
A Case Study of Temporal Data

By Richard T. Snodgrass,
Professor of Computer Science,
University of Arizona

Data Warehousing

http://www.teradata.com


A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 2 OF 21

Executive Overview

Information is the key asset of many companies – and

for most, this asset contains time-referenced data. It can

be frustrating that standard SQL has so few language

facilities for such data. Fortunately, Teradata® Database

13.10 has many new features in its SQL designed

specifically for temporal support.

This case study will examine how the new SQL language

features in Teradata Database naturally reflect the

expression in English of modifications and how these

features greatly reduce the length and complexity of such

modifications in conventional SQL. The result is that

developers can now much more easily convert their

applications to support time-varying data and create

new applications that exploit stored data about the past

for deeper insight into the future.

Executive Overview 2

Bitemporal Tables Supported 3

Following the Property 3

Automatic Time Handling 5

Time-Slice Queries 10

The Spectrum of Bitemporal Queries 13

Summary 20

Acknowledgement 20

References 21

About the Author 21

Table of Contents

http://www.teradata.com


Bitemporal Tables Supported

Take for example a mortgage company that is challenged with

achieving high data quality on information stored concerning

customers and their loans. A customer service person (CSR)

reports an error to the IT personnel; errors are also discovered by

batch jobs producing quarterly reports. The more information the

IT personnel have access to, the better able they are to analyze and

correct these errors.

For this reason, it is critical that changes to critical tables concern-

ing customers and their loans be tracked. This implies that each

such table (an example will be given shortly of a table recording

who owns what property) has what is termed transaction-time

support, to maintain a history of changes [Snodgrass & Ahn 1986,

Snodgrass et al. 1996b]. As this table also needs to model changes

in reality, it requires valid-time support, to indicate when the data

were considered valid [Snodgrass et al. 1996a]. The result is termed

a bitemporal table, reflecting these two aspects of underlying

temporal support. Teradata Database 13.10 supports bitemporal

tables, greatly easing the development of such applications.

With bitemporal tables, IT can first determine when the erroneous

data were stored (a transaction time), rollback the table to that

point, and look at the valid-time history. IT can then determine

the correct valid-time history. With that history, IT can tell the

CSR what needs to be changed, or, if the error was in the process-

ing of a user transaction, IT may update the database manually.

Because transaction-time support is included, these changes will

be logged as well, enabling someone later to see what happened

when the change itself was in error. The support for both valid

time and transaction time permits a sophisticated analysis of the

evolution of the table, with all the data directly at hand. The

alternatives – going back through paper records to reconstruct the

sequence of changes that were made, or attempting to extract that

sequence from backup tapes or other secondary data sources – are

simply not practical in such a dramatically changing environment.

Following the Property

A property owner table captures both the history in reality of the

owner(s) of a property over time, as well as the sequence of

database states, denoting the transactions applied to this table.

This bitemporal table is easy to specify in Teradata’s SQL (note the

new keywords VALIDTIME and TRANSACTIONTIME).

CREATE MULTISET TABLE Prop_Owner (

customer_number INTEGER,

property_number INTEGER,

property_VT PERIOD(DATE) NOT NULL AS VALIDTIME,

property_TT PERIOD (TIMESTAMP(6) WITH TIME ZONE)

NOT NULL AS TRANSACTIONTIME)

PRIMARY INDEX(property_number);

The valid timestamp is specified as having a granularity of day, as

a property cannot change hands multiple times in a single day.

The transaction timestamp is specified at a granularity of

microsecond, to differentiate rapidly executing transactions.

The property_number column constitutes a primary key in both

valid time and transaction time. Specifically, the state of the table

at any day in valid time, as stored at any instant in transaction

time, should include at most one row in the table for any particu-

lar property, meaning that that property has one owner at that

valid time, as recorded at that transaction time. Because the table

was declared to be bitemporal (via inclusion of both valid and

transaction time), this temporal integrity constraint will be

checked automatically by Teradata Database 13.10.

Valid-time state tables admit nine kinds of modifications: current,

sequenced and non-sequenced versions of INSERT, DELETE and

UPDATE. (We’ll explain these terms shortly.) Transaction-time

state tables are much simpler: only current versions of INSERT,

DELETE and UPDATE are relevant. So, what is the situation with

bitemporal tables? It turns out that here again only nine kinds of

modifications apply, all current in transaction time: valid-time

current, valid-time sequenced, and valid-time non-sequenced

versions of INSERT, DELETE and UPDATE.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 3 OF 21

http://www.teradata.com


Let’s follow the history, over both valid time and transaction time,

of an apartment in Boston at 123 Main Street for the month of

January, 2010. On January 10, this apartment was purchased by

Eva Nielsen. We record this information as a current valid-time,

current transaction-time insertion.

When the database management system (DBMS) starts up, the

default temporal qualifier is exactly that: current in valid time and

current in transaction time. The English in italics followed by the

SQL statement, using the new Teradata functionality.

Eva Nielsen (whose customer number is 145) buys the apartment at

123 Main Street in Boston (whose property number is 7797) today

(which happens to be January 10, 2010).

