Temporal Databases

Esteban ZIMANYI
Department of Computer & Decision Engineering (CoDE)
Université Libre de Bruxelles
ezimanyi@ulb.ac.be

ULB

Info-H-415 Advanced Databases
Academic Year 2014-2015

Temporal Databases: Topics
" Introduction
¢ Time Ontology
¢ Temporal Conceptual Modeling
4 Manipulating Temporal Databases with SQL-92
¢ Temporal Support in SQL 2011

¢ Summary

Introduction

¢ Applications with temporal aspects abound
Academic
Accounting
Data warehousing
Financial
Geographical Information Systems
Insurance
Inventory
Law
Medical records
Reservation systems

Scientific databases

Need for a Temporal DBMS

¢ It is difficult to identify applications not needing management of temporal data

@ These applications would benefit from built-in temporal support in the DBMS
More efficient application development

Potential increase of performance

¢ Temporal DBMS: Provide mechanisms to store and manipulate time-varying information

Temporal Databases: Case Study

¢ Personnel management in a database

Employee(Name, Salary, Title, BirthDate DATE)

¢ Itis easy to know the salary of an employee

SELECT Salary
FROM Employee
WHERE Name =

’John’

¢ Itis also easy to know the date of birth of an employee

SELECT BirthDate

FROM Employee
WHERE Name =

’John’

Converting to a Temporal Database

4 We want to keep the employment history

Employee(Name, Salary, Title, BirthDate, FromDate DATE, ToDate DATE)

‘ Name ‘ Salary Title ‘ BirthDate ‘ FromDate ‘ ToDate ‘
John | 60.000 | Assistant 9/9/60 1/1/95 1/6/95
John | 70.000 | Assistant 9/9/60 1/6/95 1/10/95
John | 70.000 | Lecturer 9/9/60 1/10/95 1/2/96
John | 70.000 | Professor 9/9/60 1/2/96 1/1/97

¢ For the data model, new columns are identical to attribute BirthDate

Determine the Salary

¢ To know the employee’s current salary, things are more difficult

SELECT Salary

FROM Employee

WHERE Name = ’John’ AND FromDate <= CURRENT_TIMESTAMP
AND CURRENT_TIMESTAMP <= ToDate

¢ Determine the salary history

Result: for each person, the maximal intervals of each salary

] Name \ Salary \ FromDate \ ToDate ‘

John | 60.000 1/1/95 1/6/95
John | 70.000 1/6/95 1/1/97

An employee could have arbitrarily many title changes between salary changes

Determine the Salary, cont.

¢ Alternative 1

Give the user a printout of Salary and Title information, and have the user determine when

his/her salary changed

¢ Alternative 2
Use SQL as much as possible

Find those intervals that overlap or are adjacent and that should be merged

-
L
I

SQL Code

CREATE TABLE Temp(Salary, FromDate, ToDate) AS
SELECT Salary, FromDate, ToDate
FROM Employee
WHERE Name = ’John’

repeat
UPDATE Temp T1
SET (T1.ToDate) = (SELECT MAX(T2.ToDate)
FROM Temp AS T2
WHERE T1.Salary = T2.Salary
AND T1.FromDate < T2.FromDate
AND T1.ToDate >= T2.FromDate
AND T1.ToDate < T2.ToDate)
WHERE EXISTS (SELECT *
FROM Temp as T2
WHERE T1.Salary = T2.Salary
AND T1.FromDate < T2.FromDate
AND T1.ToDate >= T2.FromDate
AND T1.ToDate < T2.ToDate)
until no tuples updated

SQL Code, cont.

¢ Initial table

¢ After one pass

¢ After two passes

10

SQL Code, cont.

¢ Loop is executed logN times in the worst case, where N is the number of tuples in a chain of overlap-

ping or adjacent value-equivalent tuples

@ Then delete extraneous, non-maximal intervals

DELETE FROM Temp T1
WHERE EXISTS (
SELECT *
FROM Temp AS T2
WHERE T1.Salary = T2.Salary
AND ((Tl1.FromDate > T2.FromDate AND T1.ToDate <= T2.ToDate)
OR (T1l.FromDate >= T2.FromDate AND T1.ToDate < T2.ToDate))

11

Same Functionality Entirely in SQL

CREATE VIEW Temp(Salary, FromDate, ToDate) AS
SELECT Salary, FromDate, ToDate
FROM Employee
WHERE Name = ’John’

SELECT DISTINCT F.Salary, F.FromDate, L.ToDate
FROM Temp AS F, Temp AS L
WHERE F.FromDate < L.ToDate AND F.Salary = L.Salary
AND NOT EXISTS (
SELECT *
FROM Temp AS T
WHERE T.Salary
AND F.FromDate
AND NOT EXISTS
SELECT *
FROM Temp AS T1
WHERE T1.Salary = F.Salary
AND T1.FromDate < T.FromDate AND T.FromDate <= T1.ToDate))
AND NOT EXISTS (
SELECT *
FROM Temp AS T2
WHERE T2.Salary = F.Salary
AND ((T2.FromDate < F.FromDate AND F.FromDate <= T2.ToDate)
OR (T2.FromDate <= L.ToDate AND L.ToDate < T2.ToDate)))

F.Salary
T.FromDate AND T.FromDate < L.ToDate

~A

12

Same Query in Tuple Relational Calculus

T2 T2
F L
——
\/
-

{ f.FromDate, [.ToDate |
Temp(f) A Temp(l) A f.FromDate < [.ToDate A f.Salary = [.SalaryA
(V)(Temp(z) A t.Salary = f.Salary A f.FromDate < r.FromDateA
t.FromDate < [.ToDate —

(3t))(Temp(t;) A t.Salary = f.Salary A t; . FromDate < ¢t.FromDateA

t.FromDate <= t;.ToDate))A
=(3dty)(Temp(t,) A t,.Salary = f.SalaryA
((t.FromDate < f.FromDate A f.FromDate <= f,.ToDate)V
(t,.FromDate <= [ToDate A [.ToDate < t,.ToDate))) }

13

Other Possibilities
¢ Use the transitive closure or triggers in SQL3

& TSQL2

SELECT Salary
FROM Employee
WHERE Name = ’Bob’

Alternative: Reorganize the Schema

4 Split the information on Salary, Title, and BirthDate

Employee(Name, BirthDate DATE)
EmployeeSal (Name, Salary, FromDate DATE, ToDate DATE)
EmployeeTitle(Name, Title, FromDate DATE, ToDate DATE)

4 Determine the information about the salary is easy now

SELECT Salary, FromDate, ToDate
FROM EmployeeSal
WHERE Name = ’John’

4 However, how to obtain a table of salary, title intervals?

15

Example of Temporal Join

EmployeeSal
‘Name ‘Salary ‘FromDate‘ ToDate‘
John | 60.000 1/1/95 1/6/95
John | 70.000 1/6/95 1/1/97

EmployeeTitle
| Name | Title | FromDate | ToDate |
John | Assistant 1/1/95 1/10/95
John | Lecturer 1/10/95 1/2/96
John | Professor 1/2/96 1/1/97

EmployeeSal < EmployeeTitle
‘ Name‘ Salary Title ‘ FromDate ‘ ToDate ‘
John | 60.000 | Assistant 1/1/95 1/6/95
John | 70.000 | Assistant 1/6/95 1/10/95
John | 70.000 | Lecturer 1/10/95 1/2/96
John | 70.000 | Professor 1/2/96 1/1/97

16

Evaluation of Temporal Join

& Alternative 1: Print the two tables and leave the user make the combinations

¢ Alternative 2: Use SQL entirely

CERS)

SELECT S.Name, Salary, Title, S.FromDate, S.ToDate
FROM EmployeeSal S, EmployeeTitle T
WHERE S.Name = T.Name

AND T.FromDate <= S.FromDate

AND S.ToDate < T.ToDate

17

Temporal Join in SQL

SELECT S.Name, Salary, Title, S.FromDate, S.ToDate
FROM EmployeeSal S, EmployeeTitle T
WHERE S.Name = T.Name

AND T.FromDate <= S.FromDate

AND S.ToDate <= T.ToDate |
UNION ALL
SELECT S.Name, Salary, Title, S.FromDate, T.ToDate
FROM EmployeeSal S, EmployeeTitle T

WHERE S.Name = T.Name
AND S.FromDate > T.FromDate
AND T.ToDate < S.ToDate
AND S.FromDate < T.ToDate
UNION ALL
SELECT S.Name, Salary, Title, T.FromDate, S.ToDate
FROM EmployeeSal S, EmployeeTitle T
WHERE S.Name = T.Name
AND T.FromDate > S.FromDate |

g

N

AND S.ToDate < T.ToDate '
AND T.FromDate < S.ToDate

UNION ALL

SELECT S.Name, Salary, Title, T.FromDate, T.ToDate |

FROM EmployeeSal S, EmployeeTitle T '
WHERE S.Name = T.Name

AND T.FromDate >= S.FromDate

AND T.ToDate <= S.ToDate

g

N

18

Temporal Join, cont.
¢ Alternative 3: Use embedded SQL

¢ TSQL2: Give the salary and title history of employees
SELECT EmployeeSal.Name, Salary, Title
FROM EmployeeSal, EmployeeTitle
WHERE EmployeeSal.Name = EmployeeTitle.Name

19

Introduction: Summary
4 Applications managing temporal data abound
¢ Classical DBMS are not adequate
¢ If a temporal DBMS is used
Schemas are simpler
SQL queries are much simpler
Much less procedural code is necessary

¢ Benefits

Application code is less complex

« Easier to understand, to produce, to ensure correctness, to maintain

Performance may be increased by relegating functionality to DBMS

20

Temporal Databases: Topics
¢ Introduction
= Time Ontology
¢ Temporal Conceptual Modeling
4 Manipulating Temporal Databases with SQL-92
4 Temporal Support in SQL 2011

¢ Summary

21
Time Ontology
4 Notions of time
Structure
Density
Boundedness

4 TSQL2 time ontology
¢ Time data types

¢ Times and facts

22

Time Structure

¢ Linear: total order on instants

Time
now

¢ Hypothetical (possible futures): tree rooted on now

Time

.

now

¢ Directed Acyclic Graph (DAG): possible futures may merge

¢ Periodic/cyclic time: weeks, months, . .., for recurrent processes

23

Boundedness of Time

¢ Assume a linear time structure

4 Boundedness
Unbounded
Time origin exists (bounded from the left)

Bounded time (bounds on two ends)

¢ Nature of bound
Unspecified
Specified

¢ Physicists believe that the universe is bounded by the “Big Bang” (12-18 billions years ago) and by
the “Big Crunch” (? billion years in the future)

24

Time Density

¢ Discrete
Time line is isomorphic to the integers

Time line is composed of a sequence of non-decomposable time periods, of some fixed minimal
duration, termed chronons

Between each pair of chronons is a finite number of other chronons
¢ Dense

Time line is isomorphic to the rational numbers

Infinite number of instants between each pair of chronons
¢ Continuous

Time line is isomorphic to the real numbers

Infinite number of instants between each pair of chronons

¢ Distance may optionally be defined

25

TSQL2: Time Ontology

¢ Structure

TSQL2 uses a linear time structure

4 Boundedness

TSQL2 time line is bounded on both ends, from the start of time to a point far in the future

¢ Density
TSQL2 do not differentiate between discrete, dense, and continuous time ontologies

