU';

Policy_ID Customer_ID Validity
--------- ----------- ------------------------

497201 304779902 ('05/02/14', '05/11/01')
541145 616035020 ('09/12/03', '10/12/01')
541077 766492008 ('09/12/21', '99/12/31')
541008 246824626 ('09/10/01', '99/12/31')

Example 15: Sequenced Delete from a Valid-Time Table
If the period of applicability of the sequenced delete in the last example had been (PERIOD
'(2005-05-01, 2005-06-01)'), such that it was smaller than, and fully contained within, the
period of validity of policy 497201, the policy row would be split into two rows, preserving the
validity for periods that were not deleted:

SEQUENCED VALIDTIME PERIOD '(2005-05-01, 2005-06-01)' DELETE
FROM Policy;

NONSEQUENCED VALIDTIME
SELECT Policy_ID, Customer_ID, Validity
FROM Policy
WHERE Policy_Type = 'AU';

Policy_ID Customer_ID Validity
--------- ----------- ------------------------

497201 304779902 ('05/02/14', '05/05/01')
497201 304779902 ('05/06/01', '06/02/13')
541145 616035020 ('09/12/03', '10/12/01')
541077 766492008 ('09/12/21', '99/12/31')
541008 246824626 ('09/10/01', '99/12/31')

Example 16: Nonsequenced Delete from a Valid-Time Table
A nonsequenced delete applies no special temporal logic to the delete operation or row
selection, and operates on a valid-time table as a conventional delete would operate on a
nontemporal table:

Start from the same valid-time table that was used for the sequenced delete examples:

Appendix B: Examples
Modifying Temporal Tables

202 Temporal Table Support

Policy_ID Customer_ID Validity
--------- ----------- ------------------------

497201 304779902 ('05/02/14', '06/02/13')
540944 123344567 ('07/02/03', '08/02/02')
541077 766492008 ('09/12/21', '99/12/31')
541145 616035020 ('09/12/03', '10/12/01')
541008 246824626 ('09/10/01', '99/12/31')

Each of the following nonsequenced DELETE statements physically deletes one row from the
table:

NONSEQUENCED VALIDTIME DELETE
FROM Policy
WHERE Customer_ID = 304779902;

NONSEQUENCED VALIDTIME DELETE
FROM Policy
WHERE BEGIN(Validity) = DATE '2007-02-03';

Example 17: Current or Sequenced Delete from a Bitemporal Table
The syntax of these operations is identical to the same kinds of deletions performed on valid-
time tables:

• To perform a current delete, use the CURRENT VALIDTIME qualifier in the DELETE
statement.

• To perform a sequenced delete, use the SEQUENCED VALIDTIME qualifier in the
DELETE statement. (Using VALIDTIME alone as the qualifier is equivalent.)

There are two important ways that these kinds of deletions on bitemporal tables differ from
those on valid-time tables:

• Current and sequenced deletions on bitemporal tables affect only rows that are open in the
transaction-time dimension.

• Because rows are physically removed from bitemporal tables only when the
NONTEMPORAL qualifier is used, rows deleted in SEQUENCED VALIDTIME are only
deleted logically. The ending bound of their transaction-time period is changed from the
value of UNTIL_CLOSED to the date or timestamp of the deletion, and the row becomes
closed in the transaction-time dimension. The logically deleted row becomes a history
row.

The valid-time period remains unchanged for the logically deleted row. The deleted state
of the row is reflected in the ending bound of the transaction time. However, similar to a
SEQUENCED VALIDTIME DELETE on a valid-time table, if the period of validity of the
original row extended beyond the period of applicability of the sequenced delete new rows
are created that reflect the time periods for which the information was not deleted. The
new rows have appropriately modified valid-time periods. These new rows are open in the
transaction-time dimension, because their time periods were not included in the period of
applicability of the deletion.

Appendix B: Examples
Modifying Temporal Tables

Temporal Table Support 203

Example 18: Nontemporal Delete from a Bitemporal Table
Performing a nontemporal delete on a bitemporal table physically deletes the specified rows.
Because a nontemporal delete can be used to remove history rows from the table, the
NONTEMPORAL privilege is required to perform nontemporal operations on temporal
tables that have transaction time. Nontemporal deletes should be used only if absolutely
necessary, and only by appropriately authorized personnel.

Example 19: Merging Nontemporal Table Data into a Partitioned
Bitemporal Table

You can use the temporal form of the MERGE statement to merge data from a nontemporal
table into a temporal table. Suppose you have the following nontemporal table called
Policy_Changes:

CREATE TABLE Policy_Changes(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40)
);

Suppose you also have the following bitemporal table called Policy that is partitioned
according to the partitioning guidelines for a bitemporal table:

CREATE MULTISET TABLE Policy(
Policy_ID INTEGER,
Customer_ID INTEGER,
Policy_Type CHAR(2) NOT NULL,
Policy_Details CHAR(40),
Validity PERIOD(DATE) AS VALIDTIME,
Policy_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME
)

PRIMARY INDEX(Policy_ID)
PARTITION BY

CASE_N((END(Validity) IS NULL OR
END(Validity) >= CURRENT_DATE AT '-12:59') AND
END(Policy_Duration) >= CURRENT_TIMESTAMP,

END(Validity) < CURRENT_DATE AT '-12:59' AND
END(Policy_Duration) >= CURRENT_TIMESTAMP,

END(Policy_Duration) < CURRENT_TIMESTAMP);

The following statement performs a sequenced merge in the valid-time dimension into the
Policy table from the Policy_Changes table where the period of applicability is December 1,
2009 to December 7, 2009.

The matching condition is applied on open rows of the Policy table where the period of
validity overlaps the period of applicability. If the matching condition is satisfied, a sequenced
update is performed; if the matching condition is not satisfied, a sequenced insert is
performed.

SEQUENCED VALIDTIME
MERGE INTO Policy USING (

NONSEQUENCED VALIDTIME PERIOD (DATE'2009-12-01', DATE'2009-12-07')
SELECT

Appendix B: Examples
Modifying Temporal Tables

204 Temporal Table Support

source.Policy_ID,
source.Customer_ID,
source.Policy_Type,
source.Policy_Details,
target.Validity AS vt,
END(target.Policy_Duration) AS ett

FROM Policy_Changes source LEFT OUTER JOIN Policy target
ON source.Policy_ID = target.Policy_ID
WHERE (vt IS NULL OR

((BEGIN(vt) < DATE '2009-12-07') AND
(END(vt) > DATE '2009-12-01') AND
(ett = TIMESTAMP '9999-12-31 23:59:59.999999'))

)
) AS merge_source (

PID,
CID,
PType,
PDetails,
j,
k

)
ON (Policy_ID = merge_source.PID) AND

END(Validity) = END(j) AND END(Policy_Duration) = k
WHEN MATCHED THEN

UPDATE SET Policy_Details = merge_source.PDetails
WHEN NOT MATCHED THEN

INSERT (
merge_source.PID,
merge_source.CID,
merge_source.PType,
merge_source.PDetails,
PERIOD(TEMPORAL_DATE, UNTIL_CHANGED)

);

Example 20: Dropping a Valid-Time Column
To drop a valid-time column from a valid-time table, use the ALTER TABLE statement.

Consider the following valid-time table:

CREATE MULTISET TABLE Customer (
Customer_Name VARCHAR(40),
Customer_ID INTEGER,
Customer_Address VARCHAR(80),
Customer_Phone VARCHAR(12),
Customer_Validity PERIOD(DATE) NOT NULL AS VALIDTIME
)

PRIMARY INDEX (Customer_ID);

The following statement drops the Customer_Validity column:

ALTER TABLE Customer DROP Customer_Validity;

To drop a valid-time column from a bitemporal table, use the ALTER TABLE statement and
specify the NONTEMPORAL qualifier. Dropping any type of column from a bitemporal table
requires the NONTEMPORAL privilege on the table, and the NONTEMPORAL qualifier to
ALTER TABLE must be used.

