B

Advanced Database Project:
Document Stores and MongoDB

‘ mongo

Sivaporn Homvanish (0472422)

Tzu-Man Wu (0475596)

Table of contents

Background
Introduction of Database Management System
SQL vs NoSQL
Document Database

Introduction to MongoDB
What is MongoDB
Key differences between SQL and MongoDB terminologies
Installation
Connect to MongoDB
MongoDB Data Storage Structure
Basics and CRUD Operations
Create operation
Read operation
Update operation
Delete operation

Implementation
Application Overview
Environment setup
NodeJS with MongoDB Atlas (Cloud services)
Installation MongoDB NodedS driver
Connect Application with MongoDB Atlas
Function Design
Add product
Display products
Edit product
Delete product

Conclusion

References

o o~ MDD A W0 W ®

NN = a2 A =
o OO W N O ©

W W NDNDNNDNDMNMNDNMMDNDN
W = © 0 0 Hh W WW=_"2 =

w W
K B

1. Background

Introduction of Database Management System

1.1.

Database Management System (DBMS) is a software package for managing
database. It provides several kinds of operations such as create, retrieve, update data
including managing data manipulation. The DBMS essential serves as an interface that bridge
between end users or applications with a database to ensure data integrity and consistency.

1.2.

SQL vs NoSQL

SQL stands for Structured Query Language. It is a standard language for relational
database management and data handling. It allows manipulating structured data whose
entities/variables are associated with certain relations.

NoSQL stands for Non-Structured Query Language. It is designed to deal with huge
and intensive data that have various demands for modern applications such as different data
structures, customization, complex real-time data, etc. It combines a wide variety of different

database technologies to support nowadays technologies.

Type

Table-based database

Various types such as
e Document-based database
e Key-value pairs
e Graph database
e Wide-column stores

Scaling

Vertical scaling, it scales by a
power of its hardware

Horizontal scaling, it scales by
increasing servers in the pool
resources to reduce the load

Flexibility

Fix schemas which identified
since predefine phase

High flexibility due to dynamic
schemas

ACID Compliance

Comply with ACID

Sacrifice ACID compliance for
flexibility and performance

Examples

e MySql

e Oracle

e Sqlite

e Postgres
e MS-SQL

e MongoDB
e Redis
e Hbase
e Neo4j
e CouchDB

1.3. Document Database

According to the need for unstructured data, the rapid growth of cloud computing and
high demands of a requirement. Document database is introduced to loosen the
restrictions on database schemas by using the document data model.

Key Advantages: [1]
e Independent document units help increase performance and distribute data

across servers.
e Easy to apply application logic without translation between application and SQL

queries.
e Support unstructured data that provide flexibility for data migration and usage.

2. Introduction to MongoDB
2.1. What is MongoDB

MongoDB is an open-source document database. It provides capability and flexibility of
querying and indexing data. MongoDB is one of NoSQL database which is a schemaless data
model that gives user suppleness to work on various data structures.

Below is the structure of MongoDB together with the example of the data format. This
structure is totally different from a normal SQL query. However, it provides flexibility for
various data formations.

=

Documents

F {Trip:’"Vancouver’ , Price: 1500 , Picture: pic.jpg}

{Trip:’Tokyo’ , Price: 1200}

Schemaless

2.2. Key differences between SQL and MongoDB terminologies

Dues to many types of databases, terminologies of each database are different. The
following table presents the concept and several SQL terminologies that consistent with
MongoDB concept and terminologies.

Comparison between SQL and MongoDB terminologies

Database Database

Table Collection

Row Document

Column Field

Joins Embedded documents, linking

2.3. Installation

Install MongoDB
1. Download MongoDB installer (.msi) that compatible with your window version
from https://www.mongodb.com/download-center. This report is used window
X64 bits community edition.

{ nmngoDB ‘ FOR GIANT IDEAS SOLUTIONS CcLouD CUSTOMERS RESOURCES ABOUT US

Select the server you would like to run:

MongoDB Community Server

FEATURE RICH. DEVELOPER READY.

Version os

4.0.4 (current release) Windows 64-bit x64

Package
e

db-win32-x86_64-2008plus-ssl-4.0.4-s

2. Run MongoDB installer (.msi file) by navigating to the directory that stores the
program and follows the wizard instruction.
Start MongoDB as a windows services
1. Open Command Prompt as an Administrator.
2. Create MongoDB database directory for storing data.
3. Change file path to the directory that you need to store database and create a
data directory

vance DB\MongoDB\mongoDB_AdvDB

vance DB\MongoDB\mongoDB_Ad d "\data\db"

4. Start MongoDB by running . You can point to your database
directory by running command following with directory path

https://www.mongodb.com/download-center

5. Open another ‘Command Prompt’ as an Administrator to connect to MongoDB
by running mongo.exe

D : \PALM-BDMA\BDMA-Homework\Advance DB\MongoDB\mongoDB_AdvDB>"D:\Program Files\MongoDB\Server\4.8\bin\mongo.exe"

2.4. Connectto MongoDB

Overview

To connect to MongoDB Server, there are multiple choices to install the MongoDB
client. The figure below shows two main method, drivers and shell. If users create their own
application and desire to use MongoDB to manage data, they have to install a MongoDB
driver which is matching their programming language. The driver will send the queries from
backend server code to MongoDB server. On the other hand, users can also only use
MongoDB shell to interact with MongoDB server. After MongoDB server receives the queries,
it will communicate with Storage Engine. Here the MongoDB default Engine is WiredTiger.
The storage engine can manage and work with data efficiently, so it handles all data access
such as data-read and data-write with memory and disk.