No questions can be asked that give different answers

« E.g., instant a precedes instant b at some specified granularity. Different granularities give
different answers

Distance is defined in terms of numbers of chronons

26

Ontological Temporal Types

¢ Instant: chronon in the time line
Event: instantaneous fact, something occurring at an instant

Event occurrence time: valid-time instant at which the event occurs in the real world
¢ Instant Set: set of instants

¢ Time period: time between two instants

Also called interval, but conflicts with SQL data type INTERVAL
¢ Time interval: a directed duration of time

¢ Duration: amount of time with a known length, but no specific starting or ending instants
positive interval: forward motion time

negative interval: backward motion time

¢ Temporal element: finite union of periods

27

Representing Time in TSQL2
¢ TSQL2 supports a bounded discrete representation of the time line
4 Time line composed of chronons, which is the smallest granularity
4 Consecutive chronons may be grouped together into granules, yielding multiple granularities

¢ Different granularities are available, and it is possible to convert from one granularity to another (via
scaling)

28

Temporal Data Types in SQL-92 and TSQL2

¢ SQL92
DATE (YYYY-MM-DD)
TIME (HH:MM:SS)
DATETIME (YYYY-MM-DD HH:MM:SS)
INTERVAL (no default granularity)

TSQL2
PERIOD: DATETIME - DATETIME

29

Time and Facts

¢ Valid time of a fact: when the fact is true in the modeled reality
Independently of its recording in the database

Past, present, future

4 Transaction time of a fact: when the fact is current in the database and may be retrieved

Identify the transactions that inserted and deleted the fact
4 Two dimensions are orthogonal

¢ Four kinds of tables
Snapshot
Valid time
Transaction time

Bitemporal

30

Snapshot Tables

4 May be modified
¢ Used for static queries

4 What is John’s title?

SELECT Title
FROM Faculty
WHERE Name = ’John’

31
Snapshot Tables, cont.
¢ Analogy: Nameplate on door
John John John John
Assistant st Assistant Ist Assistant Lecturer
Jan. 84 Dec. 87 March 89 July 89

@ On January Ist, 1984, John is hired as assistant

4 On December 1st, 1987, John finishes his doctorate and is promoted as 1st Assistant retroactively on
July 1st, 1987

4 On March 1st, 1989, John is promoted as Lecturer, proactively on July 1st, 1989

32

Transaction Time Tables

l l

transaction time

¢ Append-only: correction to previous snapshot states is not permitted
¢ Allow retrospective queries (“rollback”)

4 What did we believe John’s rank was on October 1st, 1984?

SELECT Title
FROM Faculty
WHERE Name = ’John’ AND
TRANSACTION(Faculty) OVERLAPS DATE ’01-10-1984°

33

Transaction Time Tables, cont.

¢ Analogy: Pay stubs

John Assistant 1-1-84

John Assistant 1-11-87
John 1st Assistant 1-12-87

John 1st Assistant 1-6-89

John Lecturer 1-7-89

34

Valid Time Tables

N

Valid Time N

4 May be modified
¢ Allow historical queries

4 What was John’s title on October 1st, 1984 (as best known)?

SELECT Title
FROM Faculty
WHERE Name = ’John’ AND
VALID(Faculty) OVERLAPS DATE ’01-10-1984’

35

Valid Time Tables, cont.

¢ Analogy: Curriculum Vite

John
Titles
Lecturer July 1989
Ist Assistant July 1987
Assistant January 1984

36

Bitemporal Tables

N TN]

Transaction Time
¢ Append-only
¢ Transaction and valid time
¢ Allow coupled historical and retrospective queries

@ On October 1st, 1984, what did we think John’s rank was at that date?

SELECT Title

FROM Faculty AS E

WHERE Name = ’John’ AND
VALID(E) OVERLAPS DATE ’01-10-1984’" AND
TRANSACTION(E) OVERLAPS DATE ’01-10-1984’

37

Bitemporal Tables, cont.

@ Analogy: Stack of CVs

John
Titles January 1984 Version
Assistant January 1984
John
Titles .
Ist Assistant July 1987 December 1987 Version
Assistant January 1984
John
Titles
Lecturer July 1989 .
Ist Assistant July 1987 March 1989 Version

Assistant January 1984

38

Time Ontology: Summary

& Several different structures of time

Linear is simplest and most common
¢ 5 fundamental temporal data types

& Several dimensions of time

TSQL2 supports transaction and valid time

39

Temporal Databases: Topics
¢ Introduction
4 Time Ontology
- Temporal Conceptual Modeling
4 Manipulating Temporal Databases with SQL-92
¢ Temporal Support in SQL 2011

¢ Summary

40

20

Why Conceptual Modeling ?

Focuses on the application

4 Technology independent

portability, durability

User oriented

4 Formal, unambiguous specification

Supports visual interfaces

data definition and manipulation

Best vehicle for information exchange/integration

41

The Conceptual Manifesto (1)

¢ Semantically powerful data structures

¢ Simple (understandable) data model

® & O o o

few clean concepts, with standard, well-known semantics
No artificial time objects
Time orthogonal to data structures
Various granularities
Clean, visual notations

Intuitive icons / symbols

42

21

Orthogonality

Project (® o @) Employee (8 D) Department (&

project_no SSN dept_no
project_name emp_name dept_name

i

Employee

SSN
emp_name
lifecycle &
department &
projects (1,n) ®

i

Employee (® @ @ Department (§

SSN dept_no
emp_name dept_name
projects (1,n) ®

43

The Conceptual Manifesto (2)

¢ Explicit temporal relationships and integrity constraints
¢ Support of valid time and transaction time

¢ Past to future

¢ Co-existence of temporal and traditional data

¢ Query languages

¢ Complete and precise definition of the model

44

22

Temporal Information Describes ...

¢ Life cycles of objects and relationships
¢ Validity of information values
Timestamps

¢ Temporal relationships
Temporal links

Temporal integrity constraints

45

Temporal Schema: Example

Person

SSN
name
birthDate
address (3
street
city
zip
country
telephones (1,n)

i

Employee & @ Department
Py @) " worksFor @wn) i i
salary @ name
budget
(1,n) Project (§ (1,n)
(1.n) |name (1,1
@ presentations (1,n) @
speaker
venue
duration
46

23

MADS Temporal Data Types

i Time
Time O Span b
Zﬁ partition

Si ‘ ! c ‘ [

imple omplex

Time ®5 Time ®c

Zﬁpartition
Instant () Interval & '“;;ag“t ® IntBe;;al P

& Time, SimpleTime, and ComplexTime are abstract classes

47

e221

Temporal Objects

Employee ®

name

birthDate
address
salary
projects (1,n)

Peter

8/9/64

Rue de la Paix
5000

{MADS, HELIOS}

[7/94-6/96] [7/97-6/98] active

[7/96-6/97]

suspended

life cycle information

48

24

Object / Relationship Life Cycle

¢ Continuous

create kill

I I

¢ Discontinuous

create suspend reactivate kill

49

Non-Temporal Objects ?
¢ No life cycle, or

¢ Default life cycle
active — [0, now]
active — [now, now]
active — [0, oo]
¢ Coexistence
temporal — non temporal (snapshot)

non-temporal — temporal (default life cycle)

50

25

TSQL2 Policy

¢ Temporal operators not allowed on non-temporal relations

no life cycle

¢ Joins between temporal and non-temporal relations are allowed
default life cycle: active — [0, oo]

SELECT Department.Name, COUNT (PID)
FROM Department, Employee
WHERE Employee.dept # = Department.dept #
AND VALID(Employee) OVERLAPS PERIOD ’'[1/1/96-31/12/96]’
GROUP BY dept #

51
Temporal Attributes
Employee &

name

birthDate

address (8

salary &

projects (1,n) &

02

Peter [7/94-7/98]
8/9/64
Bd St Germain | [1/85-12/87]
Bd St Michel [1/88-12/94]
Rue de la Paix__| [1/95-now]

4000 | [7/94-7/95]
5000 | [8/95-now]

{MADS} [7/94-8/95]
{MADS, HELIOS} | [9/95-now]

52

26

Temporal Complex Attributes (1)

Laboratory
LBD

name MADS, Chris, 1500 1/1/95 -31/12/95
projects (1,n) ® « r!s A]

name {(MADS, Chris,1500), | [1/1/95 -now]

manager (Helios, Martin,2000)}

budget

Laboratory LBD

Stef [x/x/x -- x/x/

name { MADS, = [X;<;< X;;ﬂ , 1500 ,
projects (1,n) . Chris [x/x/x -- x/x/x]

name (Helios,[Martin [x/x/x - x/x/x]|> 2000) }

manager .

budget John [x/x/x -- x/x/x]

53

Temporal Complex Attributes (2)

Laboratory

name
project
name

manager

¢ “Updating” manager = add element to manager history

¢ “Updating” project.name (name of project has changed) = update name

¢ “Updating” project (laboratory changed project) = update name, start new history for manager

54

27

Attribute Timestamping Properties

¢ Attribute types / timestamping

none, irregular, regular, instants, durations, ...
¢ Cardinalities

snapshot and DBlifespan

¢ Identifiers
snapshot or DBlifespan

55

Attribute Timestamping Issues

¢ Constraints?

the validity period of an attribute must be within the life cycle of the object it belongs to

the validity period of a complex attribute is the union of the validity periods of its components

¢ MADS : no implicit constraint

56

28

Temporal Generalization

Person John Peter
3/7/55 8/9/64
SSN P
name High Street [3/93-2/95] East Terrace [1/87-6/94] erson
birthDate Victoria Street [3/95-now] Flinders Street [7/94-now]
address (@
f 4000 | [7/94-7/95) /2400w
5000 | [8/95-now] Employee
Employee & {MADS [7/94-8/95]
{MADS, HELIOS}| [9/95-now]
salary ®
projects &
57

Static Temporal Generalization

Employee ®

i

Temporary

¢ Temporary and Permanent are implicitly temporal

they inherit their life cycle from Employee

Permanent

58

29

Dynamic Temporal Generalization

Person &

i

Student (®

Faculty (®

4 Student and Faculty have two life cycles:

an inherited one (the one of Person)

a redefined one (the one of Student/Faculty)

lifespan and active periods

¢ The redefined life cycle has to be included in the one of the corresponding Person

59

Temporal Relationships (1)

Employee ®) Workson ® @ Project
name hours/week ® name
birthDate manager
address budget
e1 [John [x/x/x - xIx/X] [x/xhx - xIxIx] | | MADS | [X/x/x - x/x/x]
3/7/55 (e1, p2, [BO [x/x/x - x/x/x]) Christine
Bd Haussman Txlx - x| |.2000
Peter | [x/x/x - xIx/X] [X/xI% - XX/ HELIOS| [X/x/x - x/x/x]
2 (8/10/64 ©1 PL e (i -) Yves
Rue de la Paix D x| 6ooo

[x/x/x - xIx/X]

[x/x/x - xIx/X]

e2, p2,
(62.p |35 [X/x/x - XIXIX]

p1

p2

60

30

Relationship Timestamping Issues

¢ Constraints?
the validity period of a relationship must be within the intersection of the life cycles of the objects
it links
a temporal relationship can only link temporal objects

¢ MADS : no implicit constraint

61

Temporal Relationships (2)