Consider the following bitemporal table:

Appendix B: Examples
Views on Temporal Tables

Temporal Table Support 205

CREATE MULTISET TABLE Customer (
Customer_Name VARCHAR(40),
Customer_ID INTEGER,
Customer_Address VARCHAR(80),
Customer_Phone VARCHAR(12),
Customer_Validity PERIOD(DATE) NOT NULL AS VALIDTIME,
Customer_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME
)

PRIMARY INDEX (Customer_ID);

The following statement drops the Customer_Validity column:

NONTEMPORAL ALTER TABLE Customer DROP Customer_Validity;

When a valid-time column is dropped from a bitemporal table, all rows that are no longer
valid (all history rows in the valid-time dimension) are physically deleted from the table.

Example 21: Dropping a Transaction-Time Column
Dropping any type of column from a transaction-time or bitemporal table requires the
NONTEMPORAL privilege on the table, and the NONTEMPORAL qualifier to ALTER
TABLE must be used.

Consider the following transaction-time table:

CREATE MULTISET TABLE Customer (
Customer_Name VARCHAR(40),
Customer_ID INTEGER,
Customer_Address VARCHAR(80),
Customer_Phone VARCHAR(12),
Customer_Duration PERIOD(TIMESTAMP(6) WITH TIME ZONE) NOT NULL

AS TRANSACTIONTIME
)

PRIMARY INDEX (Customer_ID);

Assuming that you have the NONTEMPORAL privilege on the Customer table, the following
ALTER TABLE statement drops the Customer_Duration column:

NONTEMPORAL ALTER TABLE Customer DROP Customer_Duration;

When a transaction-time column is dropped from a transaction-time or bitemporal table, all
closed rows (all history rows in the transaction-time dimension) are physically deleted from
the table.

Views on Temporal Tables

The following examples create views on temporal tables.

Example 1
The following statement creates a sequenced view on the Policy table. The result of the
sequenced query is a valid-time table or, in this case, view. The valid-time period for each row
in the view is stored in a new column that is automatically appended by the system. The valid-
time for each row in the view is the overlap of the valid-time period of the row in the original

Appendix B: Examples
Session Temporal Qualifier

206 Temporal Table Support

temporal table with the valid time of the sequenced query. In this case, because a time period
is not specified in the sequenced query, the period for the query defaults to (0001-01-01,

UNTIL_CHANGED), and the valid-time periods in the view will match those for the original rows.

Because names for the view columns are not specified in the CREATE VIEW statement, the
system assigns the new valid-time column the name VALIDTIME.

CREATE VIEW Basic_Auto_Policy_V AS
SEQUENCED VALIDTIME
SELECT Policy_ID, Customer_ID
FROM Policy
WHERE Policy_Type = 'AU';

Example 2
The following statement creates a similar sequenced view on the Policy table but provides a list
of column names that includes the extra column name “Basic_View_Validity”, which the
system assigns to the new valid-time column that is appended to the view.

CREATE VIEW Basic_Auto_Policy_V (
Policy_ID,
Customer_ID,
Basic_View_Validity
) AS

SEQUENCED VALIDTIME
SELECT Policy_ID, Customer_ID
FROM Policy
WHERE Policy_Type = 'AU';

Session Temporal Qualifier

Example 1
The following statement sets the session temporal qualifier to current in the valid-time
dimension:

SET SESSION CURRENT VALIDTIME;

Example 2
The following statement sets the session temporal qualifier to current in the transaction-time
dimension:

SET SESSION CURRENT TRANSACTIONTIME;

Restoring a Prior Table State

Tables with transaction time automatically store in the table a snapshot copy of any row that is
modified or deleted. This characteristic of these tables can be used to recover a prior state of
the table using only SQL This can be useful to quickly recover from a localized problem, such

Appendix B: Examples
Restoring a Prior Table State

Temporal Table Support 207

as if a table or set of tables have become corrupted by a user error, and need to be restored to a
consistent state.

Assume a table that has transaction time needs to be restored to the state it was in at a point
(time X) prior to the current time. Rows in the table can be classified based on whether they
are open or closed, and on their transaction-time column period relation to time X:

These rows are represented graphically below.

Example
To return the table back to the state it was in at time x, use the following plan:

Row Row State
BEGIN(TT)
Beginning Transaction Time

END(TT)
End Transaction Time

1 Open Prior to time X UNTIL_CLOSED

2 Open Equal to time X UNTIL_CLOSED

3 Open After time X UNTIL_CLOSED

4 Closed Prior to time X Prior to time X

5 Closed Prior to time X Equal to time X

6 Closed Prior to time X After time X

7 Closed Equal to time X After time X

8 Closed After time X After time X

1182A050

Time
X

[

[4)

[5)

)

[

)

)7)

1) UNTIL_CLOSED

| |

|
|
[
|
|
|
|
)
|
|
|
[
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Now

X Now

UNTIL_CLOSED2)
UNTIL_CLOSED3)

[6)

)[8)

Appendix B: Examples
Restoring a Prior Table State

208 Temporal Table Support

The following SQL will realize the plan for each of the different row states.

NONTEMPORAL DELETE tt_table where BEGIN(tt_col) > time X;
NONTEMPORAL UPDATE tt_table

SET tt_col = PERIOD(BEGIN(tt_col), UNTIL_CLOSED)
WHERE END(tt_col) IS NOT UNTIL_CLOSED
AND BEGIN(tt_col) <= time X
AND END(tt_col) > time X;

Note: Because this solution requires NONTEMPORAL SQL, nontemporal operations on
temporal tables must be enabled using the DBS Control utility. Additionally, the user
executing this SQL must be granted the NONTEMPORAL privilege. For more information on
DBS Control see Utilities. For more information on NONTEMPORAL operations, see

“NONTEMPORAL Privilege” on page 175.

Row
Row at Time X
Compared to Row Now Plan

1 Row existed at time X and row exists now. Leave the row as it is.

2 It existed at time X and row exists now. Leave the row as it is.

3 It did not exist at time X. Delete the row.

4 It was closed at time X, and is still closed now. Leave the row as it is.

5 It was closed at time X, and is still closed now. Leave the row as it is.

6 It was open at time X, but is closed now. Leave BEGIN(TT) as it is.
Update END(TT) to UNTIL_CLOSED.

7 It was open at time X, but row is closed now. Leave BEGIN(TT) as it is.
Update END(TT) to UNTIL_CLOSED.

8 It did not yet exist at time X. Delete the row.

Temporal Table Support 209

APPENDIX C Potential Concurrency Issues
with Current Temporal DML

This appendix describes a potential concurrency issue that can occur with CURRENT
VALIDTIME transactions, and techniques for avoiding these issues.

Transaction Isolation

Isolation is one of the ACID properties of database transaction processing. Ideally,
“concurrent” transactions are serializable, each occurring in isolation from the others, the
results of each being independent of any changes resulting from the others. Normally Teradata
Database guarantees serializable transactions when the transaction isolation level is set to
SERIALIZABLE for the transaction or for the session.

However, under some circumstances, CURRENT VALIDTIME selections from temporal
tables can violate serializability in temporal transactions, even when the transaction isolation
level is set to SERIALIZABLE. This can happen because of the interaction of two
characteristics of temporal transactions:

• When rows in temporal tables are changed, they usually generate history rows, which
preserve the state of the row as it existed before the change occurred, and which are stored
in the same table.

• A CURRENT temporal qualifier selects rows based on the TEMPORAL_DATE or
TEMPORAL_TIMESTAMP, which is defined as the clock time of the first access to the
temporal table, or the first access of the transaction to the TEMPORAL_DATE or
TEMPORAL_TIMESTAMP function.