INSERT INTO Prop_Owner (customer_number,
property_number)

VALUES (145, 7797);

This information is valid starting now. The DBMS encodes this

information using the special valid-time and transaction-time

columns, all under the covers. Note that the transaction-time

extent of all modifications is from “now,” in this case, “2010-01-

10” to “until closed,” which is encoded as “9999-12-31.” This is also

the valid-time extent, given the default temporal qualifier (which

can be changed by the user).

The interplay between valid time and transaction time can be

confusing, so it is useful to have a visualization of the information

content of a bitemporal table (see Figure 1.)

In this figure, the horizontal axis tracks transaction time, and the

vertical axis tracks valid time. Information about a row, or about

multiple rows associated with a primary key value, are depicted

as two-dimensional polygonal regions in the diagram. Arrows

extending rightward denote “until closed” in transaction time;

arrows extending upward denote “forever” in valid time. Here we

have but one region, associated with Eva Nielsen, that starts at

time 10 (all times are relative to January 2010, so ‘10’ corresponds

to January 10, 2010) in transaction time and extends to “until

closed,” and begins also at time 10 in valid time and extends to

“forever.” The arrow pointing upward extends to the largest valid

time value (“forever”); the arrow pointing to the right extends to

“now,” that is, it advances day by day to the right (a transaction

time in the future is meaningless).

Let’s examine a simple update.

Today (which happens to be January 15) Peter Olsen (whose cus-

tomer number is 827) buys this apartment, transferring ownership

from Eva to him.

UPDATE Prop_Owner

SET customer_number = 827

WHERE property_number = 7797;

Figure 2 shows the bitemporal time diagram corresponding to the

above insertion. The valid-time extent of a current modification

is always “now” to “forever,” so from time 15 on, the property is

owned by Peter; at the rest of the time, from time 10 to 15, the

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 4 OF 21

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Transaction Time

Peter

F

Eva

Figure 1: A bitemporal time diagram corresponding to Eva purchasing the
apartment, performed on January 10.

customer_number property_number property_VT property_TT

145 7797 (2010-01-10,
9999-12-31)

(2010-01-10,
9999-12-31)

http://www.teradata.com


property was owned by Eva. Both regions extend to the right to

“until closed.” This time diagram captures two facts – Eva owning

the apartment and Peter owning the apartment – each associated

with a bitemporal region.

Additionally, this figure captures the evolving information content

of the property owner table. Consider a transaction time-slice,

which returns the valid-time history at a given transaction time.

Such a time-slice can be visualized as a vertical line intersecting

the x-axis at the given time.

At transaction time 5 (January 5), the table has no record of the

apartment being owned by anyone. At transaction time 12, the

table records that the apartment was owned by Eva from January

10 to “forever.” If we time traveled back to January 12, and asked

for the history of the apartment, that would be the response. We

thought then that Eva owns the apartment, and that is what the

property owner table recorded then. At transaction time 17 the

table records that the apartment was owned by Eva from January

10 to January 15, at which time ownership transferred to Peter,

who now owns it to “forever.” And that is the history as best

known (denoted by the right pointing arrows). It is what we think

is true about the valid-time history.

Automatic Time Handling

In addition to contending with valid time, we also must ensure

that the transaction-time extent of the modification is from “now”

to “until closed.” One important property of tables with transac-

tion-time support is that they are append-only.

As these tables capture the state of the stored table over time, once

we have recorded that the state was such and such at a particular

time, we can’t go back and change that later because we can’t

change the bits stored on the disk at that prior time. The changes

always accumulate in the table with transaction-time support. The

practical ramification is that we never physically delete a row from

such a table; the only physical modifications allowed are to insert

rows into the table and to change the transaction-stop time of a

row from “until closed” to “now,” thereby logically deleting the row.

Teradata Database 13.10 handles this automatically. The resulting pro-

perty owner table contains three rows. A careful matching of the dates

in this table to the time diagram will aid in understanding how a

bitemporal state table encodes the regions found in the time diagram.

In previous versions of the Teradata DBMS, all of this must be

done manually. You are encouraged to implement this simple

update in conventional (nontemporal) SQL. It requires a surpris-

ingly complex series of five INSERT and UPDATE statements,

some 31 lines in all.

All nine types of modifications allowed on bitemporal tables must

be implemented as a combination of INSERTs with a transaction

time of “now” to “until closed” (which is represented with “for-

ever”) and UPDATEs that set the transaction-stop time to “now.”

Any other modification to a bitemporal table will violate its

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 5 OF 21

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Transaction Time

Peter

Eva

Figure 2. A current update: Peter buys the apartment, performed on January 15.

customer_number property_number property_VT property_TT

145 7797 (2010-01-10,
9999-12-31)

(2010-01-10,
2010-01-15)

145 7797 (2010-01-10,
2010-01-15)

(2010-01-15,
9999-12-31)

827 7797 (2010-01-15,
9999-12-31)

(2010-01-15,
9999-12-31)

http://www.teradata.com


semantics. Fortunately, Teradata Database 13.10 handles this for us.

So let’s follow the continued evolution of the property owner table.

On January 20, we find out that Peter has sold the property on this

day to someone else, with the mortgage handled by another mortgage

company. From the mortgage company’s point of view, the property

no longer exists as of (a valid time of) January 20. This is captured by

performing a current deletion on January 20 against this table.

Peter Olsen sells the apartment today (on January 20, 2010).