Application Database System

Storage

Frontend Backend Driver)
Engine

(WiredTiger)

Interactive Shell

/

MongoDB Shell

Drivers

For different programming languages, MongoDB provides different kinds of drivers to
let application interact with MongoDB Server. After installing the driver, programmers can
embed it inside their application code to link MongoDB server. Multiple MongoDB drivers can
be found on the official MongoDB Docs page in the following link:
https://docs.mongodb.com/ecosystem/drivers/

https://docs.mongodb.com/ecosystem/drivers/

@ mongont: | Documentation

MongoDB Ecosystem
MongoDB Drivers and ODM
[¥) C Driver#'

) C++ Driver(#'
) C# and .NET Driver
)| Go Driver (beta)
[9) Java Driver ('
] Node.js Driver[#
[9) Perl Driver
PHP Driver
| Python Driver
[Ruby Driverz"
1 Mongoid ODM[#

[¥) Scala Driver

SERVER DRIVERS

CLOuUD TOOLS GUIDES Get MongoDB

Close x

MongoDB Drivers and ODM

On this page

e Drivers
« MongoDB ODM (Object-Document-Mapper)
o Community Supported Drivers

* Reference

Drivers

For information on next generation MongoDB drivers, see the following blog posts:

« Server Discovery and Monitoring Blog Post (!
e Server Selection Blog Post [
 Consistent CRUD API Blog Post[#'

Shell

From the MongoDB official website as below, there are multiple methods of different
programming languages for users to be selected.[2]

® mongon 1 | Documentation

Close x

MONGODB MANUAL 4.0 (current)~

Introduction
Installation
The mongo Shell

MoengoDB CRUD Operations

Insert Documents I

SERVER

DRIVERS CLOUD TOOLS GUIDES Get MongoDB

MongoDB CRUD Operations > Insert Documents

Insert Documents 1

This page provides examples in:

MONGO SHELL

C# PERL

COMPASS PYTHON JAVA (SYNC) NODEJS PHP MQTOR

RUBY SCALA

) Search Documentation

JAVA (ASYNC)

Insert Command from Mongo Shell [2]

db.inventory.insertOne(

{ item:

"canvas", qty: 100, tags:

Insert Command from NodedJS [2]

await db.collection('inventory').insertOne({

item: 'canvas',
qty: 106,
tags: ['cotton'],

size: { h: 28, w! 35.5, uom:

1)

'em! }

[Meotton"], size: { hi 28, wi 35.5, vom: Yem" J }

copy

Insert Command from PHP [2]

$insertOneResult = $db->inventory->insertOne([
"item' => 'canvas',
"qty' => 100,
"tags' => ['cotton'],
'size' => ['h' => 28, 'w' => 35.5, 'uom' => 'cm'],

103

Insert Command from JAVA [2]

Document canvas = new Document("item", "canvas™)
.append("gty", 160)
.append("tags", singletonList("cotton"));

Document size = new Document("h", 28)
.append("w", 35.5)
.append("uom", "cm")}

canvas.put("size", size);

collection.insertOne(canvas)

The shell allows us to write queries which are very similar to the queries in different
drivers. Using MongoDB shell is an easier way to learn and connect with MongoDB no matter
which programming language is used. Although the syntax of programming languages are
different, the core method to deal with data is similar. Therefore, we will use MongoDB shell
which is connected to our local MongoDB server to introduce how to write commands in the
upcoming part.

Start to run MongoDB server in the background of Windows
If you are a Windows user, after following 2.3 Installation, MongoDB Server will run

automatically once you turn on your computer. There is another option that allows users to
stop running MongoDB server and start running it again by Command Prompt.

1. Open Command Prompt and run as Administrator.
Type to stop MongoDB server
Open Command Prompt again
Type following with directory path to start MongoDB server
Keep the server running (Do not close)

AN

, to force-enable TLS 1.0 specify --sslDis

: pid=19564 port=2 Ibpath=D:\Program Files\

Use Mongo Shell to connect to MongoDB Server
1. Open another Command Prompt
2. Type

2.5. MongoDB Data Storage Structure

Database & Collection & Documents

MongoDB as a NoSQL document-based database has a different data storage
structure from SQL. From the figure below, in MongoDB, users can have multiple databases.
Each database can have multiple collections and each collection can have multiple
documents. Compared to SQL, collection in MongoDB equivalent to a table in SQL, and
documents equal several rows in a SQL table.

MongoDB SQL

JSON Document

MongoDB uses JSON documents to store its data. There is an example of a JSON
document below. The document is always surrounding by curly brackets. Inside the curly
brackets, it stores fields which each field consists of a key and value. The key is the name of
an attribute and it is normally put inside quotation marks(optional). Value can be different
kinds of data types such as string, number, boolean, array, object, and even another
document. In other words, we can have nested documents inside a document. For the value,
quotation marks are used depending on your data type.