Employee & WorksOn Project
jid D) €n ject @
name hours/week ® name
birthDate manager
address budget

e1|John | [X/x/x - x/x/X] (e, p2, [XIxIX XIxIx]) MADS | D¥/x/x - x/x/x] pi

3/7/55 Christine
Bd Haussman 5000
25 | [x/x/x - x/x/x
Peter [/x 04| | (€1, pt, g ey |[HELOS[TAE A
e2|8/10/64 Yves p2

Rue de la Paix (62, p2 [X/X/X - X/XIX] 6000
"7 35 [x/x/x - xIx/X]

4 Only currently valid couples are kept in the relationship

62

31

el

e2

Temporal Relationships (3)

(e2, p2,

Employee) WorksOn ® @ Project
name hours/week @& name
birthDate manager
address budget

John XIXIX = XIXIX MADS
3/7/55 (e1, p2, [x/x/x - x/x/x])| | Christine
Bd Haussman [[x/x/x - xIx/X] 5000
Peter 251 [1w/x/x - x/x/x] HELIOS
8/10/64 ©1PL[35] 1 i Yves
Rue Haute | [X/X/X - X/X/X 6000

25| [x/x/x - x/x/x]
35| [x/x/x - x/x/X]

¢ Only currently valid objects participate in the relationship

p1

p2

63

¢ Describe temporal constraints between the life cycles of two objects

Synchronization Relationships (1)

¢ Expressed with Allen’s operator extended for temporal elements

before

meets

overlaps

during

starts

finishes

—

—

"

—

—_

"

64

32

Synchronization Relationships (2)

contains

Reporter &

isContainedIn

Photo @

precedes
o,n
Person ® ©.n)
ancestor
follows
(O,n) descendent
Synchronization Synchronization
Relationship lcon Relationship lcon
SyncGeneric =* | SyncStart =,
SyncDisjoint nt SyncFinishes —
SyncOverlap [SyncEqual =
SyncWithin M, | SyncPrecede G
SyncMeet H, SyncFollow >
65

Synchronization Relationships (3)

4 Express a temporal constraint between
the whole life cycles, or
the active periods

¢ Temporal constraint defined with
extended Allen’s operators

application-defined operators, e.g., 9 months later

¢ They are relationships

may have attributes, cardinalities

66

33

Temporal Conceptual Models: Conclusion

¢ Conceptual models must be extended with temporal features

4 Orthogonality is the answer for achieving maximal expressive power
¢ Semantics of temporal features must be explicitly defined

4 This semantics generalizes that of the traditional conceptual models

4 Temporal conceptual models are easily understood by users

67

Temporal Databases: Topics
¢ Introduction
4 Time Ontology
4 Temporal Conceptual Modeling
- Manipulating Temporal Databases with SQL-92
4 Temporal Support in SQL 2011

¢ Summary

68

34

Defining Valid-Time Tables in SQL

Position
| PCN | JobTitle |

Employee
] SSN \ FirstName \ LastName \ BirthDate ‘

Incumbents Salary
’ SSN \ PCN \ FromDate \ ToDate ‘ ’ SSN \ Amount \ FromDate \ ToDate ‘

@ Incumbents and Salary are valid-time tables

FromDate indicates when the information in the row is valid, i.e. when the employee was assigned
to that position

ToDate indicates when the information in the row was no longer valid

4 Data type for periods is not available in SQL-92 = a period is simulated with two Date columns

69

Example of a Valid-Time Table

Incumbents

SSN PCN FromDate ToDate
111223333 | 900225 | 1996-01-01 | 1996-06-01
111223333 | 900225 | 1996-06-01 | 1996-08-01
111223333 | 900225 | 1996-08-01 | 1996-10-01
111223333 | 900225 | 1996-10-01 | 3000-01-01
111223333 | 900225 | 1997-01-01 | 3000-01-01

¢ Special date *3000-01-01" denotes currently valid
¢ Closed-open periods used, e.g., validity of first tuple is [1996-01-01,1996-06-01)

¢ Table can be viewed as a compact representation of a sequence of snapshot tables, each valid on a
particular day

¢ Constraint: Employees do not have gaps in their position history

¢ Last two rows may be replaced with a single row valid at [1996-06-01, 3000-10-01)

70

35

Manipulating Temporal Tables: Semantics

Temporal Table Temporal Table
—) —
L Temporal Operation -
i i
— —
— —
@ Semantics Semantics
Classical Tables Classical Tables

Classical Operation

Ll
Time

Time
ime
t t t3 t t, t3

71

Types of Temporal Statements

¢ Applies to queries, modifications, views, integrity constraints

¢ Current: Applies to the current point in time (now)

What is Bob’s current position ?

¢ Time-sliced: Applies to some point in time in the past or the future

What was Bob’s position on January 1st, 2007?

¢ Sequenced: Applies to each point in time

What is Bob’s position history ?

¢ Non-sequenced: Applies to all points in time, ignoring the time-varying nature of tables

When did Bob changed history ?

72

36

Temporal Keys

Incumbents

SSN PCN FromDate ToDate
111223333 | 900225 | 1996-01-01 | 1996-06-01
111223333 | 900225 | 1996-04-01 | 1996-10-01

Constraint: Employees have only one position at a point in time

4 In the corresponding non-temporal table the key is (SSN,PCN)

Candidate keys on Incumbents: (SSN,PCN,FromDate), (SSN,PCN, ToDate), and
(SSN,PCN, FromDate, ToDate)

¢ None captures the constraint: there are overlapping periods associated with the same SSN

¢ What is needed: sequenced constraint, applied at each point in time

¢ All constraints specified on a snapshot table have sequenced counterparts, specified on the analogous

valid-time table

73

Sequenced Primary Key

Constraint: Employees have only one position at a point in time

CREATE TRIGGER Seq_Primary_Key ON Incumbents
FOR INSERT, UPDATE AS
IF EXISTS (SELECT * FROM Incumbents AS I1 WHERE 1 <
(SELECT COUNT(I2.SSN) FROM Incumbents AS I2
WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN
AND I1.FromDate < I2.ToDate
AND I2.FromDate < I1.ToDate))
OR
EXISTS (SELECT * FROM Incumbents AS I
WHERE I.SSN IS NULL OR I.PCN IS NULL)
BEGIN
RAISERROR(’Violation of sequenced primary key constraint’,1,2)
rollback transaction
END

74

37

4 What should the timestamp be for current data ?

¢ One alternative: using NULL

Handling Now

¢ Allows to indentify current records: WHERE Incumbents.ToDate IS NULL

¢ Disadvantages

users get confused with a data of NULL

in SQL any comparison with a null value returns false

= rows with null values will be absent from the result of many queries

other uses of NULL are not available

@ Another approach: set the end date to largest value in the timestamp domain, e.g., *3000-01-01’

¢ Disadvantages

DB states that something will be true in the far future

represent ‘now’ and ‘forever’ in the same way

75
Types of Duplicates
Incumbents
SSN PCN FromDate ToDate
1| 111223333 | 120033 | 1996-01-01 | 1996-06-01
2 | 111223333 | 120033 | 1996-04-01 | 1996-10-01
3| 111223333 | 120033 | 1996-04-01 | 1996-10-01
4 | 111223333 | 120033 | 1996-10-01 | 1998-01-01
5 111223333 | 120033 | 1997-12-01 | 1998-01-01

¢ Two rows are value equivalent if the values of their nontimestamp columns are equivalent

& Two rows are sequenced duplicates if they are duplicates at some instant: 1+2 = employee has two

positions for the months of April and May of 1996

¢ Two rows are current duplicates if they are sequenced duplicates at the current instant: 4+5 = in

December 1997 a current duplicate will suddenly appear

¢ Two rows are nonsequenced duplicates if the values of all columns are identical: 2+3

76

38

Preventing Duplicates (1)
¢ Preventing value-equivalent rows: define secondary key using UNIQUE (SSN, PCN)
¢ Preventing nonsequenced duplicates: UNIQUE (SSN, PCN, FromDate, ToDate)

¢ Preventing current duplicates: No employee can have two identical positions at the current time

CREATE TRIGGER Current_Duplicates ON Incumbents
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (SELECT I1.SSN FROM Incumbents AS I1 WHERE 1 <
(SELECT COUNT(I2.SSN) FROM Incumbents AS I2
WHERE I1.SSN = I2.SSN AND I1.PCN=I2.PCN
AND I1.FromDate <= CURRENT_DATE
AND CURRENT_DATE < Il.ToDate
AND I2.FromDate <= CURRENT_DATE
AND CURRENT_DATE < I2.ToDate))
BEGIN
RAISERROR(’Transaction allows current duplicates’,1,2)
rollback transaction
END

77

Preventing Duplicates (2)

¢ Preventing current duplicates, assuming no future data: current data will have the same ToDate
(’3000-01-01") = UNIQUE(SSN,PCN, ToDate)

¢ Preventing sequenced duplicates: since a primary key is a combination of UNIQUE and NOT NULL,
remove the NOT NULL portion of code for keys in the previous trigger

CREATE TRIGGER Seq_Primary_Key ON Incumbents
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (SELECT I1.SSN FROM Incumbents AS I1 WHERE 1 <
(SELECT COUNT(I2.SSN) FROM Incumbents AS I2
WHERE I1.SSN = I2.SSN AND I1.PCN=I2.PCN
AND Il.FromDate < I2.ToDate
AND I2.FromDate < Il.ToDate))
BEGIN
RAISERROR(’Transaction allows sequenced duplicates’,1,2)
rollback transaction
END

¢ Preventing sequenced duplicates, asumming only current modifications: UNIQUE (SSN,PCN, ToDate)

78

39

Uniqueness (1)

¢ Constraint: Each employee has at most one position
¢ Snapshot table: UNIQUE (SSN)

¢ Sequenced constraint: At any time each employee has at most one position, i.e., Incumbents.SSN is
sequenced unique

CREATE TRIGGER Seq_Unique ON Incumbents
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (SELECT I1.SSN FROM Incumbents AS I1 WHERE 1 <
(SELECT COUNT(I2.SSN) FROM Incumbents AS I2
WHERE I1.SSN = I2.SSN
AND Il1.FromDate < I2.ToDate
AND I2.FromDate < Il.ToDate))
OR
EXISTS (SELECT * FROM Incumbents AS I
WHERE I.SSN IS NULL)
BEGIN
RAISERROR(’Transaction violates sequenced unique constraint’,1,2)
rollback transaction
END

79

Uniqueness (2)

4 Nonsequenced constraint: an employee cannot have more than one position over two identical periods,
i.e., Incumbents. SSN is nonsequenced unique:
UNIQUE(SSN,FromDate,ToDate)

4 Current constraint: an employee has at most one position, i.e., Incumbents. SSN is current unique:

CREATE TRIGGER Current_Unique ON Incumbents
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (SELECT I1.SSN FROM Incumbents AS I1 WHERE 1 <
(SELECT COUNT(I2.SSN) FROM Incumbents AS I2
WHERE I1.SSN = I2.SSN
AND Il.FromDate <= CURRENT_DATE
AND CURRENT_DATE < Il.ToDate))
BEGIN
RAISERROR(’Transaction violates current unique constraint’,1,2)
rollback transaction
END

80

40

Referential Integrity (1)

¢ Incumbents.PCN is a foreign key for Position.PCN

¢ Case 1: Neither table is temporal

CREATE TABLE Incumbents (...
PCN CHAR(6) NOT NULL REFERENCES Position, ...)