DELETE FROM Prop_Owner

WHERE property_number = 7797;

Figure 3 shows the resulting time diagram. If we now request the

valid-time history as best known, we will learn that Eva owned the

apartment from January 10 to January 15, and Peter owned the

apartment from January 15 to January 20. Note that all prior states

are retained. We can still time travel back to January 18 and request

the valid-time history, which will state that on that day we thought

that Peter still owned the apartment. In the previous diagram (Figure

2), Peter’s region was a rectangle. The current deletion has chopped

off the top-right corner, so that the region is now L-shaped.

The DELETE handles both current and future rows. The resulting

table contains four rows. The third row was terminated at “now,”

with the fourth row newly inserted. The modified rows and

columns are highlighted with a slanted font.

In current modifications, valid time and transaction time are coupled:

the valid time at which the modification takes effect is “now.”

Similarly, the transaction time at which the modification is recorded

is “now.” Sequenced modifications decouple the valid time from the

transaction time, allowing the former to be supplied by the user.

Sequenced modifications generalize current modifications to apply

over a specified period of applicability. For bitemporal tables, the

modification is sequenced only on valid time; the modification is

always a current modification on transaction time, from “now” to

“until closed.”

We consider a sequenced insertion. On January 23, we find out

that Eva had purchased the apartment not on January 10, but on

January 3, a week earlier. So we insert those additional days, to

obtain the time diagram shown in Figure 4.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 6 OF 21

Figure 3. A current deletion: Peter sells the apartment, performed on
January 20.

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Transaction Time

F

Peter

Eva

customer_number property_number property_VT property_TT

145 7797 (2010-01-10,
9999-12-31)

(2010-01-10,
2010-01-15)

145 7797 (2010-01-10,
2010-01-15)

(2010-01-15,
9999-12-31)

827 7797 (2010-01-15,
9999-12-31)

(2010-01-15,
2010-01-20)

827 7797 (2010-01-15,
2010-01-20)

(2010-01-20,
9999-12-31)

http://www.teradata.com


This insertion is termed a retroactivemodification, as the period of

applicability (here, January 3 through 10) is before the modification

date (here, January 23). Sequenced (and non-sequenced) modifica-

tions can also be post-active, an example being a promotion that will

occur in the future (in valid time). (A valid end time of “forever” is

generally not considered a post-active modification; only the valid

begin time is considered.) A sequenced modification might even be

simultaneously retroactive, post-active, and current, when its period

of applicability starts in the past and extends into the future (e.g., a

fixed-term assignment that started in the past and ends at a desig-

nated date in the future).

Eva actually purchased the apartment January 3 (performed on

January 23).

SEQUENCED VALIDTIME

INSERT INTO Prop_Owner (customer_number,
property_number, property_VT)

VALUES (145, 7797, PERIOD (DATE ‘2010-01-03’,
DATE ‘2010-01-10’));

We learn on January 26 that Eva bought the apartment not January

10, as initially thought, nor on January 3, as later corrected, but on

January 5. This requires a sequenced deletion.

Eva actually purchased the apartment January 5.

SEQUENCED VALIDTIME PERIOD (DATE ‘2010-01-03’,
DATE ‘2010-01-05’)

DELETE FROM Prop_Owner

WHERE property_number = 7977;

We specify a period of applicability of January 3 through 5, with

the result shown in the time diagram in Figure 5.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 7 OF 21

Transaction Time

5

15

10

30

25

20

5 10 15 20 25 30

Valid Time

F

Peter

Eva

Figure 5. A sequenced deletion performed on January 26:
Eva actually purchased the apartment on January 5.

Figure 4. A sequenced insertion performed on January 23:
Eva actually purchased the apartment on January 3.

Transaction Time

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Peter

Eva

customer_number property_number property_VT property_TT

145 7797 (2010-01-10,
9999-12-31)

(2010-01-10,
2010-01-15)

145 7797 (2010-01-10,
2010-01-15)

(2010-01-15,
9999-12-31)

827 7797 (2010-01-15,
9999-12-31)

(2010-01-15,
2010-01-20)

827 7797 (2010-01-15,
2010-01-20)

(2010-01-20,
9999-12-31)

145 7797 (2010-01-03,
2010-01-10)

(2010-01-23,
9999-12-31)

http://www.teradata.com


We need to terminate the current row, and insert a new row with a

smaller period of validity, as shown below.

We learn on January 28 that Peter bought the apartment on

January 12, not January 15 as previously thought. This requires a

sequenced update.

Peter actually purchased the apartment on January 12.

SEQUENCED VALIDTIME PERIOD (DATE ‘2010-01-12’,
DATE ‘2010-01-15’)

UPDATE Prop_Owner

SET customer_number = 827

WHERE property_number = 7797;

This update states a period of applicability of January 12 through

15, setting the customer number to 827, which results in the

time diagram in Figure 6. Effectively, the ownership must be

transferred from Eva to Peter for those three days, resulting in

the following table.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 8 OF 21

Figure 6. A sequenced update performed on January 28: Peter actually
purchased the apartment on January 12.