{

| "_id" : Objectld("5c1508201e0007f2dfc39d65"), > Field
"name" : "The Lord of the Rings",

"price" : 10,
/"in_stock" :th Value

Key
3 "store" : [
{ "name":"paris_1",
"address" : {
"zipcode" : "105",
"street" : "Main street" }
b
{ "name" : "paris_2",
"address" : {
“zipcode” : "107%, Embedded
"street" : "2nd street" } § <
| Document
]
}

2.6. Basics and CRUD Operations

CRUD stands for Create, Read, Update and Delete operations. These are fundamental
operations that use to manage documents of the collection in MongoDB.

After finish installation and start MongoDB server (section 2.4), you can use CRUD
operations for query or editing data in the database. To see other useful commands apart from
CRUD, you can type to see more information.

> help

db_help() help on db methods

help on collection methods
sh.help() sharding helpers
rs_help() replica set helpers
help admin administrative help
help connect connecting to a db help
help keys key shortcuts
help misc misc things to know
help mr mapreduce

show dbs show database names

show collections s in current database

show rs sé nt database

show s | ystem. entries with time >= 1lms

show

st segment of log in memory, "global' is default

ent database
lection foo

result of the last 1i ; use to further iterate
DBQuery.shellBatchSize = x set default number of items to display on shell
exit quit the mongo shell

The following command below is the frequency used commands:
e show dbs
o List all of the databases in the MongoDB server
e show collections
o List all of the collections in the MongoDB server
e use <db_name>
o Select a database to be used

Below are the CRUD syntax and structure. [3]

CRUD operations

updateOne(filter, data, options)
WlelE188 updateMany(filter, data, options)
replaceOne(filter, data, options)

insertOne(data, options)
insertMany(data, options)

find(filter, options)
findOne(filter, options)

deleteOne(filter, options)

Dele e deleteMany(filter, options)

In the following part, we will use a simple example to show how to use CRUD
operations. We create a database named sample and a collection named bookstoreproduct
to store the information of the books we sell.

show dbs

rise Cluster(0: PRIM use sample
sample

2.6.1. Create operation

To create data into the database, MongoDB provides insertOne and insertMany
command as below depending on how many data you intend to create. For these two
functions, you can put two kinds of arguments. The first one is your data, and the second one
is writeConcern for optional use. The writeConcern argument allows you to set many extra
conditions such as the timeout option to specify a time limit to prevent write operations from
blocking indefinitely and another option to request acknowledgment that the write operation
has been written to the on-disk journal. However, if we use only data argument and omit the
writeConcern, MongoDB will assign writeConcern default value

automatically. [2]

insertOne(<data>,<options>)

Inserts a single document into a collection.

insertMany(<data>,<options>)

Inserts multiple documents into a collection.

Now, we try to use insertOne command to insert one data into our bookstoreproduct

collection.
Command:

db.bookstoreproduct.insertOn
{ "name": "The Lord of the Rings"”,

"price": 18,

"in_stock": true,
"store":

[

"name": "paris_1",
"address":

{ "zipcode": "1@5",
"street": "Main street"

}

"name": "paris_2",
"address":

{ “"zipcode": "187" ,
"street": "2nd street”

}

to that command

After executing the command, we get the result as below. If inserting is completed, we
will receive a unique automatically generating id for the inserted data. The id is related to the
order of the data you insert, and it can be changed later by the users as well.

Result:

true,
bjectId("5cl

d("5cl4c
he Lord of th

-

'Main street"

"name"
"address”

Next, we try to use insertMany command to insert more than one data at one time into
our bookstoreproduct collection. For this operation, all required documents for inserting should
create as a 1 object. So, the syntax must be covered with square blankets. For example,
db.bookstoreproduct.insertMany([<document>,<document>,...]).

db.bookstoreproduct.insertMany([

{ "name": "TEST 1", "price": 59, "in_stock”: false, " ": [{"name": "ULB", "address": {"zipcode":"1050", "street":"ULB street”
{ "name™: "TEST 2", "price": 59, "in_ stock”: false, " ": [{"name”: "ULB", "address™: {"zipcode":"10850", "street”:"ULB street™
f
L8

"name™: "TEST 3", "price": 59, "in_stock": false, " ": [{"name": "ULB", "address™: {"zipcode":"1650", "street":"ULB street”

15

2.6.2. Read operation

To read data from the database, MongoDB provides find and findOne command as
below depending on how many data you intend to show. For these two functions, you can put
two kinds of arguments. The first one is your filter condition using query operators to return the
matching documents in a collection, and the second one is the fields you intend to return in
the matching documents.

find(<filter>,<options>) Return a cursor object(allow us to cycle through the
results) which only show the first 20 documents by
default at one time.

findOne(<filter>,<options>) Only return the first matching document in the
collection based on the filter.

Example: find
Command:

db.bookstoreproduct.find()

Result:
It will only show the first 20 documents by default because if it always returns all the
data, it will take too long if we have a million documents. By typing it, MongoDB will use the
find’s cursor to fetch and display the next bunch of data on the screen.[3]

Mo B Enterprise Cluster0-sh: : PRIMAR ib. bookstoreproduct. find()
: Obje 3 ' 3 "lThe Lord.of
i WL g g

> L

: Tpars .