This section illustrates the issues, and describes techniques that can be used to ensure
serializable temporal transactions.

Appendix C: Potential Concurrency Issues with Current Temporal DML
Examples

210 Temporal Table Support

Examples

Note: Time and date values are exaggerated to make the sequence of events clearer.

Assume the following two tables describe parts and orders:

Parts table:

Orders table:

Consider the following two transactions, that are to be applied to the tables:

• Increase Order
If the current discount for part P1 is greater than or equal to 10%, double the order
quantity.

This transaction modifies the order table based on the parts table:

CURRENT VALIDTIME
UPDATE Orders
FROM Parts
SET Quantity= quantity*2
WHERE discount >= 10 AND Orders.part_id = Parts.part_id;

• Reduce Discount
If the current order quantity for P1 is less than 100, reduce the discount by one half.

This transaction modifies the parts table based on the order table

CURRENT VALIDTIME
UPDATE Parts
FROM Orders
SET discount = discount/2.0
WHERE quantity < 100 AND Parts.part_id = Orders.part_id ;

Assuming the transactions execute serially, the results will depend on which transaction
executes first. This is demonstrated by the first two examples below.

Example 1: Increase Order occurs before Reduce Discount
Assume the individual transactions have the following characteristics:

Part_ID Supplier_ID Price Discount Part_Validity

P1 S1 $10 10% (2008-01-01, 2011-01-01)

Order_ID Part_ID Quantity Order_Validity

O1 P1 60 (2008-01-01, 2011-01-01)

Appendix C: Potential Concurrency Issues with Current Temporal DML
Examples

Temporal Table Support 211

• Begin Time is the value of TEMPORAL_DATE for the example transactions. This time is
used both to qualify rows for participation in the transaction, and to timestamp the
modified rows.

• Modification Time is the time when the modification is made by the transaction.

• End Time is when the transaction is committed and completed.

Notice that Increase Order ends before Reduce Discount begins.

The following shows the states of the Orders and Parts tables after transactions have
completed.

Orders table state after the Increase Order transaction:

In the original state of the tables, the P1 rows qualified for the CURRENT transaction because
their valid times overlapped current time, value of TEMPORAL_DATE at the time when the
transaction started, shown as Begin Time in the table of transaction characteristics. The
period (2008-01-01, 2011-01-01) overlaps 2009-01-02.

Additionally, the P1 row in the Orders table was modified, because the P1 row in the Parts
table fulfilled the transaction WHERE test (discount >= 10).

The modification of the P1 row in the Orders table leaves a history row showing the state of
the row prior to the modification. Notice the end time of the first row and the beginning time
of the second row have both been timestamped with TEMPORAL_DATE at the time of the
modification.

Parts Table state after the Reduce Discount transaction:

The P1 row was not changed, because the current time at the time of the Reduce Discount
transaction was 2009-01-09. Using this current time, only the second row in the Orders table

Times Increase Order Transaction Reduce Discount Transaction

Begin Time 2009-01-02 2009-01-09

Modification Time 2009-01-07 2009-01-10

End Time 2009-01-08 2009-01-11

Order_ID Part_ID Quantity Order_Validity

O1 P1 60 (2008-01-01, 2009-01-02)

O1 P1 120 (2009-01-02, 2011-01-01)

Part_ID Supplier_ID Price Discount Part_Validity

P1 S1 $10 10% (2008-01-01, 2011-01-01)

Appendix C: Potential Concurrency Issues with Current Temporal DML
Examples

212 Temporal Table Support

qualifies for the transaction, however that row fails the WHERE test (quantity < 100), due to
the changes made by the preceding Increase Order transaction.

Example 2: Reduce Discount occurs before Increase Order
Assume the individual transactions have the following characteristics:

Notice that Reduce Discount ends before Increase Order begins.

The following shows the states of the Parts and Orders tables after transactions have
completed.

Parts Table after the Reduce Discount transaction:

In the original state of the tables, the P1 rows qualified for the CURRENT transaction because
their valid times overlapped TEMPORAL_DATE.

Additionally, the P1 row in the Parts table was modified, because the P1 row in the Orders
table fulfilled the transaction WHERE test (quantity < 100).

The modification of the P1 row in the Parts table leaves a history row showing the state of the
row prior to the modification. Notice the end time of the first row and the beginning time of
the second row have both been timestamped with TEMPORAL_DATE at the time of the
modification.

Orders table after Increase Order transaction:

The row was not changed, because the current time at the time of the Increase Order
transaction was 2009-01-05. Using this current time, only the second row in the Parts table
qualifies for the transaction, however that row fails the WHERE test (discount >= 10), due to
the changes made by the preceding Reduce Discount transaction.

Times Increase Order Transaction Reduce Discount Transaction

Begin Time 2009-01-05 2009-01-02

Modification Time 2009-01-10 2009-01-03

End Time 2009-01-11 2009-01-04

Part_ID Supplier_ID Price Discount Part_Validity

P1 S1 $10 10% (2008-01-01, 2009-01-02)

P1 S1 $10 5% (2009-01-02, 2011-01-01)

Order_ID Part_ID Quantity Order_Validity

O1 P1 60 (2008-01-01, 2011-01-01)

Appendix C: Potential Concurrency Issues with Current Temporal DML
Examples

Temporal Table Support 213

Example 3: Increase Order and Reduce Discount occur concurrently
Assume the individual transactions have the following characteristics:

Notice that Reduce Discount begins and ends during the time Increase Order is running.

The following shows the states of the Parts and Orders tables after transactions have
completed.

Parts Table after the Reduce Discount transaction:

In the original state of the tables, the P1 rows qualified for the CURRENT transaction because
their valid times overlapped TEMPORAL_DATE.

Additionally, the P1 row in the Parts table was modified, because the P1 row in the Orders
table at that current time (2009-01-04) fulfilled the transaction WHERE test (quantity < 100).

The modification of the P1 row in the Parts table leaves a history row showing the state of the
row prior to the modification. Notice the end time of the first row and the beginning time of
the second row have both been timestamped with TEMPORAL_DATE at the time of the
modification.

Orders table after Increase Order transaction:

The original P1 row in the Orders table qualified for the CURRENT transaction because its
valid time (2008-01-01, 2011-01-01)overlapped TEMPORAL_DATE for the Increase Order
transaction (2009-01-02).

Similarly, the original row in the Parts table qualified for the CURRENT transaction because
its valid time (2008-01-01, 2009-01-04) overlapped TEMPORAL_DATE for the Increase Order

Times Increase Order Transaction Reduce Discount Transaction

Begin Time 2009-01-02 2009-01-04

Modification Time 2009-01-07 2009-01-05

End Time 2009-01-08 2009-01-06

Part_ID Supplier_ID Price Discount Part_Validity

P1 S1 $10 10% (2008-01-01, 2009-01-04)

P1 S1 $10 5% (2009-01-04, 2011-01-01)

Order_ID Part_ID Quantity Order_Validity

O1 P1 60 (2008-01-01, 2009-01-02)

O1 P1 120 (2009-01-02, 2011-01-01)

Appendix C: Potential Concurrency Issues with Current Temporal DML
Examples

214 Temporal Table Support

transaction (2009-01-02). The row also fulfilled the WHERE test (discount >= 10), so the
order quantity was increased, resulting in a history row in the Orders table showing the state
of the row prior to the modification.

In this case, the final state of the database tables does not match either of the cases where the
transactions occurred serially, so the transaction isolation principle of ACID has been
violated.

Recommendations
The following techniques can be used to avoid potential serializability issues with CURRENT
temporal transaction concurrency.

• Do not concurrently run multiple applications or transactions that are likely to read or
modify the same set of rows using at least one CURRENT VALIDTIME temporal SQL
statement. Run these applications and transactions only sequentially, one after the other.