¢ Case 2: Both tables are temporal
The PCN of all current incumbents must be listed in the current positions

CREATE TRIGGER Current_Referential_Integrity ON Incumbents
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (SELECT * FROM Incumbents AS I
WHERE I.ToDate = ’3000-01-01’
AND NOT EXISTS (
SELECT * FROM Position AS P
WHERE I.PCN = P.PCN AND P.ToDate = ’3000-01-01"))
BEGIN
RAISERROR(’Violation of current referential integrity’,1,2)
ROLLBACK TRANSACTION
END

81

Referential Integrity (2)

¢ Incumbents.PCN is a sequenced foreign key for Position.PCN

CREATE TRIGGER Sequenced_Ref_Integrity ON Incumbents
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (
SELECT * FROM Incumbents AS I
WHERE NOT EXISTS (
SELECT * FROM Position AS P b b
WHERE I.PCN = P.PCN AND P.FromDate <= I.FromDate))
AND I.FromDate < P.ToDate)
OR NOT EXISTS (~a 7 | ~a 7
|)
I)

SELECT * FROM Position AS P

WHERE I.PCN = P.PCN AND P.FromDate < I.ToDate
AND I.ToDate <= P.ToDate) \P,/v

OR EXISTS ()
SELECT * FROM Position AS P
WHERE I.PCN = P.PCN AND I.FromDate < P.ToDate /gz\A
AND P.ToDate < I.ToDate AND NOT EXISTS (ELCE

SELECT * FROM Position AS P2
WHERE P2.PCN = P.PCN AND P2.FromDate <= P.ToDate
AND P.ToDate < P2.ToDate)))
BEGIN
RAISERROR(’Violation of sequenced referential integrity’,1,2)
ROLLBACK TRANSACTION
END

82

41

Contiguous History

¢ Incumbents.PCN defines a contiguous history

CREATE TRIGGER Contiguous_History ON Position
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (
SELECT * FROM Position AS P1, Position AS P2
WHERE P1.PCN = P2.PCN AND P1.ToDate < P2.FromDate
AND NOT EXISTS (
SELECT * FROM Position AS P3 P1 P2
WHERE P3.PCN = P1.PCN 3 .
AND ((P3.FromDate <= P1.ToDate TA o paa
AND P1.ToDate < P3.ToDate) | 3|)
OR (P3.FromDate < P2.FromDate
AND P2.FromDate <= P3.ToDate))))

BEGIN
RAISERROR(’Transaction violates contiguous history’,1,2)
ROLLBACK TRANSACTION

END

¢ This is a nonsequenced constraint: it require examining the table at multiple points of time

83

Referential Integrity (3)

¢ Incumbents.PCN is a sequenced foreign key for Position.PCN,
and Incumbents.PCN defines a contiguous history

CREATE TRIGGER Sequenced_Ref_Integrity ON Incumbents
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (
SELECT * FROM Incumbents AS I
WHERE NOT EXISTS (
SELECT * FROM Position AS P WHERE I.PCN = P.PCN
AND P.FromDate <= I.ToDate AND I.FromDate < P.ToDate)
OR NOT EXISTS (
SELECT * FROM Position AS P WHERE I.PCN P.PCN
AND P.FromDate < I.ToDate AND I.ToDate <= P.ToDate))
BEGIN
RAISERROR(’Violation of sequenced referential integrity’,1,2)
ROLLBACK TRANSACTION
END

84

42

Referential Integrity (4)

¢ Case 4: Only the referenced table is temporal

¢ Incumbents.PCN is a current foreign key for Position.PCN

CREATE TRIGGER Current_Referential_Integrity ON Incumbents
FOR INSERT, UPDATE, DELETE AS
IF EXISTS (
SELECT * FROM Incumbents AS I
WHERE NOT EXISTS (
SELECT * FROM Position AS P
WHERE I.PCN = P.PCN AND P.ToDate = ’3000-01-01°))
BEGIN
RAISERROR(’Violation of current referential integrity’,1,2)
ROLLBACK TRANSACTION
END

85

Querying Valid-Time Tables

Employee Position
‘ SSN ‘ FirstName ‘ LastName ‘ BirthDate ‘ ‘ PCN ‘ JobTitle ‘
Incumbents Salary

‘ SSN ‘ PCN ‘ FromDate ‘ ToDate ‘ ‘ SSN ‘ Amount ‘ FromDate ‘ ToDate ‘

¢ As for constraints, queries and modifications can be of three kinds

current, sequenced, and nonsequenced

¢ Extracting the current state: What is Bob’s current position

SELECT JobTitle

FROM Employee E, Incumbents I, Position P
WHERE E.FirstName = ’'Bob’

AND E.SSN = I.SSN AND I.PCN = P.PCN

AND I.ToDate = ’3000-01-01’

86

43

Extracting Current State (1)

4 Another alternative for obtaining Bob’s current position

SELECT JobTitle

FROM Employee E, Incumbents I, Position P

WHERE E.FirstName = ’Bob’

AND E.SSN = I.SSN AND I.PCN = P.PCN

AND I.FromDate <= CURRENT_DATE AND CURRENT_DATE < I.ToDate

4 Current joins over two temporal tables are not too difficult

4 What is Bob’s current position and salary ?

SELECT JobTitle, Amount

FROM Employee E, Incumbents I, Position P, Salary S

WHERE FirstName = ’Bob’

AND E.SSN = I.SSN AND I.PCN = P.PCN AND E.SSN = S.SSN

AND I.FromDate <= CURRENT_DATE AND CURRENT_DATE < I.ToDate
AND S.FromDate <= CURRENT_DATE AND CURRENT_DATE < S.ToDate

87

Extracting Current State (2)

4 What employees currently have no position?

SELECT FirstName
FROM Employee E
WHERE NOT EXISTS (
SELECT *
FROM Incumbents I
WHERE E.SSN = I.SSN
AND I.FromDate <= CURRENT_DATE AND CURRENT_DATE < I. ToDate)

88

44

Extracting Prior States

¢ Timeslice queries: extracts a state at a particular point in time
4 Timeslice queries over a previous state requires an additional predicate for each temporal table

4 What was Bob’s position at the beginning of 19977

SELECT JobTitle

FROM Employee E, Incumbents I, Position P

WHERE E.FirstName = ’Bob’

AND E.SSN = I.SSN AND I.PCN = P.PCN

AND I.FromDate <= ’1997-01-01’ AND ’1997-01-01’ < I.ToDate

89

Sequenced Queries
@ Queries whose result is a valid-time table

¢ Use sequenced variants of basic operations

Selection, projection, union, sorting, join, difference, and duplicate elimination

2

Sequenced selection: no change is necessary

4 Who makes or has made more than 50K annually

SELECT *
FROM Salary
WHERE Amount > 50000

¢ Sequenced projection: include the timestamp columns in the select list

List the social security numbers of current and past employees

SELECT SSN, FromDate, ToDate
FROM Salary

*

Duplications resulting from the projection are retained

*

To eliminate them coalescing is needed (see next)

90

45

Coalescing while Removing Duplicates

T2

— e
F L
—
\/V
=

SELECT DISTINCT F.SSN, F.FromDate, L.ToDate
FROM Salary F, Salary L
WHERE F.FromDate < L.ToDate
AND F.SSN = L.SSN
AND NOT EXISTS (SELECT * FROM Salary AS M
WHERE M.SSN = F.SSN
AND F.FromDate < M.FromDate AND M.FromDate <= L.ToDate
AND NOT EXISTS (SELECT * FROM Salary AS T1
WHERE T1.SSN = F.SSN AND
AND T1.FromDate < M.FromDate AND M.FromDate <= T1l.ToDate))
AND NOT EXISTS (SELECT * FROM Salary AS T2
WHERE T2.SSN = F.SSN AND
AND ((T2.FromDate < F.FromDate AND F.FromDate <= T2.ToDate)
OR (T2.FromDate <= L.ToDate AND L.ToDate < T2.ToDate)))

91

Sequenced Sort
4 Requires the result to be ordered at each point in time
¢ This can be accomplished by appending the start and end time columns in the ORDER BY clause

¢ Sequenced sort Incumbents on the position code (first version)
SELECT *
FROM Incumbents
ORDER BY PCN, FromDate, ToDate

4 Sequenced sorting can also be accomplished by omitting the timestamp columns
SELECT *
FROM Incumbents
ORDER BY PCN

92

46

Sequenced Union

¢ A UNION ALL (retaining duplicates) over temporal tables is automatically sequenced if the timestamp

columns are kept

4 Who makes or has made annually more than 50,000 or less than 10,0007

SELECT *

FROM Salary

WHERE Amount > 50000
UNION ALL

SELECT *

FROM Salary

WHERE Amount < 10000

¢ A UNION without ALL eliminates duplicates but is difficult to express in SQL (see later)

93

Sequenced Join (1)
¢ Example: determine the salary and position history for each employee
¢ Implies a sequenced join between Salary and Incumbents

¢ It is supposed that there are no duplicate rows in the tables: at each point in time an employee has one
salary and one position

¢ In SQL a sequenced join requires four select statements and complex inequality predicates
@ The following code does not generates duplicates

& For this reason UNION ALL is used which is more efficient than UNION, which does a lot of work for
remove the nonocccurring duplicates

94

47

Sequenced Join (2)

SELECT S.SSN, Amount, PCN, S.FromDate, S.ToDate
FROM Salary S, Incumbents I @i@
WHERE S.SSN = I.SSN
AND I.FromDate < S.FromDate AND S.ToDate <= I.ToDate |
UNION ALL
SELECT S.SSN, Amount, PCN, S.FromDate, I.ToDate
FROM Salary S, Incumbents I S
WHERE S.SSN = I.SSN [@
AND S.FromDate >= I.FromDate | |
AND S.FromDate < I.ToDate AND I.ToDate < S.ToDate @
UNION ALL
SELECT S.SSN, Amount, PCN, I.FromDate, S.ToDate
FROM Salary S, Incumbents I @ S
WHERE S.SSN = I.SSN |
AND I.FromDate >= S.FromDate | @
AND I.FromDate < S.ToDate AND S.ToDate < I.ToDate
UNION ALL
SELECT S.SSN, Amount, PCN, I.FromDate, I.ToDate S
FROM Salary S, Incumbents I I

WHERE S.SSN = I.SSN I
AND I.FromDate > S.FromDate AND I.ToDate < S.ToDate ®—@

fg

N

N

fg

95

Sequenced Join using CASE

SELECT S.SSN, Amount, PCN,
CASE WHEN S.FromDate > I.FromDate
THEN S.FromDate ELSE I.FromDate
END AS StartDate,
CASE WHEN S.ToDate > I.ToDate
THEN I.ToDate ELSE S.ToDate
END AS EndDate
FROM Salary S, Incumbents I
WHERE S.SSN = I.SSN
AND (CASE WHEN S.FromDate > I.FromDate
THEN S.FromDate ELSE I.FromDate
END)
< (CASE WHEN S.ToDate > I.ToDate
THEN I.ToDate ELSE S.ToDate
END)

¢ CASE allows to write this query in a single statement
¢ First CASE simulates a maxDate function of the two arguments, the second one a minDate function

¢ Condition in the WHERE ensures that the period of validity is well formed

96

48

Sequenced Join using Functions: SQL Server Example

create function minDate(@one smalldatetime, @two smalldatetime)
returns smalldatetime as
begin
return CASE WHEN @one < @two then @one else @two end
end

create function maxDate(@one smalldatetime, @two smalldatetime)
returns smalldatetime as
begin
return CASE WHEN @one > @two then @one else @two end
end