"in_stock"
Y MULE: stireet”

To see the result in a well-format, we can use .pretty() method. It will show the data in
the database that easier to read.
Command:

db.bookstoreproduct.find() .pretty()

Result:

eScded6b3”),

"Main

"name" partls 2R,

"address"

Sometimes we just want to find a subset of our data, so we can use a filter to fetch
specific documents. There is an example below to show how to use find() to get the
information of books which price is greater than 25. Here we use a reserved operator of
MongoDB $gt which means “greater than”.

Command:

db.bookstoreproduct.find({price: {$gt: 25}})

okstoreproduct. find({price: {$gt: 25}}).pretty()

"1050"

et” : "ULB street”

"name" : "TUE",
"addres

code"

"street” : "TUE s

To get the name of books which price is greater than 25, we add the second argument
{name: 1} which means only get the key “name” information of the document.

Command:
db.bookstoreproduct.find({price: {$gt: 25}}, {name: 1})

Result:
MongoDB Enterprise Cluster0-shard-0:PRIMARY> db.bookstoreproduct.find({price: {$gt: 25}}, [name: 1}).pretty()
[" id" : ObjectId("5¢1554054¢a213 "y, “figme” : "TBST 1")
_id" : ObjectId("5¢1554054ca2136cc73bb8a9"), "name" : "TEST 3")

To only return the first matching document in the collection based on the filter.
Example: findOne
Command:

db.bookstoreproduct.findone({price: {$gt: 25}}, {name: 1})

oduct. findOne({price: {$at: 25}}, {name: 1})
1
I

Result:
o)

)B Enterprise Cluster(-shar 'RIMARY> db.bookstorep
d" : Objectld("5c1554054ca2l36¢c "}, "name” 3

"

2.6.3. Update operation

Update operator is used for modifying and adding extra data to the database.
MongoDB provides updateOne, updateMany, and replaceOne commands to select
documents that needed to be updated. There are 3 arguments, the first one is your filter
condition using query operators to return the matching documents in a collection, the second
one is information that you need to update over the existing value. The last one is the option
for your command. Below are the syntax and structures of update operation.

updateOne(<filter>,<data>,<options>) Update a first single document in the
collection based on the filter.

updateMany(<filter>,<data>,<options>) | Update all document in the collection
based on the filter.

replaceOne(<filter>,<data>,<options>) Replace a first single document in the
collection based on the filter.

Operators for filter update operation

$set Replace the value of the field with a specific value of the
operation. If the field does not exist, $set will add a new field to
the document.

This operation has the following form:
{ $set: { <field1>: <value1>, ... }}

$min Update value while the specified value of the operation is less
than the current value of the field. If specified field does not
exist, $min will set the field to the specified value in the
operation.

This operation has the following form:
{ $min: { <field1>: <value1>, ... } }

$max Update value while the specified value of the operation is
greater than the current value of the field. If specified field does
not exist, $max will set the field to the specified value in the
operation.

This operation has the following form:
{ $max: { <field1>: <value1>, ... } }

$inc Increment the value of the field with the specified value of the
operation.

This operation has the following form:
{ $inc: { <field1>: <amount1>, <field2>: <amount2>, ... } }

$rename Update the name of the field with specified value of the
operation.

This operation has the following form:
{$rename: { <field1>: <newName1>, <field2>: <newName2>,

1)

Example: updateOne
This is current data in the database.

_id" : ObjectId("5cl
iffs and

s
: true,

"name"

"addre
"zipcode" : "
"street" : "

"name" :
"addre
.

Command:
db.bookstoreproduct.updateone({ id : ObjectId("5c15@9931e0007f2dfc39d66")},

{$set: {name : "Smurfs and Friends Comics"}})

Result:
Book’s name has been updated from Smuffs to Smurf.

m e

"name"

Example: updateMany
We have inserted 3 books to the collection. All of the books price are set to 59. In this
example, we will use updateMany() to update the prices of the books to 69.
Below is the inserted books information.
db.bookstoreproduct.insertMany([
{ "name": "TEST 1", "price": 59, "in_stock": false, "store": [{"name": "ULB", "address
{ "name": "TEST 2", "price": 59, "in_stock": false, "stor = ": "ULB", "address™
{

"name™: "TEST 3", "price": 59, "in_stock": false, "store": ": "ULB", "address

1)

Command:

We used reserved operator $regex to find all book names that contain “TEST” inside.
Then, we updated the price to 69.

db.bookstoreproduct.updateMany({"name"”: {$regex: /TEST/}},{$set: {"price"”: 69}

b))

Result:

" id" : ObjectId("5c153d251e¢ f2dfc39d68"),
"name"

"price" : ¢

"in_s

"name" :
"addres

S T : f2dfc39d69"),
"name"
"price" :

"name" : "ULB",

"addres

p
"street” : "ULB

el b 53¢ f2dfc39d6a"),
"name" :
"price"

"name" :
"addres

Example: replaceOne

Replace the document details of the first book which contains “TEST” in its name.
Command:

db.bookstoreproduct.replaceOne({"name": {$regex: /TEST/}}, {"price": 49})

Result:

From the previous example result of updateMany(). Book name “TEST 1” has
ObjectID(5¢153d251e0007f2dfc39d68). However, when we use replaceOne() operation. It will
replace all the document. So, the current document of ObjectIiD(5¢153d251e0007f2dfc39d68)
structure will be changed to {“price: 49"} based on replacement command that was run.