Transaction Time

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Peter

Eva

customer_number property_number property_VT property_TT

145 7797 (2010-01-10,
9999-12-31)

(2010-01-10,
2010-01-15)

145 7797 (2010-01-10,
2010-01-15)

(2010-01-15,
2010-01-28)

827 7797 (2010-01-15,
9999-12-31)

(2010-01-15,
2010-01-20)

827 7797 (2010-01-15,
2010-01-20)

(2010-01-20,
9999-12-31)

145 7797 (2010-01-03,
2010-01-10)

(2010-01-23,
2010-01-26)

145 7797 (2010-01-05,
2010-01-10)

(2010-01-26,
9999-12-31)

145 7797 (2010-01-10,
2010-01-12)

(2010-01-28,
9999-12-31)

827 7797 (2010-01-12,
2010-01-15)

(2010-01-28,
9999-12-31)

customer_number property_number property_VT property_TT

145 7797 (2010-01-10,
9999-12-31)

(2010-01-10,
2010-01-15)

145 7797 (2010-01-10,
2010-01-15)

(2010-01-15,
9999-12-31)

827 7797 (2010-01-15,
9999-12-31)

(2010-01-15,
2010-01-20)

827 7797 (2010-01-15,
2010-01-20)

(2010-01-20,
9999-12-31)

145 7797 (2010-01-03,
2010-01-10)

(2010-01-23,
2010-10-26)

145 7797 (2010-01-05,
2010-01-10)

(2010-01-26,
9999-12-31)

http://www.teradata.com


We saw before that no mapping was required for non-sequenced

modifications on valid-time state tables; such statements treat the

(valid) timestamps identically to the other columns. When consid-

ering the transaction timestamps, we just perform the second stage

mapping discussed above.

As an example, consider the modification “delete all records for

customer Eva.” This modification is clearly (valid-time) non-

sequenced: (1) it depends heavily on the representation, looking

for rows with a particular value, (2) it does not apply on a per

instant basis, and (3) it mentions “records,” that is, the recorded

information, rather than “reality.” The result of this deletion,

evaluated on January 30, is shown in Figure 7.

Delete all records for customer Eva.

NONSEQUENCED VALIDTIME DELETE Prop_Owner

WHERE customer_number = 145;

The result is Table 1.

In summary, a bitemporal table combines both valid time and

transaction time into a single structure. It contains two period

timestamps: the valid-time period of validity and the transaction-

time period of presence. Primary key constraints on such tables

are generally valid-time sequenced and transaction-time current.

Expressing such a constraint requires a simple SQL PRIMARY

KEY constraint.

We examined simple variants of temporal modifications. In

conventional SQL, these statements can be long and complex:

the worst case is one in which a non-temporal update of only a

few lines expanded to some 60 lines of SQL. All are very natural

to write given the temporal extensions provided in Teradata

Database 13.10, requiring but a few lines.

Now that we have a populated bitemporal table, we can discuss

bitemporal queries.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 9 OF 21

Table 1: After a non-sequenced deletion.

customer_number property_number property_VT property_TT

145 7797 (2010-01-10,
9999-12-31)

(2010-01-10,
2010-01-15)

145 7797 (2010-01-10,
2010-01-15)

(2010-01-15,
2010-01-28)

827 7797 (2010-01-15,
9999-12-31)

(2010-01-15,
2010-01-20)

827 7797 (2010-01-15,
2010-01-20)

(2010-01-20,
2010-01-28)

145 7797 (2010-01-03,
2010-01-10)

(2010-01-23,
2010-01-26)

145 7797 (2010-01-05,
2010-01-10)

(2010-01-26,
2010-01-30)

145 7797 (2010-01-10,
2010-01-12)

(2010-01-28,
2010-01-30)

827 7797 (2010-01-12,
2010-01-20)

(2010-01-28,
9999-12-31)

Figure 7. A non-sequenced deletion performed on January 30: Delete all
records for customer Eva.

Transaction Time

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Peter

Eva

http://www.teradata.com


Time-Slice Queries

A common query or view over a temporal table is to capture the

state of the enterprise at some point in the past (or future), termed

a valid time-slice. For tables with transaction-time support, one

can also reconstruct the state of the monitored table as of a date

in the past; such a query is termed a transaction time-slice. As a

bitemporal table captures valid and transaction time, both the

valid time-slice and the transaction time-slice are relevant.

Time slices are useful also in understanding the information

content of a bitemporal table. A transaction time-slice of a

bitemporal table takes as input a transaction-time instant and

results in a valid-time state table that was present in the database

at that specified time. Teradata Database 13.10 has special syntax

for such time slices: TRANSACTIONTIME AS OF.

Give the history of owners of the apartment in Boston at 123 Main

Street as of January 1, 2010, assuming a New York time zone.

SEQUENCED VALIDTIME AND

TRANSACTIONTIME AS OF TIMESTAMP ‘2010-01-01
23:59:59-05:00’

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797;

Applying this to our table (as shown in Figure 7) results in an

empty table, as no history was yet known about that property.

Taking a transaction time-slice as of January 14, effectively rolling

the state of the database forward two weeks, results in a history

with one entry.

On January 14, we thought that Eva was the current owner of that

property. We now know that Peter purchased the property on Jan-

uary 12, and that Eva never owned the property at all on January 14,

but that is 20-20 hindsight. The information we had on January 14

indicated that Eva bought the property on the 10th, and still owns it.

The time-slice as of January 18 tells a different story.

On January 18 we thought that Eva had purchased the apartment

on January 10, and sold it to Peter, who now owns it. A transaction

time-slice can be visualized on the time diagram as a vertical line

situated at the specified date. This line gives the valid-time history

of the enterprise that was stored in the table on that date. Figure 8

illustrates this transaction time-slice.