SELECT S.SSN, Amount, PCN,
maxDate(S.FromDate,I.FromDate) AS StartDate,
minDate(S.ToDate,I.ToDate) AS EndDate

FROM Salary S, Incumbents I

WHERE S.SSN = I.SSN

AND maxDate(S.FromDate,I.FromDate) < minDate(S.ToDate,I.ToDate)

97

Difference

¢ Implemented in SQL with EXCEPT, NOT EXISTS, or NOT IN
¢ List the employees who are department heads (PCN=1234) but are not also professors (PCN=5555)

4 Nontemporal version

SELECT SSN

FROM Incumbents I1

WHERE I1.PCN = 1234

AND NOT EXISTS (SELECT * FROM Incumbents I2
WHERE I1.SSN = I2.SSN AND I2.PCN = 5555)

& Using EXCEPT

SELECT SSN

FROM Incumbents
WHERE PCN = 1234
EXCEPT

SELECT SSN

FROM Incumbents
WHERE PCN = 5555

98

49

Sequenced Difference (1)

Result B
Department head
Case 1 f
\ Professor
Department head [
Case2 f)
Professor
Department head
Case 3
Professor) \ Professor
-7 I
Case 4 Department head
b

¢ Sequenced version: Identify when the department heads were not professors
¢ Four possible cases should be taken into account

¢ Each of them requires a separate SELECT statement

99

Sequenced Difference (2)

¢ List the employees who are or were department heads (PCN=1234) but not also professors (PCN=5555)

SELECT I1.SSN, Il.FromDate, I2.FromDate AS ToDate
FROM Incumbents I1, Incumbents I2
WHERE I1.PCN = 1234 AND I2.PCN = 5555 AND I1.SSN = I2.SSN

11 DH \

AND I1.FromDate < I2.FromDate AND I2.FromDate < Il.ToDate <j>
AND NOT EXISTS (SELECT * FROM Incumbents I3

WHERE I1.SSN = I3.SSN AND I3.PCN = 5555

AND I1.FromDate < I3.ToDate AND I3.FromDate < I2.FromDate)
UNION
SELECT I1.SSN, I2.ToDate AS FromDate, Il.ToDate
FROM Incumbents I1, Incumbents I2
WHERE I1.PCN = 1234 AND I2.PCN = 5555 AND I1.SSN = I2.SSN
AND Il1.FromDate < I2.ToDate AND I2.ToDate < Il.ToDate
AND NOT EXISTS (SELECT * FROM Incumbents I3

WHERE I1.SSN = I3.SSN AND I3.PCN = 5555

J

@ 12 Prof.
\

N

| 11 DH <§>

12 Prof.

AND I2.ToDate < I3.ToDate AND I3.FromDate < Il.ToDate)
UNION

D

100

50

Sequenced Difference (3)

SELECT I1.SSN, I2.ToDate AS FromDate, I3.FromDate AS ToDate
FROM Incumbents I1, Incumbents I2, Incumbents I3

WHERE I1.PCN = 1234 AND I2.PCN = 5555 AND I3.PCN = 5555

AND I1.SSN = I2.SSN AND I1.SSN = I3.SSN
AND I2.ToDate < I3.FromDate

11 DH

N

AND Il1.FromDate < I2.ToDate I
AND I3.FromDate < Il.ToDate 12 Prof. 13 Prof.
AND NOT EXISTS (SELECT * FROM Incumbents T4 0 (G
WHERE I1.SSN = I4.SSN AND I4.PCN = 5555
AND I2.ToDate < I4.ToDate AND I4.FromDate < I3.FromDate)
UNION
SELECT SSN, FromDate, ToDate 11 DH
FROM Incumbents I1 (1)
WHERE I1.PCN = 1234
AND NOT EXISTS (SELECT * FROM Incumbents I4
WHERE I1.SSN=I4.SSN AND I4.PCN = 5555
AND I1.FromDate < I4.ToDate AND I4.FromDate < Il.ToDate)

101

Nonsequenced Variants

¢ Nonsequenced operators (selection, join , ...) are straightforward

They ignore the time-varying nature of tables

¢ List all the salaries, past and present, of employees who had been lecturer at some time

SELECT Amount

FROM Incumbents I, Position P, Salary S
WHERE I.SSN = S.SSN AND I.PCN = P.PCN
AND JobTitle = ’Lecturer’

4 When did employees receive raises?

SELECT S2.SSN, S2.FromDate AS RaiseDate
FROM Salary S1, Salary S2

WHERE S2.Amount > S1.Amount

AND S1.SSN = S2.SSN

AND S1.ToDate = S2.FromDate

102

51

Eliminating Duplicates

4 Remove nonsequenced duplicates from Incumbents

SELECT DISTINCT *
FROM Incumbents

4 Remove value-equivalent rows from Incumbents

SELECT DISTINCT SSN,PCN
FROM Incumbents

4 Remove current duplicates from Incumbents
SELECT DISTINCT SSN,PCN
FROM Incumbents
WHERE ToDate = ’3000-01-01’

103

Sequenced Aggregation Functions

Affiliation

‘ SSN ‘ DNumber ‘ FromDate ‘ ToDate ‘

Salary
‘SSN ‘Amount ‘FromDate‘ ToDate‘

¢ SQL provides aggregation functions: COUNT, MIN, MAX, AVG, ...

4 List the maximum salary: non-temporal version

SELECT MAX(Amount)
FROM Salary

¢ List by department the maximum salary: non-temporal version
SELECT DNumber, MAX(Amount)
FROM Affiliation A, Salary S
WHERE A.SSN = S.SSN
GROUP BY DNumber

104

52

Maximum Salary: Temporal Version (1)

g —=2% 30

- 25 30

E3 30, 35 35,
wax 120,25,30,30,35.35 35 30,

¢ First step: Compute the periods on which a maximum must be calculated

CREATE VIEW SalChanges(Day) AS
SELECT DISTINCT FromDate FROM Salary
UNION
SELECT DISTINCT ToDate FROM Salary
CREATE VIEW SalPeriods(FromDate, ToDate) AS
SELECT P1.Day, P2.Day
FROM SalChanges P1, SalChanges P2
WHERE P1.Day < P2.Day
AND NOT EXISTS (SELECT * FROM SalChanges P3
WHERE P1.Day < P3.Day AND P3.Day < P2.Day)

105

Maximum Salary: Temporal Version (2)

1 —20 , 30 |
o 25 30
E3 38 35 35,

MAX }28125}3®}3®}35}35} }35}301

¢ Second step: Compute the maximum salary for these periods

CREATE VIEW TempMax(MaxSalary, FromDate, ToDate) AS
SELECT MAX(E.Amount), I.FromDate, I.ToDate
FROM Salary E, SalPeriods I
WHERE E.FromDate <= I.FromDate AND I.ToDate <= E.ToDate
GROUP BY I.FromDate, I.ToDate

@ Third step: Coalesce the above view (as seen before)

106

53

Number of Employees: Temporal Version

Fp —20 30

- 25 30

B3 30, 35 35,
count p14243,3,3,2,0,2,1,

¢ Second step: Compute the number of employees for these periods

CREATE VIEW TempCount(NbEmp, FromDate, ToDate) AS
SELECT COUNT(*), P.FromDate, P.ToDate
FROM Salary S, SalPeriods P
WHERE S.FromDate<=P.FromDate AND P.ToDate<=S.ToDate
GROUP BY P.FromDate, P.ToDate
UNION ALL
SELECT 0, P.FromDate, P.ToDate
FROM SalPeriods P
WHERE NOT EXISTS (
SELECT * FROM Salary S
WHERE S.FromDate<=P.FromDate AND P.ToDate<=S.ToDate)

¢ Third step: Coalesce the above view (as seen before)

107

Maximum Salary by Department: Temporal Version (1)

D1, D2 ‘
El . 20 , 30
D2 , D1

E2 e

D2 , DI

E3 30 35
Max(p1) 2% | 25,35,35,

MAX(D2) 122430,30, 30

¢ Hypothesis: Employees have salary only while they are affiliated to a department

108

54

Maximum Salary by Department: Temporal Version (2)

¢ First step: Compute by department the periods on which a maximum must be calculated

CREATE VIEW Aff Sal(DNumber, Amount, FromDate, ToDate) AS
SELECT DISTINCT A.DNumber, S.Amount,
maxDate(S.FromDate,A.FromDate), minDate(S.ToDate,A.ToDate)
FROM Affiliation A, Salary S
WHERE A.SSN=S.SSN
AND maxDate(S.FromDate,A.FromDate) < minDate(S.ToDate,A.ToDate)
CREATE VIEW SalChanges(DNumber, Day) AS
SELECT DISTINCT DNumber, FromDate FROM Aff_Sal
UNION
SELECT DISTINCT DNumber, ToDate FROM Aff_Sal
CREATE VIEW SalPeriods(DNumber, FromDate, ToDate) AS
SELECT P1.DNumber, P1.Day, P2.Day
FROM SalChanges P1, SalChanges P2
WHERE P1.DNumber = P2.DNumber AND P1l.Day < P2.Day
AND NOT EXISTS (SELECT * FROM SalChanges P3
WHERE P1.DNumber = P3.DNumber AND P1.Day < P3.Day
AND P3.Day < P2.Day)

109

Maximum Salary by Department: Temporal Version (3)

¢ Second step: Compute the maximum salary for these periods
CREATE VIEW TempMaxDep(DNumber, MaxSalary, FromDate, ToDate) AS
SELECT P.DNumber, MAX(Amount), P.FromDate, P.ToDate
FROM Aff_Sal A, SalPeriods P
WHERE A.DNumber = P.DNumber
AND A.FromDate <= P.FromDate AND P.ToDate <= A.ToDate
GROUP BY P.DNumber, P.FromDate, P.ToDate

@ Third step: Coalesce the above view (as seen before)

110

55

Sequenced Division

Affiliation

‘ SSN‘ DNumber ‘FromDate‘ ToDate
Controls

‘PNumber ‘DNumber ‘FromDate‘ ToDate
WorksOn

‘ SSN ‘ PNumber ‘ FromDate ‘ ToDate ‘

¢ Implemented in SQL with two nested NOT EXISTS

¢ List the employees that work in all projects of the department to which they are affiliated: non-
temporal version

SELECT SSN
FROM Affiliation A
WHERE NOT EXISTS (
SELECT * FROM Controls C
WHERE A.DNumber = C.DNumber AND NOT EXISTS (
SELECT * FROM WorksOn W
WHERE C.PNumber = W.PNumber AND A.SSN = W.SSN))

111

Sequenced Division: Case 1 (1)
¢ Only WorksOn is temporal

¢ First step: Construct the periods on which the division must be computed

E,P1
Wl ——— Affiliation(E,D)

W2 ~E,P2 = controls(D,P1)

Controls(D,P2)
Result)LOLOL(

CREATE VIEW ProjChangesC1(SSN,Day) AS
SELECT SSN,FromDate FROM WorksOn
UNION
SELECT SSN,ToDate FROM WorksOn
CREATE VIEW ProjPeriodsC1(SSN,FromDate,ToDate) AS
SELECT P1.SSN,P1.Day,P2.Day
FROM ProjChangesCl P1, ProjChangesCl P2
WHERE P1.SSN=P2.SSN AND P1.Day<P2.Day AND NOT EXISTS (
SELECT * FROM ProjChangesC2 P3
WHERE P1.SSN=P3.SSN AND P1.Day<P3.Day AND P3.Day<P2.Day)