{ " id" : ObjectId("5c153d251e@ f2dfc39d68"), "price”

" id" : ObjectId("5c153d251 f2dfc39de9™),
"name™ : "TEST 2",

“price" : 89,

"in_stock" : false,

“store™ : [

I
R§

" 1 "1050",
"ULB street"”

"_id" : ObjectId("5c153d251e@@07f2dfc39d6a"),
“name" : “TEST 3",

“price" : 69,

"in stock™ :

"store"

"ULB",

zipcode" : "1050",
street” : "ULB street”

2.6.4. Delete operation

Delete operator is used to remove documents from a collection. There are 2
arguments, the first one is your filter condition using query operators to return the matching
documents in a collection, the second one is the option for your command. Below are the
syntax and structures of delete operation.

deleteOne(<filter>,<options>) Delete a first single document from a
collection in the database based on the filter

deleteMany(<filter>,<options>) Delete all document from a collection in the
database based on the filter

Example: deleteOne()
Currently, we have 3 documents in the database. We can show the number of
collections by using .count() function.

MongoDB Enterprise Cluster®-shard-@:PRIMARY> db.bookstoreproduct.find().count()

Command:
db.bookstoreproduct.deleteone({name: "TEST"})

MongoDB Enterprise Clust

Pl
2

Example: deleteMany()

There are 5 documents in the database. We will delete all books that its name contains
“TEST”. From the previous example, there are only 2 books left which are “TEST 2” and
“TEST 3” to be deleted
MongoDB Enterprise Cluster@-shard-@:PRIMARY> db.bookstoreproduct.find().count()

Command:

db.bookstoreproduct.deleteMany({name:{$regex: /TEST/}}

Result:
After running deleteMany(), Book name “TEST2” and “TEST 3” were deleted from the
database.

MongoDB Enterprise Cluster®-shard-@:PRIMARY> db.bookstoreproduct.deleteMany({name:{%regex: /TEST/}})

{ "acknowledged" : true, "deletedCount" : 2 }

For more information about CRUD operations, you can refer to the official MongoDB
site in the following link: https://docs.mongodb.com/manual/crud/

3. Implementation
3.1. Application Overview

In this project, we implemented ‘Travel Agency’ webpage to store data about the trips that the
company provided to customers. Users can see trip lists, add more trips, deleted and modify trip
details such as location, date, price, image, and detail. This website was implemented by Node.js
together with MongoDB Altlas cloud database. More explanation will be explained in the following
section.

https://docs.mongodb.com/manual/crud/

The main page of the website:

Travel Agency
All Trips Add Trip

Vancouver, Canada Tokyo, Japan Kawaguchiko, Japan
From 15-06-2019 to 30-06-2019 From 31-03-2019 to 07-04-2019 From 10-05-2019 to 20-05-2019
$1500 Details Edit Delete $1200 Details Edit Delete $1100 Details Edit Delete

Sun Moon Lake, Taiwan Bangkok, Thailand Nusa Penida Island, Indonesia
From 01-02-2019 to 10-02-2019 From 10-05-2019 to 20-05-2019 From 12-09-2019 to 15-09-2019
$1000 Details Edit Delete $800 Details Edit Delete $700 Details Edit Delete

Details page:

Trave
All Trips

| Agency

Add Trip

Vancouver, Canada
From 15-06-2019 to 30-06-2019

Price: $1500

4-hour Vancouver sightseeing tour Visit Vancouver's most famous sites including Gastown, Chinatown,
Stanley Park and Granville Island Soak up 360-degree views of Vancouver from atop the Vancouver
Lookout Learn about Vancouver's history, architecture and culture from an informative guide Choose
between a morning and afternoon tour to suit your schedule Hotel pickup and drop-off included Opt
to add tickets to the Vancouver Art Gallery or FlyOver Canada.

Add Trip page:
Travel Agency
All Trips Add Trip
Location
Start Date

DD-MM-YYYY
End Date

DD-MM-YYYY
Price

Image

Detail

3.2. Environment setup
3.2.1. NodedS with MongoDB Atlas (Cloud services)

What is NodeJS?

NodeJS is an open source run-time server environment that executes
JavaScript code outside of a browser and it is compatible with various operating
systems e.g. OS X, Microsoft, and Linux. There is an asynchronous feature for all APIs
of NodedJS that help server get a response faster.[4][5]

What is MongoDB Atlas?

MongoDB Atlas is a could services that fully-managed database by handling
complex configuration and helping users to seamlessly integrate their business with
the newest database facilities. Atlas also provides a friendly user interface and API that
helps users reduce database management time.[6]

3.2.2. Installation MongoDB NodedS driver

Download MongoDB NodeJS driver from
https://mongodb.github.io/node-mongodb-native/ and use the command below
to install. [7]

i N
- VAS

d D:\PALM-BDMA\BDMA-Homewor vance DB\MongoDB\mongoDB_AdvDB

D: \PALM-BDMA\BDMA-Homework\Advance DB\MongoDB\mongoDB_AdvDB>npm install

https://mongodb.github.io/node-mongodb-native/

3.2.3.