Continuing, we take a transaction time-slice as of January 29.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 10 OF 21

Figure 8. A transaction time-slice as of January 18.

Transaction Time

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Peter

Eva

tt = 18

customer_number VALIDTIME

145 (2010-01-10, 9999-12-31)

customer_number VALIDTIME

145 (2010-01-10, 2010-01-15)

827 (2010-01-15, 9999-12-31)

customer_number VALIDTIME

145 (2010-01-05, 2010-01-12)

827 (2010-01-12, 2010-01-20)

http://www.teradata.com


On January 29, we thought that Eva had purchased the apartment

on January 5, and sold it to Peter on January 12, who sold the

property to someone else on January 20.

Finally, to take the current transaction time-slice, just omit the

time, which defaults to “now.”

Give the history of owners of the apartment at 123 Main Street in

Boston as best known.

SEQUENCED VALIDTIME SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797;

This yields the following result:

Only Peter ever had ownership of the property, since all records

with customer Eva were deleted. Peter’s ownership was for all of 8

days, January 12 to January 20.

We can also cut the pie (or, more accurately, the time diagram)

horizontally. A valid time-slice of a bitemporal table takes as input

a valid-time instant and results in a transaction-time state table

capturing when information concerning that specified valid time

was recorded in the database. A valid time-slice is expressed in SQL

similarly to the transaction time-slice, with VALIDTIME AS OF.

When was information about the owners of the apartment at 123

Main Street in Boston on January 4, 2010 recorded in the property

owner table?

VALIDTIME AS OF DATE ‘2010-01-04’ AND
NONSEQUENCED TRANSACTIONTIME

SELECT customer_number, property_TT

FROM Prop_Owner

WHERE property_number = 7797;

(A technical note: Teradata Database 13.10 does not support

sequenced transaction time. But in this case, the same effect can be

obtained through the use of NONSEQUENCED TRANSACTION-

TIME and adding TT to the select list.)

Applying this time-slice to our table (as shown in Figure 7) results

in one row, indicating that this information, that the property was

owned by Eva on January 4, was inserted into the table on January

26 and subsequently deleted, as it was found to be incorrect, on

January 26.

The valid time-slice on January 13 is more interesting. Such a

time-slice can be visualized as the horizontal line shown in

Figure 9. This time-slice results in:

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 11 OF 21

customer_number property_TT

145 (2010-01-10, 2010-01-15)

145 (2010-01-15, 2010-01-28)

827 (2010-01-28, 9999-12-31)

customer_number property_TT

145 (2010-01-23, 2010-01-26)

customer_number VALIDTIME

827 (2010-01-12, 2010-01-20)

Figure 9. A valid time-slice on January 13.

Transaction Time

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Peter

Eva
vt = 13

http://www.teradata.com


While the horizontal line in Figure 9 intersects two regions, three

rows result from the time-slice. This has to do with the way that

the regions in the time diagram are sliced up into rectangles, each

associated with a row in the Prop_Owner table.

A bitemporal time-slice takes as input two instants, a valid-time

and a transaction-time instant, and results in a snapshot state, of

the information regarding the enterprise at that valid time, as

recorded in the database at that transaction time. This query is

illustrated in Figure 10. The result is the fact located at the inter-

section of the two lines, in this case, Eva. Such queries require

two times to be specified.

List the owner of the apartment at 123 Main Street in Boston on

January 13 as stored in the property owner table on January 18.

VALIDTIME AS OF DATE ‘2010-01-13’ AND

TRANSACTIONTIME AS OF TIMESTAMP ‘2010-01-18
23:59:59-05:00’

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797;

The current bitemporal time-slice uses “now” for both input

instants. As that is the default, this is a particularly simple query.

Give the owner of the apartment at 123 Main Street in Boston today

as best known.

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797;

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 12 OF 21

customer_number

145

Figure 10. A bitemporal time-slice on a valid time of January 13 and as of a
transaction time of January 18.

Transaction Time

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Peter

Eva
vt = 13

tt = 18

http://www.teradata.com


The Spectrum of Bitemporal Queries

There are three major kinds of queries on valid-time state tables:

current (“valid now”), sequenced (“history of”) and non-

sequenced (“at some time”). There are three analogous kinds

of queries on transaction-time state tables: current (“as best

known”), sequenced (“when was it recorded”) and non-sequenced

(e.g., “when was... erroneously changed”). As a bitemporal table

includes both valid-time and transaction-time support, and as

these two types of time are orthogonal, it turns out that all nine

combinations are possible on such tables.

To illustrate, we will take a non-temporal query and provide all the

variations of that query. Before doing that, we add one more row

to the Prop_Owner table.

Peter Olsen bought another apartment, at 12 Oyster Bay Road in

Boston on January 15, 2010; this was recorded on January 31, 2010.

SEQUENCED VALIDTIME

INSERT INTO Prop_Owner (customer_number,
property_number, property_VT)

VALUES (827, 3621, PERIOD (DATE ‘2010-01-15’, DATE
‘9999-12-31’));

Overlaying this information on the time diagram, shown in

Figure 11, we see that for 5 days Peter owned two properties, on

Oyster Bay Road and on Main Street; he sold the Main Street

property on January 20, but retains the Oyster Bay Road property.