112

56

Sequenced Division: Case 1 (2)

¢ Second step: Compute the division

CREATE VIEW TempUnivQuantC1l(SSN, FromDate, ToDate) AS
SELECT DISTINCT P.SSN, P.FromDate, P.ToDate
FROM ProjPeriodsCl P, Affiliation A
WHERE P.SSN = A.SSN AND NOT EXISTS (
SELECT * FROM Controls C
WHERE A.DNumber = C.DNumber AND NOT EXISTS (
SELECT * FROM WorksOn W
WHERE C.PNumber = W.PNumber AND P.SSN = W.SSN
AND W.FromDate <= P.FromDate AND P.ToDate <= W.ToDate))

¢ Third step: Coalesce the above view

113

Sequenced Division: Case 2 (1)

4 Only Controls and WorksOn are temporal

4 Employees may work in projects controlled by departments different from the department to which
they are affiliated

¢ First step: Construct the periods on which the division must be computed

1 D,P1
- D,P2
W —E.PL Affiliation(E,D)
0 E,P2

Result 1‘/1‘/1)(;/;/;)(‘

114

57

Sequenced Division: Case 2 (2)

CREATE VIEW ProjChangesC2(SSN,Day) AS
SELECT SSN,FromDate
FROM Affiliation A, Controls C
WHERE A.DNumber=C.DNumber
UNION
SELECT SSN, ToDate
FROM Affiliation A, Controls C
WHERE A.DNumber=C.DNumber
UNION
SELECT SSN,FromDate FROM WorksOn
UNION
SELECT SSN,ToDate FROM WorksOn
CREATE VIEW ProjPeriodsC2(SSN,FromDate,ToDate) AS
SELECT P1.SSN,P1.Day,P2.Day
FROM ProjChangesC2 P1, ProjChangesC2 P2
WHERE P1.SSN=P2.SSN AND P1.Day<P2.Day AND NOT EXISTS (
SELECT * FROM ProjChangesC2 P3
WHERE P1.SSN=P3.SSN AND P1.Day<P3.Day AND P3.Day<P2.Day)

115

Sequenced Division: Case 2 (3)

¢ Second step: Compute the division of these periods

CREATE VIEW TempUnivC2(SSN,FromDate,ToDate) AS
SELECT DISTINCT P.SSN,P.FromDate,P.ToDate
FROM ProjPeriodsC2 P, Affiliation A
WHERE P.SSN=A.SSN AND NOT EXISTS (
SELECT * FROM Controls C
WHERE A.DNumber=C.DNumber AND C.FromDate<=P.FromDate
AND P.ToDate<=C.ToDate AND NOT EXISTS (
SELECT * FROM WorksOn W
WHERE C.PNumber=W.PNumber AND P.SSN=W.SSN
AND W.FromDate<=P.FromDate AND P.ToDate<=W.ToDate))

¢ Third step: Coalesce the above view

116

58

Sequenced Division: Case 3 (1)

¢ Only Affiliation and WorksOn are temporal

¢ Employees may work in projects controlled by departments different from the department to which

they are affiliated

¢ First step: Construct the periods on which the division must be computed

A E,D

Wi E,P1 Controls(D,P1)
E P2 Controls(D,P2)
W2 P

ProjChanges)LOLO—‘LOL{

117

Sequenced Division: Case 3 (2)

CREATE VIEW Aff WO(SSN, DNumber, PNumber, FromDate, ToDate) AS
SELECT DISTINCT A.SSN, A.DNumber, W.PNumber,
maxDate(A.FromDate,W.FromDate), minDate(A.ToDate,W.ToDate)
FROM Affiliation A, WorksOn W
WHERE A.SSN=W.SSN
AND maxDate(A.FromDate,W.FromDate) < minDate(A.ToDate,W.ToDate)
CREATE VIEW ProjChangesC3(SSN, DNumber, Day) AS
SELECT SSN, DNumber, FromDate FROM Aff WO UNION
SELECT SSN, DNumber, ToDate FROM Aff WO UNION
SELECT SSN, DNumber, FromDate FROM Affiliation UNION
SELECT SSN, DNumber, ToDate FROM Affiliation
CREATE VIEW ProjPeriodsC3(SSN, DNumber, FromDate, ToDate) AS
SELECT P1.SSN, P1.DNumber, Pl.Day, P2.Day
FROM ProjChangesC3 P1, ProjChangesC3 P2
WHERE P1.SSN = P2.SSN AND P1.DNumber = P2.DNumber
AND P1.Day < P2.Day AND NOT EXISTS (
SELECT * FROM ProjChangesC3 P3
WHERE P1.SSN = P3.SSN AND P1.DNumber = P3.DNumber
AND P1.Day < P3.Day AND P3.Day < P2.Day)

118

59

Sequenced Division: Case 3 (3)

¢ Second step: Compute the division of these periods

CREATE VIEW TempUnivQuant(SSN, FromDate, ToDate) AS
SELECT DISTINCT P.SSN, P.FromDate, P.ToDate
FROM ProjPeriodsC3 P
WHERE NOT EXISTS (
SELECT * FROM Controls C
WHERE P.DNumber=C.DNumber AND NOT EXISTS (
SELECT * FROM WorksOn W
WHERE C.PNumber=W.PNumber AND P.SSN=W.SSN
AND W.FromDate<=P.FromDate AND P.ToDate<=W.ToDate))

@ Third step: Coalesce the above view

119

Sequenced Division: Case 4 (1)

¢ Affiliation, Controls, and WorksOn are all temporal

¢ First step: Construct the periods on which the division must be computed

A | E,D |
c1 D,P1
2 | D,P2 |
Wi E,P1
W2 E,P2

Result WX/ X/ /X

120

60

Sequenced Division: Case 4 (2)

CREATE VIEW Aff Cont(SSN, DNumber, PNumber, FromDate, ToDate) AS
SELECT DISTINCT A.SSN, A.DNumber, C.PNumber,
maxDate(A.FromDate,C.FromDate), minDate(A.ToDate,C.ToDate)
FROM Affiliation A, Controls C WHERE A.DNumber=C.DNumber
AND maxDate(A.FromDate,C.FromDate) < minDate(A.ToDate,C.ToDate)
CREATE VIEW Aff Cont_WO(SSN, DNumber, PNumber, FromDate, ToDate) AS
SELECT DISTINCT A.SSN, A.DNumber, W.PNumber,
maxDate(A.FromDate,W.FromDate), minDate(A.ToDate,W.ToDate)
FROM Aff_Cont A, WorksOn W WHERE A.PNumber=W.PNumber AND A.SSN=W.SSN
AND maxDate(A.FromDate,W.FromDate) < minDate(A.ToDate,W.ToDate)
CREATE VIEW ProjChangesC4(SSN, DNumber, Day) AS
SELECT SSN, DNumber, FromDate FROM Aff_Cont UNION
SELECT SSN, DNumber, ToDate FROM Aff Cont UNION
SELECT SSN, DNumber, FromDate FROM Aff Cont_WO UNION
SELECT SSN, DNumber, ToDate FROM Aff_Cont_WO UNION
SELECT SSN, DNumber, FromDate FROM Affiliation UNION
SELECT SSN, DNumber, ToDate FROM Affiliation
CREATE VIEW ProjPeriodsC4(SSN, DNumber, FromDate, ToDate) AS
SELECT P1.SSN, P1.DNumber, Pl.Day, P2.Day
FROM ProjChangesC4 P1, ProjChangesC4 P2 WHERE P1.SSN = P2.SSN
AND P1.DNumber = P2.DNumber AND P1.Day < P2.Day
AND NOT EXISTS (SELECT * FROM ProjChangesC4 P3
WHERE P1.SSN = P3.SSN AND P1.DNumber = P3.DNumber
AND P1.Day < P3.Day AND P3.Day < P2.Day)

121

Sequenced Division: Case 4 (3)

¢ Second step: Compute the division of these periods

CREATE VIEW TempUnivQuant(SSN, FromDate, ToDate) AS
SELECT DISTINCT P.SSN, P.FromDate, P.ToDate
FROM ProjPeriodsC4 P
WHERE NOT EXISTS (
SELECT * FROM Controls C
WHERE P.DNumber = C.DNumber AND C.FromDate <= P.FromDate
AND P.ToDate <= C.ToDate AND NOT EXISTS (
SELECT * FROM WorksOn W
WHERE C.PNumber = W.PNumber AND P.SSN=W.SSN
AND W.FromDate <= P.FromDate AND P.ToDate <= W.ToDate))

¢ Third step: Coalesce the above result

122

61

o ¥ ¢ o o o

Temporal Databases: Topics
Introduction
Time Ontology
Temporal Conceptual Modeling
Manipulating Temporal Databases with SQL-92
Temporal Support in Current DBMSs and in SQL 2011

Summary

123

Temporal Support in Oracle
Oracle 9i, released in 2001, included support for transaction time

Flashback queries allow the application to access prior transaction-time states of their database; they
are transaction timeslice queries

Database modifications and conventional queries are temporally upward compatible

Oracle 10g, released in 2006, extended flashback queries to retrieve all the versions of a row between
two transaction times (a key-transaction-time-range query)

It also allowed tables and databases to be rolled back to a previous transaction time, discarding all
changes after that time

Oracle 10g Workspace Manager includes the period data type, valid-time support, transaction-time
support, bitemporal support, and support for sequenced primary keys, sequenced uniqueness, se-
quenced referential integrity, and sequenced selection and projection

These facilities permit tracing of actions on data as well as the ability to perform database forensics

Oracle 11g, released in 2007, does not rely on transient storage like the undo segments, it records
changes in the Flashback Recovery Area

Valid-time queries were also enhanced

124

62

Temporal Support in Teradata

¢ Teradata Database 13.10, released October 2010, introduced the period data type, valid-time support,
transaction-time support, timeslices, temporal upward compatibility, sequenced primary key and tem-
poral referential integrity constraints, nonsequenced queries, and sequenced projection and selection

¢ Teradata Database 14, released February 29, 2012, adds capabilities to create a global picture of an
organization’s business at any point in time

125

Temporal Support in DB2

¢ IBM DB2 10, released in October 2010, includes the period data type, valid-time support (termed busi-
ness time), transaction-time support (termed system time), timeslices, temporal upward compatibility,
sequenced primary keys, and sequenced projection and selection

126

63

Temporal Facilities in the SQL 2011

¢ ISQL:2011 Part 2: SQL/Foundation, published on December 2011 (1434 pages!) has temporal support

Application-time period tables (essentially valid-time tables)
Have sequenced primary and foreign keys
Support single-table valid-time sequenced insertions, deletions, and updates

Nonsequenced valid-time queries are supported

System-versioned tables (essentially transaction-time tables)
Have transaction-time current primary and foreign keys
Support transaction-time current insertions, deletions, and updates

Support transaction-time current and nonsequenced queries

System-versioned application-time period tables (essentially bitemporal tables)

Support temporal queries and modifications of combinations of the valid-time and transaction-time
variants

127

Temporal Support in the SQL Standard: A Short History
First work started in July 1993 under the TSQL2 initiative led by Richard Snodgrass
Definitive version of the TSQL2 Language Specification published in September 1994

Book “The TSQL2 Temporal Query Language”, edited by Richard Snodgrass and published by Kluwer
Academic Publishers appeared in 1995

Then work to transfer some of the constructs and insights of TSQL2 into SQL3 started

A new part to SQL3, termed SQL/Temporal, was accepted in January, 1995 as Part 7 of the SQL3
specification

Discussions then commenced on adding valid-time and transaction-time support to SQL/Temporal.
Two change proposals, ANSI-96-501 and ANSI-96-502, were unanimously accepted by ANSI and
forwarded to ISO in early 1997

Due to disagreements within the ISO committee, the project responsible for temporal support was
canceled in 2001

Concepts and constructs from SQL/Temporal were subsequently included in SQL:2011 and have been
implemented in IBM DB2, Oracle, Teradata Database, and PolarLake

Other products have included temporal support

128

64

Brief Description of the SQL Standard (1)
¢ ISO/IEC 9075, Database Language SQL is the dominant database language de-jure standard
¢ First published in 1987, revised versions published in 1989, 1992, 1999, 2003, 2008, and 2011

¢ Multi-part standard with 9 Parts
Part 1 - Framework (SQL/Framework)
Part 2 - Foundation (SQL/Foundation)
Part 3 - Call-Level Interface (SQL/CLI)
Part 4 - Persistent Stored Modules (SQL/PSM)
Part 9 - Management of External Data (SQL/MED)
Part 10 - Object Language Bindings (SQL/OLB)
Part 11 - Information and Definition Schemas (SQL/Schemata)
Part 13 - SQL Routines and Types using the Java Programming Language (SQL/JRT
Part 14 - XML-Related Specifications (SQL/XML)

@ Parts 3,9, 10, and 13 are currently inactive

129

Brief Description of the SQL Standard (2)

¢ Part 2 - SQL/Foundation: Largest and the most important part SQL
General-purpose programming constructs: Data types, expressions, predicates, etc.