How to create MongoDB Atlas cluster? [3]
1. Create an Atlas user account by the following link:
https://www.mongodb.com/cloud/atlas

2. Create Atlas Cluster
a. Select ‘Cloud Provider & Region’
b. Select Cluster Tier
c. Name your cluster
d. Click ‘Deploy’to deploy the cluster

.mongoDB.Atlas

CLUSTERS >

Create New Cluster

Global Cluster Configuration

Cloud Provider & Region AWS, N. Virginia (us-east-1)

aws '-) A\ Azure

Create a free tier cluster by selecting a region with (ZIEZHILIITILETS and choosing the MO cluster tier below.

recommended region

NORTH AMERICA EE ET
== N. Virginia (us-east-1) # B U Ireland (eu-west-1) % & Sydney (ap-southeast-2) %

3. Configure security for the cluster
a. Select ‘Security’
b. Go to ‘MongoDB users’ tab, click ‘+ Add new user’

.mOngoDB(Atlas All Clusters details Sivaporn
CONTEXT MEGABYTE COMPUTERS > PROJECT 0
Project 0 > Clusters Build a New Cluster
PROJECT
Security
* Clusters
Q Alerts MongoDB Users goDB Roles hitelist Peerin: Enterprise Securit
O Backep
'0‘ Usefe & Tesins User Name 3 Authentication Method « MongoDB Roles Actions
@ Settings
A, Palm SCRAM atlasAdmin@admin # EDIT & DELETE
[E| Stitch A
- REIEPES A, PalmReadWrite SCRAM readWriteAnyDatabase @admin # EDIT | [DELETE
lull Charts
&) Docs
‘D' Support

c. Enter username and password
d. Select user privileges
e. Click ‘Add user’

https://www.mongodb.com/cloud/atlas

4.

1.

CONTEXT MEGABYTE COMPUTERS > PROJECT O
Project 0 = Clusters Build a New Cluster
PROJECT
Security
* Clusters
L Alerts fongoDB Users 1P Whitelist e Secur
O acko
A, Users & Teams
You will only be able to connect to your cluster from the following list of IP Addresses:
@ Settings
Stitch Apps 1P Address Comment Status Actions
lull Charts 212.68.215.82/32 (includes your current |P address) MyRoom @® Active f3EDIT @ DELETE
&) Docs 0.0.0.0/0 (includes your current IP address) @® Active fEDIT @ DELETE
@' Support
212.68.200.186/32 VPstudyroom @® Active {#EDIT @ DELETE
164.15.244.46/32 ULB NB library @® Active #EDIT @ DELETE
3 H) H 3 ’
Select ‘Overview’ and click ‘Connect
.mongoDB, Atlas Al Clusters)0 details ~ Sivaporn ~
CONTEXT MEGABYTE COMPUTERS > PROJECT 0
Project 0 v Clusters Build a New Cluster
PROJECT
Overview
'*' Clusters
2 Alerts Q
€D Backup
A, Users & Teams
o Cluster0 0 o 724 KB
@ Settings n 4
Stitch Apps CONNECT ~ METRICS COLLECTIONS = =++
i Charts a0
INSTANCE SIZE
i Docs
REGION
) Support o Enhance Your Experience
TYPE)
LINKED STITCH APP Eclusnowd
Link Application

Add New User

SCRAM Authentication
SCRAM is v

User Privileges

Read and write to

Atlas admin any database

Add Default Privileges

Save as temporary user

Only read any
database

Select Custom

Role

Go to 'IP Whitelist’ tab, click ‘+ Add IP Address’

. mongoDB. Atlas Al Clusters

detals Sivapom ~

2. Choose ‘Connect Your Application’

Connect to ClusterO

' Setup connection security Choose a connection method Connect

Choose a connection method View documentation ('
See methods to add data and diagnostics in the Command Line Tools shortcut from within your

cluster.

Connect with the Mongo Shell
Mongo Shell with TLS/SSL support is required >

3 Connect Your Application
Get a connection string and view driver connection examples >
H Connect with MongoDB Compass 5
Download Compass to explore, visualize, and manipulate your data

3. Select ‘Short SRV connection string (shell 3.6+) and copy the SRV
address

Connect to ClusterO

+ Setup connection security v Choose a connection method Connect

o Copy the connection string compatible with your driver version:
Check which MengoDB versions your driver version is compatible with

See documentation on how to check the version of your driver

Short SRV connection string (For drivers compatible with MongoDB 3.6+)

Standard connection string (For drivers compatible with MongeDB 3.4+)

Copy the SRV addrass:

mongodb+srv: //Palm: <PASSWORD>Eclustere-kopyu.mongodb. net/test? e
retrywrites=true v 2 COPY
4 [d
Note: If usi he e r after making your

called

all appear in a database

th a different defa

€) Repiace PASSWORD with the password for the Paim user

the Please note that any special characters in

R t
e URL encoded.

your p

PASSWORD with the passw

ssword (%,

an

View your list of users or reset a password

4. Replace <Password> for your user and specify the database name.
Otherwise, your collection will be in default database named ‘test’

5. Connect Atlas cluster to NodeJS application

_db;
mongodb = require('mongodb’);
MongoClient = mongodb.MongoClient;
mongoDburl =
"mongodb+sr Im XX
MongoClient.connect(mongoDbUrl)
.then(client => {

_db = client;
callback(: , _db);
9
.catch(err => {
callback(err);

})J

How to start the connection?