• Apply table level locks preemptively on temporal tables that are to be modified. These
locks must be applied at the beginning of the transaction, which requires a BT/ET
transaction or an ANSI transaction that uses a “LOCKING TABLE FOR WRITE” qualifier
before any non-locking SQL is issued.

Note: It is not sufficient for the operation itself to apply a table-level lock, because the
timestamp value for qualification may be earlier than the actual acquisition of the lock on
the temporal table.

• Use the SEQUENCED VALIDTIME temporal qualifier with an explicit PA in the
modification SQL rather than CURRENT VALIDTIME:

SEQUENCED VALIDTIME PERIOD (TEMPORAL_DATE/TEMPORAL_TIMESTAMP, UNTIL_CHANGED)

Be aware of the following restrictions on this technique:

• A variable PA cannot be specified at a session level. Therefore, the SEQUENCED
VALIDTIME qualifier with PA must be mentioned at the statement level. This can
require modifications to applications that interact with Teradata Database.

• Only equality inner joins are supported with the SEQUENCED VALIDTIME qualifier.
Therefore applications that use other forms of joins must use one of the other options
for avoiding concurrency issues.

Special Case: Modifying the Same Row
Teradata Database can detect and abort the special case where concurrent CURRENT
temporal transactions attempt to modify the same row of a temporal table at the same time.
This capability must be enabled by Teradata Support. If this capability meets the needs of your
situation, contact your Teradata Support representative.

Appendix C: Potential Concurrency Issues with Current Temporal DML
Examples

Temporal Table Support 215

Related Information

For more information on... See...

Transaction isolation levels and ACID SQL Request and Transaction Processing.

Timestamping temporal transactions “Timestamping” on page 27.

Appendix C: Potential Concurrency Issues with Current Temporal DML
Examples

216 Temporal Table Support

Temporal Table Support 217

APPENDIX D Enforcing and Validating
Temporal Referential Constraints

Because temporal referential constraints are all “soft RI”, meaning they are not enforced by
Teradata Database, the responsibility for ensuring or validating the referential integrity is
yours alone.

From the aspect of integrity assurance, the best way to guarantee the referential integrity of a
table without taking advantage of a declarative standard or batch referential constraint is to
use a procedural constraint such as a set of triggers to handle inserts, updates, and deletions to
the tables in the relationship.

For example, you might want to create DELETE/UPDATE triggers on parent tables, and
INSERT/UPDATE triggers on child tables to enforce referential integrity. The following
example shows how an UPDATE trigger can be defined to enforce SEQUENCED referential
integrity:

REPLACE TRIGGER trg_ri_validator
AFTER SEQUENCED VALIDTIME UPDATE OF column_of_interest ON child_table
REFERENCING NEW_TABLE as New1
FOR EACH STATEMENT
BEGIN ATOMIC
(
ABORT 'RI Violation'
FROM

(NONSEQUENCED VALIDTIME
SELECT foreign_key_column
FROM child_table
WHERE foreign_key_column IS NOT NULL
AND foreign_key_column NOT IN

(SELECT parent_table.primary_key_column FROM parent_table
WHERE parent_table.validtime_column

CONTAINS child_table.validtime_column
AND child_table.foreign_key_column = parent_table.primary_key_column)

) derived_table_name;
) END;

For more information on the CREATE and REPLACE TRIGGER statements, see SQL Data
Definition Language.

The reasons for preferring declarative constraints over procedural constraints are described
briefly in Database Design. There is the additional likelihood that actively firing triggers will
have a greater negative effect on system performance than the simple declarative constraint
they are intended to replace.

Appendix D: Enforcing and Validating Temporal Referential Constraints

218 Temporal Table Support

If you decide not to enforce any form of referential integrity constraint, then you are strongly
advised to enforce a set of validation procedures that can detect when and where referential
integrity violations occur.

The following are suggested queries that can be used to validate temporal referential
constraints in a child table.

Examples
/**
*
* PURPOSE:
* ============
* Suggested queries to validate a Temporal RI on a child table.
*
* BACKGROUND:
* ============
* Multiple variants of RI can be defined with temporal tables.
*
* When a parent table is temporal, there can be multiple rows in the
* parent that contain a given parent key value with non-overlapping
* temporal column value. Presence of a temporal column causes rows
* to be tracked and hence when a non-parent key column is modified
* in the parent, system tracks history. This occurs in TransactionTime
* dimension. The same occurs for ValidTime dimension when modifications
* are made using CURRENT or SEQUENCED VALIDTIME qualifiers.
*
* Note this example:
*
* create multiset table tpar (
* c1 int,
* c2 int,
* pk int not null sequenced validtime unique
* vt period(timestamp with time zone) as validtime not null,
* tt period(timestamp with time zone) not null as transactiontime
*)
* primary index(c1)
*
* Assume row in parent is
* (1, 1, 1, (t1-until_changed),(t1-until_closed))
* on t3, assume c2 got incremented by 1.
*
* Rows in the parent table then are :
* (1, 1, 1, (t1-until_changed),(t1-t3))
* (1, 1, 1, (t1-t3),(t3-until_closed))
* (1, 2, 1, (t3-until_changed),(t3-until_closed))
*
* As noted, the pk value 1 is valid from t1-until_changed but this value
* is split in the two open rows above. Hence when validating whether a
* given child row's time value is present in the parent's VT or TT value,
* the rows must be normalized before comparing.
*
* The queries below use the TD_NORMALIZE_MEET table function.
*
* DESCRIPTION:
* ============
*

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 219

* For each of the variant of RI, a separate query (or set of queries)
* is provided to validate the RI constraint. If query returns rows, then
* it implies that that the child table does not satisfy the constraints.
* Please follw the instructions below to clean up the child table
* FK refers to the columns (excluding the temporal columns or the
* TRC column if the child table does not support ValidTime) on which the
* RI constraint is defined.
*
* 1) If FK is not present in the parent, then either update
* the child to point to correct FK column value or delete
* the row in the child
* 2) If FK is present in the parent, but the child's
* date/time column (date/timestamp or VT or TT column)
* does not satisfy the corresponding temporal RI
* property in the parent's VT or TT, then fix the
* portions of the child column to satisfy the RI
* constraint or delete the child row
* 3) If parent and child table's VT column's data types are
* different(ex Period(date), period(timestamp) etc.),
* Then use the cast function in the queries
* approprately.
* For Ex: In the below queries the contains condition
* will be wriiten by using cast function as follows.
* (cast(tblf.vtp as period(date)) contains t2chld.vt)
*
*
*
*
*
* GLOSSARY
* =========
* NT - Nontemporal
* VT - Validtime
* TT - Transactiontime
* BiT - BiTemporal
* TRC - Temporal Relationship Constraints
* CRI - Current Referential Integrity
* SRI - Sequenced Referential Integrity
* NRI - Nonsequenced Referential Integrity
*
*
**/

/**/
/************ NT child -- NT parent ***********************************/
/**/
/* RI definition.
 foreign key(fk) references with no check option tpar(pk)
*/
SELECT fk
FROM tchld
WHERE fk NOT IN (
SELECT pk
FROM tpar)
 AND
fk IS NOT NULL;

/**/
/************ NT child -- VT parent (TRC)******************************/

Appendix D: Enforcing and Validating Temporal Referential Constraints

220 Temporal Table Support

/* The parent's VT must contain the child dt to unitl_changed *********/
/* when pk-fk match */
/**/
/* RI definition.
 foreign key(fk,dt) references with no check option tpar(pk,vt)
*/
 drop table nm_par;
 CREATE MULTISET TABLE nm_par ,NO FALLBACK ,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT,
 DEFAULT MERGEBLOCKRATIO
 (
 pk INTEGER,
 vtp PERIOD(DATE) as VALIDTIME)
PRIMARY INDEX (pk);