Data definition: CREATE/ALTER/DROP of tables, views, constraints, triggers, stored procedures,
stored functions, etc.

Query constructs: SELECT, joins, etc.

Data manipulation: INSERT, UPDATE, MERGE, DELETE, etc.
Access control: GRANT, REVOKE, etc.

Transaction control: COMMIT, ROLLBACK, etc.

Connection management: CONNECT, DISCONNECT, etc.
Session management: SET SESSION statement

Exception handling: GET DIAGNOSTICS statement

130

65

® & 6 o o

Brief Description of the SQL Standard (3)

For conformance purpose, SQL is divided into a list of “features”, grouped under two categories:
Mandatory features

Optional features
To claim conformance, an implementation must conform to all mandatory features
An implementation may conform to any number of optional features
Both are listed in Annex F of each part of the SQL standard
SQL/Foundation:2008 specifies 164 mandatory features and 280 optional features

SQL/Foundation:2011 added a total 34 new features, including
System-versioned tables

Application-time period tables

131

Application-Time Period Tables
Contain a PERIOD clause (newly-introduced) with an user-defined period name

Currently restricted to temporal periods only; may be relaxed in the future

4 Must contain two additional columns, to store the start time and the end time of a period associated

with the row

Values of both start and end columns are set by the users

@ Users can specify primary key/unique constraints to ensure that no two rows with the same key value

have overlapping periods

Users can specify referential constraints to ensure that the period of every child row is completely
contained in the period of exactly one parent row or in the combined period of two or more consecutive

parent rows

Queries, inserts, updates and deletes on application-time period tables behave exactly like queries,
inserts, updates and deletes on regular tables

Additional syntax is provided on UPDATE and DELETE statements for partial period updates and deletes

132

66

Creating an Application-Time Period Table

CREATE TABLE employees

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

start_date DATE NOT NULL,

end_date DATE NOT NULL,

PERIOD FOR emp_period (start_date, end_date),

PRIMARY KEY (emp_name, emp_period WITHOUT OVERLAPS),

FOREIGN KEY (dept_id, PERIOD emp_period) REFERENCES
departments (dept_id, PERIOD dept_period));

¢ PERIOD clause automatically enforces the constraint end_date > start_date
¢ The name of the period can be any user-defined name
¢ The period starts on the start_date value and ends on the value just prior to end_date value

¢ This corresponds to the [closed, open) encoding of periods

133

Inserting Rows into an Application-Time Period Table (1)
¢ On an insertion, user provides the start and end time of the period for each row
¢ User-supplied time values can be either in the past, current, or in the future

4 Example
INSERT INTO employees (emp_name, dept_id, start_date, end_date)
VALUES (’John’, ’J13’, DATE ’'1995-11-15’, DATE ’1996-11-15"),
(’Tracy’,’K25’, DATE ’1996-01-01’, DATE ’'1997-11-15")

@ Periods are encoded as [closed, open)

emp_name | dept_id | start_date | end_date
John J13 15/11/1995 | 15/11/1996
Tracy K25 01/01/1996 | 15/11/1997

134

67

Inserting Rows into an Application-Time Period Table (2)

emp_name | dept_id | start_date | end_date
John J13 15/11/1995 15/11/1996
Tracy K25 01/01/1996 15/11/1997

¢ Given the above table, the following INSERT will succeed

INSERT INTO employees (emp_name, dept_id, start_date, end_date)
VALUES (’John’, ’J13’, DATE ’1996-11-15’, DATE ’'1997-11-15"),
(’John’,’J12’°, DATE ’1997-11-15", DATE ’1998-11-15’)
@ The following INSERT will not, because of the inclusion of emp_period WITHOUT OVERLAPS in the
primary key definition

INSERT INTO employees (emp_name, dept_id, start_date, end_date)
VALUES (’John’, ’J13’, DATE ’'1996-01-01’, DATE ’'1996-12-31")

135

Updating Rows in an Application-Time Period Table (1)

¢ All rows can be potentially updated

2

Users are allowed to update the start and end columns of the period associated with each row

4 When arow from an application-time period table is updated using the regular UPDATE statements, the
regular semantics apply

4 Additional syntax is provided for UPDATE statements to specify the time period during which the
update applies

¢ Only those rows that lie within the specified period are impacted

¢ May lead to row splits, i.e., update of a row may cause insertion of up to two rows to preserve the
information for the periods that lie outside the specified period

¢ Users are not allowed to update the start and end columns of the period associated with each row under
this option

136

68

Updating Rows in an Application-Time Period Table (2)

emp_name | dept_id | start_date | end_date
John J13 15/11/1995 | 15/11/1996
Tracy K25 01/01/1996 | 15/11/1997

4 Given the above table, the following UPDATE

UPDATE employees
SET dept_id = ’J15’
WHERE emp_name = ’John’

will lead the following table

emp_name | dept_id | start_date | end_date
John J15 15/11/1995 | 15/11/1996
Tracy K25 01/01/1996 | 15/11/1997
¢ No changes to the period values
137

Updating Rows in an Application-Time Period Table (3)

emp_name | dept_id | start_date | end_date
John J15 15/11/1995 15/11/1996
Tracy K25 01/01/1996 | 15/11/1997

¢ Given the above table, the following UPDATE
UPDATE employees FOR PORTION OF emp_period FROM

DATE ’1996-03-01° TO DATE ’1996-07-01’
SET dept_id = ’M12’
WHERE emp_name = ’John’
will lead the following table
emp_name | dept_id | start_date | end_date
John J15 15/11/1995 | 01/03/1996
John Mi12 01/03/1996 | 01/07/1996
John J15 01/07/1996 | 15/11/1996
Tracy K25 01/01/1996 | 15/11/1997

¢ Automatic row splitting: 1 update and 2 inserts

138

69

Deleting Rows from an Application-Time Period Table (1)

4 All rows can be potentially deleted

4 When a row from an application-time period table is deleted using the regular DELETE statements, the

regular semantics apply

¢ Additional syntax is provided for DELETE statements to specify the time period during which the delete

applies

4 Only those rows that lie within the specified period are impacted

4 May lead to row splits, i.e., delete of a row may cause insertion of up to two rows to preserve the

information for the periods that lie outside the specified period

139

Deleting Rows from an Application-Time Period Table (1)

emp_name | dept_id | start_date | end_date
John J15 15/11/1995 | 01/03/1996
John M12 01/03/1996 | 01/07/1996
John J15 01/07/1996 15/11/1996
Tracy K25 01/01/1996 | 15/11/1997

4 Given the above table, the following DELETE
DELETE FROM employees FOR PORTION OF emp_period FROM

DATE ’'1996-08-01’ TO DATE ’1996-09-01’
WHERE emp_name = ’John’
will lead the following table
emp_name | dept_id | start_date | end_date
John J15 15/11/1995 | 01/03/1996
John Mi12 01/03/1996 | 01/07/1996
John J15 01/07/1996 | 01/08/1996
John J15 01/09/1996 15/11/1996
Tracy K25 01/01/1996 | 15/11/1997

4 Automatic row splitting: 1 delete and 2 inserts

140

70

Deleting Rows from an Application-Time Period Table (3)

emp_name | dept_id | start_date | end_date
John J15 15/11/1995 | 01/03/1996
John M12 01/03/1996 | 01/07/1996
John J15 01/07/1996 | 01/08/1996
John J15 01/09/1996 | 15/11/1996
Tracy K25 01/01/1996 | 15/11/1997

4 Given the above table, the following DELETE

DELETE FROM employees
WHERE emp_name = ’John’

will lead the following table

emp_name | dept_id | start_date | end_date
Tracy K25 01/01/1996 | 15/11/1997
¢ All rows pertaining to John are deleted
141

Querying an Application-Time Period Table (1)

emp_name | dept_id | start_date | end_date
John J13 15/11/1995 | 31/01/1998
John M24 31/01/1998 | 31/12/9999
Tracy K25 01/01/1996 | 31/03/2000

¢ Existing syntax for querying regular tables is applicable to application-time period tables also

¢ Which department was John in on Dec. 1, 1997?

SELECT dept_id

FROM employees

WHERE emp_name = ’John’ AND start_date <= DATE ’'1997-12-01’
AND end_date > DATE ’'1997-12-01’

¢ Answer: J13

142

Querying an Application-Time Period Table (2)

emp_name | dept_id | start_date | end_date
John J13 15/11/1995 | 31/01/1998
John M24 31/01/1998 | 31/12/9999
Tracy K25 01/01/1996 | 31/03/2000

4 Which department is John in currently?

SELECT dept_id

FROM employees
WHERE emp_name = ’John’ AND start_date <= CURRENT_DATE

AND end_date > CURRENT_DATE;

& Answer: M24

143

Querying an Application-Time Period Table (3)

emp_name | dept_id | start_date | end_date
John J13 15/11/1995 | 31/01/1998
John M24 31/01/1998 | 31/12/9999
Tracy K25 01/01/1996 | 31/03/2000

4 How many departments has John worked in since Jan. 1, 19967

SELECT count(distinct dept_id)
FROM employees WHERE emp_name =
AND end_date > DATE ’1996-01-01’;

’John’ AND start_date <= CURRENT_DATE

¢ Answer: 2

144

72

Benefits of Application-Time Period Tables

Most business data is time sensitive, i.e., need to track the time period during when a data item is
deemed valid or effective from the business point of view
Database systems today offer no support for

Associating user-maintained time periods with rows

Enforcing constraints such as “an employee can be in only one department in any given period”

¢ Updating/deleting a row for a part of its validity period

¢ Currently, applications take on the responsibility for managing such requirements

¢ Major issues

Complexity of code

Poor performance

Use of application-time period tables provides
Significant simplification of application code
Significant improvement in performance