1. Open Command Prompt, go to your application directory and run the
command ‘npm start’. This command will call your application. However,
you will get an error because the connection between application and
Atlas cluster is not connected yet.

vance DB\MongoDB\mongoD

ngoDB\mongoDB_Ad

ew mongodb-demo in the bro

Local: http://localh
On Your Network: http:/,

e that the development build is not optimized.
reate a product build, use yar ild.

2. Repeat step 1) by opening a new window and run ‘npm run start:server’
to make a connection between your application and Atlas cluster

B us

D:\>cd D:\PALM-BDMA\BDMA-Homework\Advance DB }\mongoDB_AdvDB
D : \PALM-BDMA\BDMA-Homework\Advance DB\MongoDB\mongoDB_AdvDB>npm run start:server

start:server D:\PALM-BDMA\BDMA-Homework\Advance DB\MongoDB\mongoDB_AdvDB
s

) Deprecati rr JRL str s , and will be removed in a future version.
the new parser [i

3. Refresh your application connection

3.3. Function Design

According to the advantage and flexibility of MongoDB with other programming
languages, we selected NodedS to develop our ‘Travel Agency’ website. In this topic,
we will show how we integrate NodeJS application with MongoDB Altas database. [3]

3.3.1. Add product

To insert data, we need to use MongoDB NodeJS syntax below:

db.collection().insertOne()
.then(result =>{

)

.catch(err => {

;

Below is a part of our implementation for adding the trip to the database:

router.post('', (req, res, next) =>
st newTrip = {
location: req.body.location,
detail: req.body.detail,
startdate: req.body.startdate,
enddate: req.body.enddate,
price: Decimall28.fromString(req.body.price.toString()),
image: req.body.image
1
db.collection('products')
.insertOne(newTrip)
.then(result => {
console.log(result);

res.status(201).json({ message: 'Insert Trip Success', productId: result.insertedId });
9]
.catch(err => {

console.log(err);

res.status(500).json({ message: 'Insert Trip

The result of adding a trip on the website:

Travel Agency

All Trips Add Trip

I__ocation

|_ Vancouver, Canada

Start Date

| 15-06-2019

End Date

[30-06-2019

Price

[1500

Image

| http://localhost:3100/images/Vancouver.jpg

Detail

4-hour Vancouver sightseeing tour Visit Vancouver's most famous sites including
Gastown, Chinatown, Stanley Park, and Granville Island Soak up 360-degree views
of Vancouver from atop the Vancouver Lookout Learn about Vancouver's history,
architecture and culture from an informative guide Choose between a morning and
afternoon tour to suit your schedule Hotel pickup and drop-off included Opt to add
tickets to the Vancouver Art Gallery or FlyOver Canada.

3.3.2. Display products

To display all of the data, we need to use MongoDB NodeJS syntax below:
db.collection(<collection name=>).find()
forEach(
/ladding actions.
)
.then(
/ladding actions. You can add log or response message, etc.
).catch(err => {
/ladding log or error message

;s

Below is a part of our implementation for display all the trips on the website:

Erips =
db.collection('p
.find()
.sort({price: -1})
.forEach(tripDoc {
tripDoc.price = tripDoc.price.toString();
trips.push(tripDoc);

)
.then(:- IT =
res.status(2ee).json(trips);

})
.catch(err {
1sole.log(err);
res.status(500).json({ message:

)

Our implementation is using find().forEach() function in order to read the data one by
one and display them on the main page.

The result of displaying the trip on the website:

Travel Agency
All Trips Add Trip

Vancouver, Canada Tokyo, Japan Kawaguchiko, Japan

From 15-06-2019 to 30-06-2019 From 31-03-2019 to 07-04-2019 From 10-05-2019 to 20-05-2019

$1500 51200 $1100
h

Sun Moon Lake, Taiwan Bangkok, Thailand Nusa Penida Island, Indonesia

From 01022019 to 10-02-2019 From 10-05-2019 to 20-05-2019 From 12-:09-2019 to 15-09-2019

$1000 5800 5700

To display one single data, we need to use MongoDB NodeJS syntax below:

db.collection().findOne()
.then(

).catch(err => {

N;

Below is a part of our |mplementat|on for display the trlps on the website:
router.get('/: , (req, res,
db.collectlon(:
-findOne({_id: new ObjectId(req.params.id)})
-then(tripDoc =>{

tripDoc.price = tripDoc.price.toString();
res.status(200).json(tripDoc);

}) .catch(err => {
le.log(err);
res.status(500).json({ message: ‘error' });
}s
s

The result of displaying the detail of a trip on the website:

Vancouver, Canada

From 15-06-2019 to 30-06-2019

Price: $1500

4-hour Vancouver sightseeing tour Visit Vancouver's most famous sites including Gastown, Chinatown,
Stanley Park and Granville Island Soak up 360-degree views of Vancouver from atop the Vancouver
Lookout Learn about Vancouver's history, architecture and culture from an informative guide Choose
between a morning and afternoon tour to suit your schedule Hotel pickup and drop-off included Opt
10 add tickets to the Vancouver Art Gallery or FlyOver Canada