INSERT INTO nm_par (pk,vtp)
WITH SUBTBL(x,d) AS
(NONSEQUENCED VALIDTIME
SELECT pk,vt
FROM tpar)

SELECT *
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x),
SUBTBL.d)
 RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
 ORDER BY x,d) AS TBLF(pk,vtp);

SELECT *
FROM (
CURRENT VALIDTIME SELECT DISTINCT fk,dt
FROM nm_par LEFT OUTER JOIN tchld
ON fk=pk WHERE
 NOT(vtp CONTAINS period(dt, UNTIL_CHANGED))
 AND vtp IS NOT NULL
UNION

SELECT * FROM (NONSEQUENCED VALIDTIME
SELECT fk,tchld.dt
FROM tchld
WHERE fk NOT IN (
SELECT pk
FROM tpar)
 AND
fk IS NOT NULL)DT)dt(x,y);

/**/
/************ NT child -- TT parent ***********************************/
/******* child row must exist in the open rows of parent **************/
/**/
/* RI definition.
 foreign key(fk) references with no check option tpar(pk)
*/
CURRENT TRANSACTIONTIME
SELECT fk

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 221

FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL ;

/**/
/************ NT child -- BiT parent (TRC) ****************************/
/* The parent's VT must contain the child dt to unitl_changed */
/* when pk-fk match */
/**/
/* RI definition.
 foreign key(fk,dt) references with no check option tpar(pk,vt)
*/
drop table nm_par;
 CREATE MULTISET TABLE nm_par ,NO FALLBACK ,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT,
 DEFAULT MERGEBLOCKRATIO
 (
 pk INTEGER,
 vtp PERIOD(DATE) as VALIDTIME)
PRIMARY INDEX (pk);

INSERT INTO nm_par (pk,vtp)
WITH SUBTBL(x,d) AS
(NONSEQUENCED VALIDTIME
AND CURRENT TRANSACTIONTIME
SELECT pk,vt
FROM tpar)

SELECT *
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x),
SUBTBL.d)
 RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
 ORDER BY x,d) AS TBLF(pk,vtp);

SELECT *
FROM (
CURRENT VALIDTIME SELECT DISTINCT fk,dt
FROM nm_par LEFT OUTER JOIN tchld
ON fk=pk WHERE
 NOT(vtp CONTAINS period(dt, UNTIL_CHANGED))
 AND vtp IS NOT NULL
UNION

SELECT * FROM (NONSEQUENCED VALIDTIME
AND CURRENT TRANSACTIONTIME
SELECT fk,tchld.dt
FROM tchld
WHERE fk NOT IN (
SELECT pk
FROM tpar)
 AND

Appendix D: Enforcing and Validating Temporal Referential Constraints

222 Temporal Table Support

fk IS NOT NULL)DT)dt(x,y);

/**/
/************ VT child -- NT parent ***********************************/
/************ NRI in VT dimension *************************************/
/**/
/* RI definition.

nonsequenced validtime foreign key(fk) references with no check
option tpar(pk)

*/
NONSEQUENCED VALIDTIME
SELECT fk,vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL ;

/**/
/************ VT child -- VT parent ***********************************/
/**/

/* CRI in VT dimension */
/* RI definition.
 current validtime foreign key(fk) references with no check option

tpar(pk)
*/

WITH SUBTBL(x,d) AS
 (NONSEQUENCED VALIDTIME
SELECT pk,vt
FROM tpar
WHERE END(tpar.vt) >= temporal_date)
SELECT x (title 'Foreign Key Column'),y (title ' ValidTime Column')
FROM (
NONSEQUENCED VALIDTIME
SELECT fk (title 'Foreign Key Column'),vt (title ' ValidTime Column')
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)

RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,vtp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.vtp CONTAINS period(
CASE WHEN
begin (tchld.vt) > temporal_date THEN
begin (tchld.vt)
ELSE temporal_date
END ,
END (tchld.vt)))
 AND END(tchld.vt) >= temporal_date
 AND END(tblf.vtp) >= temporal_date
 AND tchld.vt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 223

SELECT fk,tchld.vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar
WHERE
END (tpar.vt) >= temporal_date
)
 AND fk IS NOT NULL

 AND END(tchld.vt) >= temporal_date)DT)dt(x,y);

 /* SRI in VT dimension */
 /* RI definition.

sequenced validtime foreign key(fk) references with no check option
tpar(pk)

*/

WITH SUBTBL(x,d) AS
 (NONSEQUENCED VALIDTIME
SELECT pk,vt
FROM tpar)
SELECT x (title 'Foreign Key Column'),y (title ' ValidTime Column')
FROM (
NONSEQUENCED VALIDTIME
SELECT fk,tchld.vt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,vtp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.vtp CONTAINS tchld.vt)
 AND tchld.vt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME
SELECT fk,tchld.vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt(x,y);

/**/
/************ VT child -- BiT parent **********************************/
/**/

/* CRI in VT dimension */
/* RI definition.
 current validtime foreign key(fk) references with no check option

tpar(pk)
*/

WITH SUBTBL(x,d) AS
 (NONSEQUENCED VALIDTIME

Appendix D: Enforcing and Validating Temporal Referential Constraints

224 Temporal Table Support

 AND CURRENT TRANSACTIONTIME
SELECT pk,vt
FROM tpar
WHERE END(tpar.vt) >= temporal_date)
SELECT x (title 'Foreign Key Column'),y (title ' ValidTime Column')
FROM (
NONSEQUENCED VALIDTIME
SELECT fk, tchld.vt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,vtp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.vtp CONTAINS period(
CASE WHEN
begin (tchld.vt) > temporal_date THEN
begin (tchld.vt)
ELSE temporal_date
END ,
END (tchld.vt)))
 AND END(tchld.vt) >= temporal_date
 AND END(tblf.vtp) >= temporal_date
 AND tchld.vt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME
SELECT fk,tchld.vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar
WHERE
END (tpar.vt) >= temporal_date
)
 AND fk IS NOT NULL
 AND END(tchld.vt) >= temporal_date)DT)dt(x,y);

 /* SRI in VT dimension */
 /* RI definition.

sequenced validtime foreign key(fk) references with no check option
tpar(pk)

*/
WITH SUBTBL(x,d) AS
 (NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT pk,vt
FROM tpar)
SELECT x (title 'Foreign Key Column'),y (title ' ValidTime Column')
FROM (
NONSEQUENCED VALIDTIME
SELECT fk,tchld.vt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,vtp)

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 225

, tchld
WHERE pk=fk
 AND
NOT (tblf.vtp CONTAINS tchld.vt)
 AND tchld.vt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME
SELECT fk,tchld.vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt(x,y);

/**/
/************ TT child -- NT parent ***********************************/
/************ NRI in TT dimension *************************************/
/**/
/* RI definition.
 nonsequenced transactiontime foreign key(fk) references
 with no check option tpar(pk)
*/
NONSEQUENCED TRANSACTIONTIME
SELECT fk (title 'Foreign Key Column'),tt (title 'TransactionTime
Column')
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL;

/**/
/************ TT child -- VT parent (TRC) *****************************/
/**** NONSEQUENCED TRANSACTIONTIME RI with TRC on parent't VT *********/
/* The parent's VT must contain the child dt to until_changed */
/* when pk-fk match */
/**/
/* RI definition.
 nonsequenced transactiontime foreign key(fk,dt) references
 with no check option tpar(pk,vt)
*/

 drop table nm_par;
 CREATE MULTISET TABLE nm_par ,NO FALLBACK ,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT,
 DEFAULT MERGEBLOCKRATIO
 (
 pk INTEGER,
 vtp PERIOD(DATE) as VALIDTIME)
PRIMARY INDEX (pk);