We start with a non-temporal query, a simple equijoin, pretending

that the Prop_Owner table is a snapshot table.

What properties are owned by the customer who owns property 7797?

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number;

We now enumerate the nine kinds of bitemporal queries that are

analogous to this non-temporal query, applying each on the state

illustrated in Figure 11 and given in tabular form in Table 2.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 13 OF 21

Figure 11. A sequenced insertion, performed on January 31, 2010: Peter
bought another apartment on January 15.

Transaction Time

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

Peter

Eva

Peter

customer_number property_number property_VT property_TT

145 7797 (2010-01-10,
9999-12-31)

(2010-01-10,
2010-01-15)

145 7797 (2010-01-10,
2010-01-15)

(2010-01-15,
2010-01-28)

827 7797 (2010-01-15,
9999-12-31)

(2010-01-15,
2010-01-20)

827 7797 (2010-01-15,
2010-01-20)

(2010-01-20,
2010-01-28)

145 7797 (2010-01-03,
2010-01-10)

(2010-01-23,
2010-01-26)

145 7797 (2010-01-05,
2010-01-10)

(2010-01-26,
2010-01-28)

145 7797 (2010-01-05,
2010-01-12)

(2010-01-28,
2010-01-30)

827 7797 (2010-01-12,
2010-01-20)

(2010-01-28,
9999-12-31)

827 3621 (2010-01-15,
9999-12-31)

(2010-01-31,
9999-12-31)

Table 2. The bitemporal state illustrated in Figure 11.

http://www.teradata.com


1. Valid-time current and transaction-time
current
What properties are owned by the customer who owns property 7797,

as best known?

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number;

Current in valid time is implemented by requiring that the period

of validity overlap “now;” current in transaction time is imple-

mented by requiring a transaction-stop time of “until closed.” The

result, a snapshot table, is in this case the empty table, because

now, as best known, no one owns property 7797. (Peter owned it

for some nine days in January, but doesn’t own it now.)

2. Valid-time sequenced and transaction-time
current
What properties are or were owned by the customer who owned

at the same time property 7797, as best known?

SEQUENCED VALIDTIME SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number;

Sequenced in valid time is implemented by selecting the overlap of

the periods of validity, when the underlying rows were both valid.

The result, a valid-time state table, is the following.

For those five days in January, Peter owned both properties.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 14 OF 21

property_number VALIDTIME

3621 (2010-01-15, 2010-01-20)

http://www.teradata.com


3. Valid-time non-sequenced and transaction-
time current
What properties were owned by the customer who owned at any time

property 7797, as best known?

NONSEQUENCED VALIDTIME SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number;

Non-sequenced in valid time is implemented by ignoring the valid

timestamps. The result, a snapshot table, is the following.

Peter owned both properties. While in this case there was a time

when Peter owned both properties simultaneously, the query does

not require that. Even if Peter had bought the second property on

a valid time of January 31, that property would still be returned by

this query.

4. Valid-time current and transaction-time
sequenced
What properties did we think are owned by the customer who owns

property 7797?

An initial approach might be to use SEQUENCED TRANSAC-

TIONTIME. However, the SEQUENCED TRANSACTIONTIME

qualifier on single tables is not supported in this Teradata release

on anything but a single-table SELECT in a view or derived table.

But we can rephrase this in this case as a nonsequenced transac-

tion time query with an explicit predicate.

NONSEQUENCED TRANSACTIONTIME

SELECT P2.property_number,

((P1.property_TT P_INTERSECT P2.property_TT) AS
recorded

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.property_TT OVERLAPS P2.property_TT;

Sequenced in transaction time is implemented identically to

sequenced in valid time: by selecting the overlap of the periods of

presence, when the underlying rows were both present. Note that the

result of a transaction-time sequenced query is not a transaction-

time state table. While the result does indicate what was recorded in

the property owner table, it itself was not in existence until the query

is performed. We thus use recorded column name to highlight this

distinction. The result, a snapshot table with an additional time-

stamp column, is the empty table, because there was no time in

which we thought that Peter currently owns both properties.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 15 OF 21

property_number

3621

http://www.teradata.com


5. Valid-time sequenced and transaction-time
sequenced
When did we think that some property, at some time was owned by

the customer who owned at the same time property 7797?

Again, the trick is to convert sequenced transactiontime to

nonsequenced.

SEQUENCED VALIDTIME AND NONSEQUENCED
TRANSACTIONTIME

SELECT P2.property_number,

(P1.property_TT P_INTERSECT P2.property_TT) AS
recorded

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.property_TT OVERLAPS P2.property_TT;

Here we have sequenced in both valid time and transaction time.

This is the most involved of all the queries, but the parallel

between valid time and transaction time should be apparent in

the above query. We must compute the overlap of the underlying

rectangles, with the result being a valid-time state table with

additional recorded timestamp column. Figure 12 shows the two

rectangles that are involved and the overlap that is computed.

One row results.

For those five days in January, Peter owned both properties. That

information was recorded on January 31, and is still thought to be

true (a transaction-stop time of “until closed”).

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 16 OF 21

Figure 12. A query sequenced in both valid time and transaction time,
computing the intersection of two rectangles.