Transparent to legacy applications

145

System-Versioned Tables

System-versioned tables are tables that contain a PERIOD clause with a pre-defined period name
(SYSTEM_TIME) and specify WITH SYSTEM VERSIONING

System-versioned tables must contain two additional columns, to store the start time and the end time
of the SYSTEM_TIME period

Values of both start and end columns are set by the system, users are not allowed to supply values for
these columns

¢ Unlike regular tables, system-versioned tables preserve the old versions of rows as the table is updated

Rows whose periods intersect the current time are called current system rows, all others are called
historical system rows

4 Only current system rows can be updated or deleted

All constraints are enforced on current system rows only

146

73

® & o o

Creating a System-Versioned Table

CREATE TABLE employees

(emp_name VARCHAR(50) NOT NULL, dept_id VARCHAR(10),
system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,
system_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,
PERIOD FOR SYSTEM_TIME (system_start, system_end),
PRIMARY KEY (emp_name),

FOREIGN KEY (dept_id) REFERENCES departments (dept_id);
) WITH SYSTEM VERSIONING;

PERIOD clause automatically enforces the constraint system_end > system_start
The name of the period must be SYSTEM_TIME
The period starts on the system_start value and ends on the value just prior to system_end value

This corresponds to the [closed, open) model of periods

147

Inserting Rows into a System-Versioned Table

When a row is inserted into a system-versioned table, the SQL-implementation sets the start time to
the transaction time and the end time to the largest timestamp value

4 All rows inserted in a transaction will get the same values for the start and end columns

@ The following INSERT executed at timestamp 15/11/1995

INSERT INTO emp (emp_name, dept_id)
VALUES (’John’, ’J13’), (’Tracy’,’K25’)

leads to the following table

emp_name | dept_id | system_start | system_end
John J13 15/11/1995 31/12/9999
Tracy K25 15/11/1995 31/12/9999

¢ Values of system_start and system_end are set by DBMS

4 N.B. Ony date components of system_start and system_end values are shown for simplifying

display

148

74

Updating Rows in a System-Versioned Table

4 When a row from a system-versioned table is updated, the SQL-implementation inserts the “old”
version of the row into the table before updating the row

¢ SQL-implementation sets the end time of the old row and the start time of the updated row to the
transaction time

¢ Users are not allowed to update the start and end columns

¢ The following UPDATE executed at 31/01/1998

UPDATE emp
SET dept_id = ’M24’
WHERE emp_name = ’John’

leads to the following table

emp_name | dept_id | system_start | system_end
John M24 31/01/1998 31/12/9999
John J13 15/11/1995 31/01/1998
Tracy K25 15/11/1995 31/12/9999
149

Deleting Rows from a System-Versioned Table

4 When a row from a system-versioned table is deleted, the SQL-implementation does not actually
delete the row; it simply sets its end time to the transaction time
@ The following DELETE executed on 31/03/2000

DELETE FROM emp
WHERE emp_name = ’Tracy’

leads to the following table

emp_name | dept_id | system_start | system_end
John M24 31/01/1998 31/12/9999
John J13 15/11/1995 31/01/1998
Tracy K25 15/11/1995 31/03/2000

150

75

Querying System-Versioned Tables (1)

¢ Existing syntax for querying regular tables is applicable to system-versioned tables also
4 Additional syntax is provided for expressing queries involving system-versioned tables in a more
succinct manner:
FOR SYSTEM_TIME AS OF <datetime value expression >

FOR SYSTEM_TIME BETWEEN < datetime value expression 1 >
AND < datetime value expression 2 >

FOR SYSTEM_TIME FROM < datetime value expression 1 >
TO < datetime value expression 2 >

151

Querying System-Versioned Tables (2)

emp_name | dept_id | system_start | system_end
John M24 31/01/1998 31/12/9999
John J13 15/11/1995 31/01/1998
Tracy K25 15/11/1995 31/03/2000

¢ Which department was John in on Dec. 1, 1997?

SELECT Dept
FROM employees FOR SYSTEM_TIME AS OF DATE ’'1997-12-01’
WHERE emp_name = ’John’

¢ Answer: J13

152

76

Querying System-Versioned Tables (3)

emp_name | dept_id | system_start | system_end
John M24 31/01/1998 31/12/9999
John J13 15/11/1995 31/01/1998
Tracy K25 15/11/1995 31/03/2000

4 Which department is John in currently?

SELECT Dept
FROM employees

WHERE emp_name = ’John’

¢ Answer: M24

& If AS OF clause is not specified, only current system rows are returned
= FOR SYSTEM_TIME AS OF CURRENT_TIMESTAMP is the default

153

Querying System-Versioned Tables (4)

emp_name | dept_id | system_start | system_end
John M24 31/01/1998 31/12/9999
John J13 15/11/1995 31/01/1998
Tracy K25 15/11/1995 31/03/2000

¢ How many departments has John worked in since Jan. 1, 19967

SELECT count(distinct dept_id)
FROM employees

FOR SYSTEM_TIME BETWEEN DATE
’John’

71996-01-01" AND CURRENT_DATE

WHERE emp_name =

¢ Answer: 2

154

71

Benefits of System-Versioned Tables

¢ Today’s database systems focus mainly on managing current data; they provide almost no support for
managing historical data

4 Some applications have an inherent need for preserving old data. Examples: job histories, salary
histories, account histories, etc.

4 Regulatory and compliance laws require keeping old data around for certain length of time
4 Currently, applications take on the responsibility for preserving old data
¢ Major issues
Complexity of code
Poor performance
4 System-versioned tables provides
Significant simplification of application code

Significant improvement in performance

Transparent to legacy applications

155

System-Versioned Application-Time Period Tables
¢ A table that is both an application-time period table and a system-versioned table
4 Such a table supports features of both application-time period tables and system-versioned tables

¢ Creating a system-versioned application-time period table

CREATE TABLE employees

(emp_name VARCHAR(50) NOT NULL PRIMARY KEY,

dept_id VARCHAR(10),

start_date DATE NOT NULL,

end_date DATE NOT NULL,

system_start TIMESTAMP(6) GENERATED ALWAYS AS ROW START,

System_end TIMESTAMP(6) GENERATED ALWAYS AS ROW END,

PERIOD FOR emp_period (start_date, end_date),

PERIOD FOR SYSTEM_TIME (system_start, system_end),

PRIMARY KEY (emp_name, emp_period WITHOUT OVERLAPS),

FOREIGN KEY (dept_id, PERIOD emp_period) REFERENCES
departments (dept_id, PERIOD dept_period)

) WITH SYSTEM VERSIONING;

156

78

Insert

4 On 11/01/1995, employees table was updated to show that John and Tracy will be joining the depart-
ments J13 and K25, respectively, starting from 15/11/1995
INSERT INTO employees (emp_name, dept_id, start_date, end_date)
VALUES (’John’, ’'J13’, DATE ’1995-11-15’, DATE ’'9999-12-31"),
(’Tracy’,’K25’, DATE ’1995-11-15’, DATE ’'9999-12-31")

emp_name | dept_id | start_date | end_date | system_start | system_end
John J13 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999
Tracy K25 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999

¢ system_start and system_end values are set by the system

¢ N.B. DATE type is used in examples instead of TIMESTAMP type to simplify display

157
Update
¢ Current state of the table
emp_name | dept_id | start_date | end_date | system_start | system_end
John J13 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999
Tracy K25 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999

4 On 11/10/1995, it was discovered that John was assigned to the wrong department; it was changed to
department J15 on that day

UPDATE employees
SET dept_id = ’J15°
WHERE emp_name = ’John’

@ This leads to the following table

emp_name | dept_id | start_date | end_date | system_start | system_end
John J15 15/11/1995 | 31/12/9999 11/10/1995 31/12/9999
John J13 15/11/1995 | 31/12/9999 11/01/1995 11/10/1995
Tracy K25 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999

158

79

@ Current state of the table

Partial Period Update

emp_name | dept_id | start_date | end_date | system_start | system_end
John J15 15/11/1995 | 31/12/9999 11/10/1995 31/12/9999
John J13 15/11/1995 | 31/12/9999 11/01/1995 11/10/1995
Tracy K25 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999

¢ On 15/12/1997, John is loaned to department M12 starting from 01/01/1998 to 01/07/1998
UPDATE employees FOR PORTION OF emp_period

FROM DATE

’1998-01-01"

TO DATE

’1998-07-01"

SET dept_id = ’M12’ WHERE emp_name = ’John’

@ This leads to the following table

emp_name | dept_id | start_date | end_date | system_start | system_end
John J15 01/07/1998 | 31/12/9999 15/12/1997 31/12/9999
John M12 01/01/1998 | 01/07/1998 15/12/1997 31/12/9999
John J15 15/11/1995 | 01/01/1998 15/12/1997 31/12/9999
John J15 15/11/1995 | 31/12/9999 11/10/1995 15/12/1997
John J13 15/11/1995 | 31/12/9999 11/01/1995 11/10/1995
Tracy K25 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999

159
Partial Period Delete

¢ On 15/12/1998, John is approved for a leave of absence from 1/1/1999 to 1/1/2000

DELETE FROM employees

FOR PORTION OF emp_period FROM DATE ’'1999-01-01’ TO DATE ’2000-01-01’

WHERE emp_name =

’John’

¢ This leads to the following table

emp_name | dept_id | start_date | end_date | system_start | system_end
John J15 01/01/2000 | 31/12/9999 15/12/1998 31/12/9999
John J15 01/07/1998 | 01/01/1999 15/12/1998 31/12/9999
John J15 01/07/1998 | 31/12/9999 15/12/1997 15/12/1998
John MI12 01/01/1998 | 01/07/1998 15/12/1997 31/12/9999
John J15 15/11/1995 | 01/01/1998 15/12/1997 31/12/9999
John J15 15/11/1995 | 31/12/9999 11/10/1995 15/12/1997
John J13 15/11/1995 | 31/12/9999 11/01/1995 11/10/1995
Tracy K25 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999

160

80

Delete

4 On 1/6/2000, John resigns from the company

DELETE FROM employees
WHERE emp_name = ’John’

¢ This leads to the following table

emp_name | dept_id | start_date | end_date | system_start | system_end
John J15 01/01/2000 | 31/12/9999 15/12/1998 01/06/2000
John J15 01/07/1998 | 01/01/1999 15/12/1998 01/06/2000
John J15 01/07/1998 | 31/12/9999 15/12/1997 15/12/1998
John M12 01/01/1998 | 01/07/1998 15/12/1997 01/06/2000
John J15 15/11/1995 | 01/01/1998 15/12/1997 01/06/2000
John J15 15/11/1995 | 31/12/9999 11/10/1995 15/12/1997
John J13 15/11/1995 | 31/12/9999 11/01/1995 11/10/1995
Tracy K25 15/11/1995 | 31/12/9999 11/01/1995 31/12/9999
161

® & o o

® & O o o

Temporal Databases: Conclusion

Temporal information is ubiquitous in every application domain

Such information should be included in the overall software lifecyle: from design to implementation

Necessity of a temporal conceptual model for discussing requirements with users

Manipulating temporal information in standard SQL is

Very difficult to program

Very inefficient

Native temporal capabilities are needed in DBMSs

Recent SQL standard has introduced such capabilities after more than a decade of debates

Such capabilities have still to be implemented in the different platforms

Data warehouses have included temporal capabilities since their begining a few decades ago

Temporal capabilities are usally combined with spatial capabilities = spatio-temporal databases

162

81