INSERT INTO nm_par (pk,vtp)
WITH SUBTBL(x,d) AS
(NONSEQUENCED VALIDTIME
SELECT pk,vt

Appendix D: Enforcing and Validating Temporal Referential Constraints

226 Temporal Table Support

FROM tpar)

SELECT *
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x),
SUBTBL.d)
 RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
 ORDER BY x,d) AS TBLF(pk,vtp);

SELECT *
FROM (
CURRENT VALIDTIME SELECT DISTINCT fk,dt
FROM nm_par LEFT OUTER JOIN tchld
ON fk=pk WHERE
 NOT(vtp CONTAINS period(dt, UNTIL_CHANGED))
 AND vtp IS NOT NULL
UNION

SELECT * FROM (NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.dt
FROM tchld
WHERE fk NOT IN (
SELECT pk
FROM tpar)
 AND
fk IS NOT NULL)DT)dt(x,y);

/**/
/************ TT child -- TT parent ***********************************/
/**/

/* CRI in TT dimension */
/* RI definition.
 current transactiontime foreign key(fk) references
 with no check option tpar(pk)
*/
/* CURRENT rows in child should have equivalent PK in parent's open rows

for each matching fk-pk rows.
*/
CURRENT TRANSACTIONTIME
SELECT fk (title 'Foreign Key Column'),tt (title 'TransactionTime
Column')
FROM tchld
WHERE fk NOT IN (
SELECT pk
FROM tpar)
 AND
fk IS NOT NULL;

 /* SRI in TT dimension */
 /* RI definition.

sequenced transactiontime foreign key(fk) references
with no check option tpar(pk)

*/
 /* child row's TT must be contained in the normalized TT of the parent

for each of the matching fk-pk rows.
 */

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 227

WITH SUBTBL(x,d) AS
 (NONSEQUENCED TRANSACTIONTIME
SELECT pk,tt
FROM tpar)
SELECT *
FROM (
NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.tt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)

RETURNS (pk1 INTEGER, ttp1 PERIOD(timestamp
with time zone))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,ttp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.ttp CONTAINS tchld.tt)
 AND tchld.tt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.tt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt(x,y);

/**/
/************ TT child -- BiT parent(TRC) *****************************/
/**/

 /* CURRENT TRANSACTIONTIME RI AND TRC on parent */
 /* RI definition.

current transactiontime foreign key(fk,dt) references
with no check option tpar(pk,vt)

*/
 drop table nm_par;
 CREATE MULTISET TABLE nm_par ,NO FALLBACK ,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT,
 DEFAULT MERGEBLOCKRATIO
 (
 pk INTEGER,
 vtp PERIOD(DATE) as VALIDTIME)
PRIMARY INDEX (pk);

INSERT INTO nm_par (pk,vtp)
WITH SUBTBL(x,d) AS
(NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT pk,vt
FROM tpar)

SELECT *

Appendix D: Enforcing and Validating Temporal Referential Constraints

228 Temporal Table Support

FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x),
SUBTBL.d)
 RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
 ORDER BY x,d) AS TBLF(pk,vtp);

SELECT *
FROM (
CURRENT VALIDTIME SELECT DISTINCT fk,dt
FROM nm_par LEFT OUTER JOIN tchld
ON fk=pk WHERE
 NOT(vtp CONTAINS period(dt, UNTIL_CHANGED))
 AND vtp IS NOT NULL
UNION

SELECT * FROM(NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT fk,tchld.dt
FROM tchld
WHERE fk NOT IN (
SELECT pk
FROM tpar)
 AND
fk IS NOT NULL)DT)dt(x,y);

/* SEQUENCED TRANSACTIONTIME RI AND TRC on parent */
/* RI definition.
 sequenced transactiontime foreign key(fk,dt) references
 with no check option tpar(pk,vt)
*/
/* child row's TT must be contained in the normalized TT of the parent

for each of the matching fk-pk rows */

/* normalize the VT on open rows in TT AND PK column -
with this result, normalize in TT diemntion on matching PK AND VT

*/
drop table tmptbl;
CREATE MULTISET TABLE tmptbl
AS (
WITH SUBTBL(x,d,t) AS
 (NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT pk,vt, tt
FROM tpar)
SELECT *
FROM (TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x, SUBTBL.t),
 SUBTBL.d)
RETURNS (pk1 INTEGER, ttp1 PERIOD(timestamp
with time zone), vtp1 period(date))
 HASH BY x, t LOCAL
ORDER BY x,t,d)AS TBLF(pk,tt, vt))
) with data ;

drop table tmptbl1;
CREATE MULTISET TABLE tmptbl1
AS (

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 229

NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT pk, vt, tt
FROM tpar
WHERE END(tt) is not until_closed
UNION
SELECT pk, vt, tt
FROM tmptbl
) with data ;

WITH SUBTBL(x,v, d) AS
(
 SEL * FROM tmptbl1
)

SELECT *
FROM (
NONSEQUENCED TRANSACTIONTIME
SELECT fk, tchld.dt, tchld.tt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x, SUBTBL.v),
 SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 period(date), ttp1 PERIOD(timestamp
with time zone))
 HASH BY x, v LOCAL
ORDER BY x,v,d)AS TBLF(pk,vtp, ttp)
, tchld
WHERE pk=fk
 AND
((NOT (tblf.ttp CONTAINS tchld.tt))
 OR (NOT (tblf.vtp CONTAINS period(tchld.dt, UNTIL_CHANGED)))
)
UNION
SELECT * FROM (NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.dt, tchld.tt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt order by 1, 2 ;

/**/
/************ BiT child -- NT parent **********************************/
/**/

/* NRI in both the dimensions */
/* RI definition.
 nonsequenced validtime and nonsequenced transactiontime foreign

key(fk) references with no check option tpar(pk)
*/

NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT fk,vt,tt
FROM tchld
WHERE fk NOT IN

Appendix D: Enforcing and Validating Temporal Referential Constraints

230 Temporal Table Support

(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL ;

/**/
/************ BiT child -- VT parent **********************************/
/**/

/* CRI in VT dimension NRI in TT dimension */
/* RI definition.
 current validtime and nonsequenced transactiontime foreign key(fk)
 references with no check option tpar(pk)
*/
WITH SUBTBL(x,d) AS
 (NONSEQUENCED VALIDTIME
SELECT pk,vt
FROM tpar
WHERE END(tpar.vt) >= temporal_date)
SELECT *
FROM (
NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT fk, tchld.vt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,vtp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.vtp CONTAINS period(
CASE WHEN
begin (tchld.vt) > temporal_date THEN
begin (tchld.vt)
ELSE temporal_date
END ,
END (tchld.vt)))
 AND END(tchld.vt) >= temporal_date
 AND END(tblf.vtp) >= temporal_date
 AND tchld.vt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar
WHERE
END (tpar.vt) >= temporal_date
)
 AND fk IS NOT NULL
 AND END(tchld.vt) >= temporal_date)DT)dt(x,y);

/* SRI in VT dimension NRI in TT dimension */

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 231

/* RI definition.
 sequenced validtime and nonsequenced transactiontime foreign key(fk)
 references with no check option tpar(pk)
*/

WITH SUBTBL(x,d) AS
 (NONSEQUENCED VALIDTIME
SELECT pk,vt
FROM tpar)
SELECT *
FROM (
NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.vt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)

RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,vtp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.vtp CONTAINS tchld.vt)
 AND tchld.vt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt(x,y) order by 1, 2 ;

/**/
/************ BiT child -- TT parent **********************************/
/**/

/* NRI in VT dimension CRI in TT dimension */
/* RI definition.
 nonsequenced validtime and current transactiontime foreign key(fk)
 references with no check option tpar(pk)
*/
/* CURRENT rows in child should have equivalent PK in parent's open rows

for each matching fk-pk rows */

NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT fk,vt,tt
FROM tchld
WHERE fk NOT IN (
SELECT pk
FROM tpar)
 AND
fk IS NOT NULL;