Transaction Time

15

10

5

30

25

20

5 10 15 20 25 30

Valid Time

F

property_number recorded VALIDTIME

3621 (2010-01-31,
9999-12-31)

(2010-01-15,
2010-01-20)

http://www.teradata.com


6. Valid-time non-sequenced and transaction-
time sequenced
When did we think that some property, at some time was owned by

the customer who owned at any time property 7797?

As with the two previous queries, the trick is to convert sequenced

transactiontime to nonsequenced.

NONSEQUENCED VALIDTIME AND NONSEQUENCED
TRANSACTIONTIME

SELECT P2.property_number,

(P1.property_TT P_INTERSECT P2.property_TT) AS
recorded

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.property_TT OVERLAPS P2.property_TT;

As before, non-sequenced in valid-time is implemented by ignor-

ing the valid timestamps. The result, a snapshot table with

additional timestamp columns, is the following.

From January 31 on, we thought that Peter had owned those two

properties, perhaps not simultaneously.

7. Valid-time current and transaction-time
non-sequenced
When was it recorded that a property is owned by the customer who

owns property 7797?

NONSEQUENCED TRANSACTIONTIME

SELECT P2.property_number, BEGIN(P2.property_TT) AS
recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.property_TT OVERLAPS P2.property_TT;

Non-sequenced in transaction time is implemented by not testing

for full overlap in transaction time (sequenced) and by not testing

the transaction-stop time for “until closed” (current). The result, a

snapshot table, is empty, because we never thought that Peter

currently owns two properties.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 17 OF 21

property_number recorded

3621 (2010-01-31, 9999-12-31)

http://www.teradata.com


8. Valid-time sequenced and transaction-time
non-sequenced
When was it recorded that a property is or was owned by the cus-

tomer who owned at the same time property 7797?

SEQUENCED VALIDTIME AND NONSEQUENCED
TRANSACTIONTIME

SELECT P2.property_number, BEGIN(P2.property_TT) AS
recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.property_TT OVERLAPS P2.property_TT;

This query is similar to valid-time sequenced/transaction-time

current, with a different predicate for transaction time. The result,

a valid-time state table with an additional timestamp column, is

the following.

For those five days in January, Peter owned both properties; this

information was recorded on January 31.

9. Valid-time non-sequenced and transaction-
time non-sequenced
When was it recorded that a property was owned by the customer

who owned at some time property 7797?

NONSEQUENCED VALIDTIME AND NONSEQUENCED
TRANSACTIONTIME

SELECT P2.property_number, BEGIN(P2.property_TT) AS
recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.property_TT OVERLAPS P2.property_TT;

The result, a snapshot table with an additional timestamp column,

is the following.

Current in valid time translates in English to “at now;” sequenced

translates to “at the same time;” and non-sequenced translates

to “at any time.” Current in transaction time translates to “as

best known;” sequenced translates to “when did we think;” and

non-sequenced translates to “when was it recorded” or “when was

it corrected.”

Of these nine types of queries, a few are more prevalent. The most

common is the current/current query: “now, as best known.” These

queries correspond to queries on the non-temporal version of the

table. (The following queries also utilize the Customer and Prop-

erty tables; we assume that these two tables are also bitemporal.)

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 18 OF 21

property_number recorded_Start

3621 2010-01-31
property_number recorded_Start VALIDTIME

3621 (2010-01-31) (2010-01-15,
2010-01-20)

http://www.teradata.com


What is the estimated value of the property at 12 Oyster Bay Road?

(current/current)

SELECT estimated_value

FROM Property AS P

WHERE P.address = ‘12 Oyster Bay Road’;

Current/current queries return a snapshot result.

Who owns the property at 12 Oyster Bay Road? (current/current)

SELECT name

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = ‘12 Oyster Bay Road’

AND P.property_number = PO.property_number

AND C.customer_number = PO.customer_number;

Perhaps the next most common kind of query is a sequenced/

current query, “history, as best known.” These queries ignore

transaction time, and return a valid-time state table.

Sequenced/current queries over one table are simple to specify.

How has the estimated value of the property at 12 Oyster Bay Road

varied over time? (sequenced/current)

SEQUENCED VALIDTIME SELECT estimated_value

FROM Property AS P

WHERE P.address = ‘12 Oyster Bay Road’;

Who has owned the property at 12 Oyster Bay Road?

(sequenced/current)

SEQUENCED VALIDTIME SELECT name

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = ‘12 Oyster Bay Road’

AND P.property_number = PO.property_number

AND C.customer_number = PO.customer_number;

Transaction time is supported in the Prop_Owner table to track

the changes, and to correct errors. A common query searches for

the transaction that stored the current information in valid time.

This is a current/non-sequenced query.

When was the estimated value for the property at 12 Oyster Bay

Road stored? (current/nonsequenced)

NONSEQUENCED TRANSACTIONTIME

SELECT estimated_value, BEGIN(property_TT) AS
recorded_Start

FROM Property

WHERE address = ‘12 Oyster Bay Road’;

This query will return a snapshot table giving one or more esti-

mated values, along with the date of the transaction recording

that value.

Sequenced/non-sequenced queries allow one to determine when

invalid information about the history was recorded.