3.3.3. Edit product

To update data, we need to use MongoDB NodeJS syntax below:

db.collection().updateOne(
, {$set: Y

then(result => {

)

.catch(err =>{

s

Below is a part of our implementation to update the trips on the website:

router.patch(', (req, res, n
t updatedTrip = {

location: req.body.location,
detail: req.body.detail,

startdate: req.body.startdate,
enddate: req.body.enddate,
price: Decimall28.fromString(req.body.price.toString()),
image: req.body.image
1;
db.collection('products"’)
.updateOne({ _id: new ObjectId(req.params.id)},
{
$set: updatedTrip
}
)
.then(1t => {
res.status(200).json({ message: 'Updated P
b
.catch(err {
console.log(err);
res.status(500).json({ message: "Updated
1
})s

The result of editing the trip on the website:
Once we click ‘Edit’ button on the main page, it will direct you to another page
to update data.

In this example, we updated ‘Start Date’ and ‘Detail’ as shown below

Travel Agency

All Trips Add Trip

Location

I Vancouver, Canada |

Start Date
| 17-06-2019 |

End Date
| 30-06-2019 |

Price
| 1500 |

Image

| http://localhost:3100/images/Vancouver.jpg |

Detail

4-hour Vancouver sightseeing tour Visit Vancouver's most famous sites including
Gastown, Chinatown, Stanley Park and Granville Island Soak up 360-degree views
of Vancouver from atop the Vancouver Lookout Learn about Vancouver's history,
architecture and culture from an informative guide Choose between a morning and
afternoon tour to suit your schedule Hotel pickup and drop-off included Opt to add
tickets to the Vancouver Art Gallery or FlyOver Canada.

—-Christmas offer--
Get 10% off! If you book the trip before 31 Dec 2018.

The ‘Start Date’ and ‘Detail’ has been updated.

Travel Agency

All Trips Add Trip

Vancouver, Canada

From|17-06-2019)to 30-06-2019
Price: $1500

4-hour Vancouver sightseeing tour Visit Vancouver's most
famous sites including Gastown, Chinatown, Stanley Park
and Granville Island Soak up 360-degree views of
Vancouver from atop the Vancouver Lookout Learn about
Vancouver's history, architecture and culture from an
informative guide Choose between a morning and
afternoon tour to suit your schedule Hotel pickup and
drop-off included Opt to add tickets to the Vancouver Art
Gallery or FlyOver Canada. --Christmas offer-- Get 10% off!
If you book the trip before 31 Dec 2018.

3.3.4. Delete product

To delete data, we need to use MongoDB NodedS syntax below:

db.collection().deleteOne(
)

then(result => {

)

.catch(err => {

s

Below is a part of our implementation to delete the trips on the website:
router.delete('/:id', (req, res,
db.collection('p ts')

.deleteOne({ _id: new ObjectId(req.params.

.then(result {
res.status(200).json({ message: 'Delete

1)

.catch(err => {

le.log(err);

res.status(5€8).json({ message:

T

‘Delete Produ

s

The result of deleting the Vancouver trip on the website:

Travel Agency
AllTrips Add Trip

Tokyo, Japan Kawaguchiko, Japan Sun Moon Lake, Taiwan
From 21-03-2019 to 07-04-2019 From 10-05-2010 to 20-05-2019 From 01-02-2019 to 10-02-2019

1200 Detasils_Edit _Delete s1100 Details _Edic_Delete 1000 Details _Edit_Delete

a Island, Indonesia
From 10-05-2010 to 20-05.2010 From 12-00-2019 to 15-00-2010

800 Details_EdicDelete <700 Details _Edic _Delete

Bangkok, Thailand

Conclusion

MongoDB is a powerful document database that provides a lot of flexibilities for users.
It can be used with various programming languages with similar query syntax as normal
MongoDB query. The schemaless property provides suppleness of rapid growth of complexity
of data. Developers can migrate data from the existing database to MongoDB and start
running MongoDB database promptly. Moreover, it also has MongoDB Atlas cloud services to
support business nowadays.

References

[1] MongoDB. (2018). Document Databases. [online] Available at:
https://www.mongodb.com/document-databases.

[2] Docs.mongodb.com. (2018). MongoDB Documentation. [online] Available at:
https://docs.mongodb.com/.

[3] udemy. (2018). [online] Available at:
https://www.udemy.com/mongodb-the-complete-developers-guide!/.

[4] En.wikipedia.org. (2018). Node.js. [online] Available at:
https://en.wikipedia.org/wiki/Node.js.

https://www.mongodb.com/document-databases
https://docs.mongodb.com/
https://www.udemy.com/mongodb-the-complete-developers-guide/
https://en.wikipedia.org/wiki/Node.js

[5] www.tutorialspoint.com. (2018). Node.js Introduction. [online] Available at:
https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm .

[6] MongoDB. (2018). Fully Managed MongoDB, hosted on AWS, Azure, and GCP.
[online] Available at: https://www.mongodb.com/cloud/atlas.

(71 Mongodb.github.io. (2018). Installation Guide. [online] Available at:
http://mongodb.qithub.io/node-mongodb-native/3.1/installation-quide/installation-guide/.

https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm
https://www.mongodb.com/cloud/atlas
http://mongodb.github.io/node-mongodb-native/3.1/installation-guide/installation-guide/