/* NRI in VT dimension SRI in TT dimension */

Appendix D: Enforcing and Validating Temporal Referential Constraints

232 Temporal Table Support

/* RI definition.
 nonsequenced validtime and sequenced transactiontime foreign key(fk)
 references with no check option tpar(pk)
*/
/* child row's TT must be contained in the normalized TT of the parent

for each of the matching fk-pk rows */

WITH SUBTBL(x,d) AS
 (NONSEQUENCED TRANSACTIONTIME
SELECT pk,tt
FROM tpar)
SELECT *
FROM (
NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT DISTINCT fk,tchld.tt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)
RETURNS (pk1 INTEGER, ttp1 PERIOD(timestamp
with time zone))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,ttp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.ttp CONTAINS tchld.tt)
 AND tchld.tt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.tt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt(x,y);

/**/
/************ BiT child -- BiT parent *********************************/
/**/

/* CRI in VT dimension, CRI TT dimension */
/* RI definition.
 current validtime and current transactiontime foreign key(fk)
 references with no check option tpar(pk)
*/

WITH SUBTBL(x,d) AS
 (NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT pk,vt
FROM tpar
WHERE END(tpar.vt) >= temporal_date)
SELECT *
FROM (
NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT fk, tchld.vt

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 233

FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,vtp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.vtp CONTAINS period(
CASE WHEN
begin (tchld.vt) > temporal_date THEN
begin (tchld.vt)
ELSE temporal_date
END ,
END (tchld.vt)))
 AND END(tchld.vt) >= temporal_date
 AND END(tblf.vtp) >= temporal_date
 AND tchld.vt IS NOT NULL
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT fk,tchld.vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar
WHERE
END (tpar.vt) >= temporal_date
)
 AND fk IS NOT NULL
 AND END(tchld.vt) >= temporal_date)DT)dt(x,y);

 /* SRI in VT dimension, CRI TT dimension */
 /* RI definition.
 sequenced validtime and current transactiontime foreign key(fk)
 references with no check option tpar(pk)
*/
WITH SUBTBL(x,d) AS
 (NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT pk,vt
FROM tpar)
SELECT *
FROM (
NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT fk,tchld.vt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x), SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 PERIOD(DATE))
 HASH BY x LOCAL
ORDER BY x,d) AS TBLF(pk,vtp)
, tchld
WHERE pk=fk
 AND
NOT (tblf.vtp CONTAINS tchld.vt)
 AND tchld.vt IS NOT NULL
UNION

Appendix D: Enforcing and Validating Temporal Referential Constraints

234 Temporal Table Support

SELECT * FROM (NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT fk,tchld.vt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt(x,y);

/***
 * CRI in VT dimension, SRI TT dimension
**/
/* RI definition.
 current validtime and sequenced transactiontime foreign key(fk)
 references with no check option tpar(pk)
*/
drop table tmptbl;
CREATE MULTISET TABLE tmptbl
AS (
WITH SUBTBL(x,d,t) AS
 (NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT pk,vt, tt
FROM tpar)
SELECT *
FROM (TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x, SUBTBL.t),
 SUBTBL.d)
RETURNS (pk1 INTEGER, ttp1 PERIOD(timestamp
with time zone), vtp1 period(date))
 HASH BY x, t LOCAL
ORDER BY x,t,d)AS TBLF(pk,tt, vt))
) with data ;

drop table tmptbl1;
CREATE MULTISET TABLE tmptbl1
AS (
NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME
SELECT pk, vt, tt
FROM tpar
WHERE END(tt) is not until_closed
UNION
SELECT pk, vt, tt
FROM tmptbl
) with data ;

WITH SUBTBL(x,v, d) AS
(
 SEL * FROM tmptbl1
)

SELECT *
FROM (
NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME
SELECT DISTINCT fk, tchld.vt, tchld.tt
FROM TABLE (

Appendix D: Enforcing and Validating Temporal Referential Constraints

Temporal Table Support 235

 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x, SUBTBL.v),
 SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 period(date), ttp1 PERIOD(timestamp
with time zone))
 HASH BY x, v LOCAL
ORDER BY x,v,d)AS TBLF(pk,vtp, ttp)
, tchld
WHERE pk=fk
 AND
((NOT (tblf.ttp CONTAINS tchld.tt))
 OR (NOT (tblf.vtp CONTAINS PERIOD(
CASE WHEN
begin (tchld.vt) > temporal_date THEN
begin (tchld.vt)
ELSE temporal_date
END ,
END (tchld.vt))))
)
AND END(tchld.vt) >= TEMPORAL_DATE
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.vt, tchld.tt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt order by 1, 2 ;

/***
 * SRI in VT dimension, SRI TT dimension
**/
/* RI definition.
 sequenced validtime and sequenced transactiontime foreign key(fk)
 references with no check option tpar(pk)
*/
drop table tmptbl;
CREATE MULTISET TABLE tmptbl
AS (
WITH SUBTBL(x,d,t) AS
 (NONSEQUENCED VALIDTIME
 AND CURRENT TRANSACTIONTIME
SELECT pk,vt, tt
FROM tpar)
SELECT *
FROM (TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x, SUBTBL.t),
 SUBTBL.d)
RETURNS (pk1 INTEGER, ttp1 PERIOD(timestamp
with time zone), vtp1 period(date))
 HASH BY x, t LOCAL
ORDER BY x,t,d)AS TBLF(pk,tt, vt))
) with data ;

drop table tmptbl1;
CREATE MULTISET TABLE tmptbl1
AS (
NONSEQUENCED VALIDTIME
 AND NONSEQUENCED TRANSACTIONTIME

Appendix D: Enforcing and Validating Temporal Referential Constraints

236 Temporal Table Support

SELECT pk, vt, tt
FROM tpar
WHERE END(tt) is not until_closed
UNION
SELECT pk, vt, tt
FROM tmptbl
) with data ;

WITH SUBTBL(x,v, d) AS
(
 SEL * FROM tmptbl1
)

SELECT *
FROM (
NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME
SELECT DISTINCT fk, tchld.vt, tchld.tt
FROM TABLE (
 TD_SYSFNLIB.TD_NORMALIZE_MEET(NEW VARIANT_TYPE(SUBTBL.x, SUBTBL.v),
 SUBTBL.d)
RETURNS (pk1 INTEGER, vtp1 period(date), ttp1 PERIOD(timestamp
with time zone))
 HASH BY x, v LOCAL
ORDER BY x,v,d)AS TBLF(pk,vtp, ttp)
, tchld
WHERE pk=fk
 AND
((NOT (tblf.ttp CONTAINS tchld.tt))
 OR (NOT (tblf.vtp CONTAINS tchld.vt))
)
UNION
SELECT * FROM (NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME
SELECT fk,tchld.vt, tchld.tt
FROM tchld
WHERE fk NOT IN
(
SELECT pk
FROM tpar)
 AND fk IS NOT NULL)DT)dt order by 1, 2 ;

Temporal Table Support 237

Glossary

F
FK Foreign Key

A means of establishing referential integrity between tables in a relational database. A foreign
key in a child table is typically the logical primary key of its parent table. If it is not the
primary key for the parent table, then it is one of its alternate keys, the values of which
uniquely identify each row of the parent table.

N
NUPI Nonunique Primary Index

NUSI Nonunique Secondary Index

P
PA Period of Applicability

The period for which a query or data modification is effective. In sequenced temporal DML,
this is the period specified with the SEQUENCED qualifier.

PI Primary Index

A set of columns in a table whose values are hashed to create a code used to distribute its rows
to, and retrieve them from, the AMPs.

Each table in a Teradata database can have zero or one (never more than one), primary index,
which might or might not be unique.