Who has owned the property at 12 Oyster Bay Road, and when was

this information recorded? (sequenced/nonsequenced)

SEQUENCED VALDTIME AND NONSEQUENCED TRANSAC-
TIONTIME

SELECT name, BEGIN(PO.property_TT) AS PO_recorded,

BEGIN(C.property_TT) AS C_recorded,

BEGIN(P.property_TT) AS P_recorded_Start

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = ‘12 Oyster Bay Road’

AND P.property_number = PO.property_number

AND C.customer_number = PO.customer_number

AND PO.property_TT OVERLAPS C.property_TT

AND C.property_TT OVERLAPS P.property_TT

AND PO.property_TT OVERLAPS P.property_TT;

This returns a valid-time state table, with three additional columns

stating when that information was recorded in the underlying

tables. Subsequent queries could then isolate the identified problem.

Finally, non-sequenced/non-sequenced queries can probe the

interaction between valid time and transaction time.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 19 OF 21

http://www.teradata.com


List all retroactive changes made to the Prop Owner table.

(non- sequenced/nonsequenced)

NONSEQUENCED VALIDTIME AND NONSEQUENCED
TRANSACTIONTIME

SELECT customer_number, property_number,
property_VT,

BEGIN(property_TT) AS recorded_Start

FROM Prop_Owner

WHERE BEGIN(property_VT) < BEGIN(property_TT);

This returns the following valid-time state table, indicating that

many of the modifications were retroactive.

Summary

A bitemporal table combines both valid time and transaction time

into a single structure. It contains two periods, the valid-time

period of validity and the transaction-time period of presence.

We examined several variants of modifications on such tables, all

current in transaction time: validtime current inserts, deletions,

and updates; valid-time sequenced insertions, deletions, and

updates; and valid-time nonsequenced deletions.

We then considered time-slice queries, in transaction, valid, and

bitemporal varieties. We showed that there are nine versions of

any non-temporal query (all combinations of current/sequenced/

nonsequenced in valid time and transaction time). A benefit

of a bitemporal table is that it admits the full generality of

temporal queries.

Acknowledgement

I thank Ramesh Bhashyam for checking all these modifications

and queries on Teradata Database 13.10, for general help in

understanding Teradata’s temporal SQL constructs, and for many

in-depth discussions on the semantics of temporal data in the

context of SQL.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 20 OF 21

customer_number property_number recorded_Start property_VT

145 7797 2010-01-15 (2010-01-10,
2010-01-15)

827 7797 2010-01-20 (2010-01-15,
2010-01-20)

145 7797 2010-01-23 (2010-01-03,
2010-01-10)

145 7797 2010-01-26 (2010-01-05,
2010-01-10)

145 7797 2010-01-28 (2010-01-05,
2010-10-12)

827 7797 2010-01-28 (2010-01-12,
2010-01-20)

827 3621 2010-01-31 (2010-01-15,
9999-12-31)

http://www.teradata.com


References

[Snodgrass & Ahn 1986] Richard T. Snodgrass and Ilsoo Ahn,

“Temporal Databases,” IEEE Computer 19(9):35–42, September,

1986.

[Snodgrass et al. 1996a] Richard T. Snodgrass, Michael H. Böhlen,

Christian S. Jensen and Andreas Steiner, “Adding Valid Time to

SQL/Temporal,” change proposal, ANSI X3H2-96-501r2, ISO/IEC

JTC1/SC21/ WG3 DBL MAD-146r2, November 1996, 77 pages.

(See http: //www.cs.arizona.edu/people/rts/sql3.html for more

information.)

[Snodgrass et al. 1996b] Richard T. Snodgrass, Michael H. Böhlen,

Christian S. Jensen and Andreas Steiner, “Adding Transaction

Time to SQL/Temporal,” change proposal, ANSI X3H2- 96-502r2,

ISO/IEC JTC1/SC21/ WG3 DBL MAD-147r2, November 1996,

47 pages.

[Snodgrass 1999] Richard T. Snodgrass, Developing Time-

Oriented Database Applications in SQL, Morgan Kaufmann

Publishers, Inc., San Francisco, CA, July 1999, 504+xxiv pages.

About the Author

Richard T. Snodgrass joined the University of Arizona in 1989,

where he is a Professor of Computer Science. He holds a B.A.

degree in Physics from Carleton College and M.S. and Ph.D.

degrees in Computer Science from Carnegie Mellon University.

He is an ACM Fellow.

Richard's research interests are the science of computer science,

compliant databases, and temporal databases.

Richard was Editor-in-Chief of the ACM Transactions on Database

Systems from 2001 to 2007, was ACM SIGMOD Chair from 1997

to 2001, and has chaired the ACM Publications Board, the ACM

History Committee, and the ACM SIG Governing Board Portal

Committee. He co-directs TimeCenter, an international center for

the support of temporal database applications on traditional and

emerging DBMS technologies.

A Case Study of Temporal Data

EB-6237 > 1010 > PAGE 21 OF 21

Teradata.com

Raising Intelligence is a trademark, and Teradata and the Teradata logo are registered trademarks of Teradata Corporation and/or its affiliates in the U.S. and
worldwide. Teradata continually improves products as new technologies and components become available. Teradata, therefore, reserves the right to change
specifications without prior notice. All features, functions, and operations described herein may not be marketed in all parts of the world. Consult your Teradata
representative or Teradata.com for more information.

Copyright © 2010 by Teradata Corporation All Rights Reserved. Produced in U.S.A.

http://www.teradata.com