PK Primary Key

A set of columns in a table whose values make each row in that table unique.

Primary keys are a logical, not physical, concept that are often, but not necessarily, used as the
primary index for a table when it is physically designed. A table can have multiple candidate
keys, but only one primary key can be defined for it. Those candidate keys that are not used as
the primary key for a table are referred to as alternate keys.

Relationships between primary and foreign keys are often used to establish referential
integrity between tables. These relationships can be exploited by the Optimizer to enhance
query performance.

PPI Partitioned Primary Index

PV Period of Validity

The period value of the valid-time column in a valid-time or bitemporal table.

Glossary

238 Temporal Table Support

S
SJI System-defined Join Index

SJIs are created automatically when primary key or unique constraints are applied to temporal
tables. SJIs are updated whenever ALTER TABLE TO CURRENT is used on the temporal
table.

U
UPI Unique Primary Index

USI Unique Secondary Index

Temporal Table Support 239

Index

A
ABORT (temporal form) 112
ACID and temporal tables 209
Administration

nontemporal operations 179
system clocks 179

ALTER TABLE (temporal form) 42
Archiving temporal tables 181
As of temporal query 26

C
Capacity planning for temporal tables 180
Check constraints 87, 88
Closed row 23
Concurrency and current temporal DML 209
Constraints and temporal tables 87

check constraints 87, 88
enforcing referential constraints 217
primary key constraints 88
system-defined join index (SJI) 89
temporal referential constraints 90
temporal relational constraint (TRC) 94
unique constraints 88
validating referential constraints 217

Copy table. See CREATE TABLE AS
CREATE JOIN INDEX (temporal form) 56
CREATE RECURSIVE VIEW (temporal form) 60
CREATE TABLE (temporal form) 63
CREATE TABLE AS (temporal form) 63
CREATE TRIGGER (temporal form) 96
CREATE VIEW (temporal form) 101
Current row 22
Current temporal modification 24
Current temporal query 25
Cursors 171

D
DBS Control utility

EnabNonTempolOp 179
EnabNonTempoOp 175
InclNTforGrntOrRevokAll 174

DELETE (temporal form) 115
DIAGNOSTIC SET CURRENT VALIDTIME SELECT 145

E
Element type. See Period data types
EnabNonTempoOp, DBS Control utility 175, 179
Error logging tables

INSERT ... SELECT 126
MERGE 132

Error tables. See Error logging tables
EXCEPT and temporal queries 152
EXPAND ON 153
EXPLAIN request modifier 152

F
FastLoad and temporal tables 40
FROM clause (temporal form) 154
Future row 22

G
GRANT (temporal form) 174

H
History row 22, 24

I
InclNTforGrntOrRevokAll, DBS Control utility 174
INSERT ... SELECT (temporal form) 121

error logging tables 126
INSERT (temporal form) 121
INTERSECT and temporal queries 152

L
Loading data into temporal tables 40

M
MERGE (temporal form) 127

error logging tables 132
MINUS and temporal queries 152
MultiLoad and temporal tables 40

N
No longer valid row 22, 24
Nonsequenced temporal modification 25
Nonsequenced temporal query 26

Index

240 Temporal Table Support

Nontemporal operation 25
NONTEMPORAL privilege 175

O
Open row 23

P
Partitioning temporal tables 84
Period data types

assignment 30
comparing types 30
element type 30

Period of applicability (PA) 24
Primary key constraints 88
Privileges, NONTEMPORAL 175

R
REPLACE RECURSIVE VIEW (temporal form) 60
REPLACE TRIGGER (temporal form) 96
REPLACE VIEW (temporal form) 101
Replication and temporal tables 108
Restoring a prior table state example 206
REVOKE (temporal form) 177
ROLLBACK (temporal form) 134

S
SELECT ... INTO (temporal form) 138
SELECT (temporal form) 137
Sequenced temporal modification 25
Sequenced temporal query 26
Serializability and temporal tables 209
Session temporal qualifiers 27, 105
Set operations and temporal queries 152
SET SESSION 105, 206
SET SESSION SUBSCRIBER 108
Syntax, how to read 185
System clocks 179
System-defined join index (SJI) 89

T
Temporal column types 17
Temporal database 17
Temporal database management system 17
Temporal queries

as of 26
current 25
nonsequenced 26
nontemporal 25
sequenced 26
set operations and 152

Temporal referential constraints 90
enforcing and validating 217

Temporal relational constraint (TRC) 94
Temporal tables 14
Time granule 31
Timestamping

transaction time 28
valid time 29

Transaction isolation 209
Transaction-time column 18

U
UNION and temporal queries 152
Unique constraints 88
UNTIL_CHANGED 21
UNTIL_CLOSED 21
UPDATE (temporal form) 158
UPDATE (temporal upsert form) 167

V
Valid row 23
Valid-time column 19

	Preface
	Purpose
	Audience
	Supported Software Releases and Operating Systems
	Prerequisites
	Changes to This Book
	Additional Information
	Teradata Database Optional Features

	Table of Contents
	Chapter 1 Getting Started
	The Need to Represent Time
	Introduction to Temporal Table Support
	Temporal Data Types
	Temporal Statements
	Overview: Temporal Tables

	Chapter 2 Basic Temporal Concepts
	Temporal Database Management System
	Temporal Database
	Transaction Time and Valid Time
	UNTIL_CHANGED and UNTIL_CLOSED
	Temporal Row Types
	Temporal Table Modifications
	Nontemporal Operations
	Temporal Table Queries
	Session Temporal Qualifiers
	Timestamping
	Period Data Types: Basic Definitions
	Period Data Type Usage

	Chapter 3 Creating Temporal Tables
	Creating Valid-Time Tables
	Creating Transaction-Time Tables
	Partitioning Temporal Tables
	Creating Join Indexes for Temporal Tables
	Loading Data into Temporal Tables

	Chapter 4 SQL Data Definition Language (Temporal Forms)
	ALTER TABLE (Temporal Form)
	CREATE JOIN INDEX (Temporal Form)
	CREATE RECURSIVE VIEW/REPLACE RECURSIVE VIEW (Temporal Forms)
	CREATE TABLE, CREATE TABLE AS (Temporal Forms)
	Partitioning Expressions for Temporal Tables
	Using Constraints with Temporal Tables
	CREATE TRIGGER/REPLACE TRIGGER (Temporal Form)
	CREATE VIEW, REPLACE VIEW (Temporal Forms)
	SET SESSION (Session Temporal Qualifiers)
	SET SESSION SUBSCRIBER
	SQL HELP and SHOW Statements

	Chapter 5 SQL Data Manipulation Language (Temporal Forms)
	ABORT (Temporal Form)
	DELETE (Temporal Form)
	INSERT/INSERT … SELECT (Temporal Forms)
	MERGE (Temporal Form)
	ROLLBACK (Temporal Form)
	SELECT/SELECT ... INTO (Temporal Forms)
	FROM Clause (Temporal Form)
	UPDATE (Temporal Form)
	UPDATE (Temporal Upsert Form)
	Cursors and Temporal Queries

	Chapter 6 SQL Data Control Language (Temporal Forms)
	GRANT (Temporal Form)
	REVOKE (Temporal Form)

	Chapter 7 Administration
	System Clocks
	Nontemporal Operations
	Capacity Planning for Temporal Tables
	Archiving Temporal Tables

	Appendix A How to Read Syntax Diagrams
	Syntax Diagram Conventions

	Appendix B Examples
	Creating Temporal Tables
	Querying Temporal Tables
	Modifying Temporal Tables
	Views on Temporal Tables
	Session Temporal Qualifier
	Restoring a Prior Table State

	Appendix C Potential Concurrency Issues with Current Temporal DML
	Transaction Isolation
	Examples

	Appendix D Enforcing and Validating Temporal Referential Constraints
	Glossary
	Index

