

Advanced Database Project:
Document Stores and MongoDB

Sivaporn Homvanish (0472422)

Tzu-Man Wu (0475596)

Table of contents

Background 3
Introduction of Database Management System 3
SQL vs NoSQL 3
Document Database 4

Introduction to MongoDB 4
What is MongoDB 4
Key differences between SQL and MongoDB terminologies 4
Installation 5
Connect to MongoDB 6
MongoDB Data Storage Structure 9
Basics and CRUD Operations 10

Create operation 12
Read operation 13
Update operation 16
Delete operation 20

Implementation 21
Application Overview 21
Environment setup 23

NodeJS with MongoDB Atlas (Cloud services) 23
Installation MongoDB NodeJS driver 23
Connect Application with MongoDB Atlas 24

Function Design 28
Add product 28
Display products 29
Edit product 31
Delete product 33

Conclusion 34

References 34

1. Background
1.1. Introduction of Database Management System

Database Management System (DBMS) is a software package for managing
database. It provides several kinds of operations such as create, retrieve, update data
including managing data manipulation. The DBMS essential serves as an interface that bridge
between end users or applications with a database to ensure data integrity and consistency.

1.2. SQL vs NoSQL
SQL stands for Structured Query Language. It is a standard language for relational

database management and data handling. It allows manipulating structured data whose
entities/variables are associated with certain relations.

NoSQL stands for Non-Structured Query Language. It is designed to deal with huge
and intensive data that have various demands for modern applications such as different data
structures, customization, complex real-time data, etc. It combines a wide variety of different
database technologies to support nowadays technologies.

Features SQL NoSQL

Type Table-based database Various types such as
● Document-based database
● Key-value pairs
● Graph database
● Wide-column stores

Scaling Vertical scaling, it scales by a
power of its hardware

Horizontal scaling, it scales by
increasing servers in the pool
resources to reduce the load

Flexibility Fix schemas which identified
since predefine phase

High flexibility due to dynamic
schemas

ACID Compliance Comply with ACID Sacrifice ACID compliance for
flexibility and performance

Examples ● MySql
● Oracle
● Sqlite
● Postgres
● MS-SQL

● MongoDB
● Redis
● Hbase
● Neo4j
● CouchDB

1.3. Document Database
According to the need for unstructured data, the rapid growth of cloud computing and
high demands of a requirement. Document database is introduced to loosen the
restrictions on database schemas by using the document data model.
Key Advantages: [1]

● Independent document units help increase performance and distribute data
across servers.

● Easy to apply application logic without translation between application and SQL
queries.

● Support unstructured data that provide flexibility for data migration and usage.

2. Introduction to MongoDB
2.1. What is MongoDB

MongoDB is an open-source document database. It provides capability and flexibility of
querying and indexing data. MongoDB is one of NoSQL database which is a schemaless data
model that gives user suppleness to work on various data structures.

Below is the structure of MongoDB together with the example of the data format. This
structure is totally different from a normal SQL query. However, it provides flexibility for
various data formations.

2.2. Key differences between SQL and MongoDB terminologies
Dues to many types of databases, terminologies of each database are different. The

following table presents the concept and several SQL terminologies that consistent with
MongoDB concept and terminologies.

Comparison between SQL and MongoDB terminologies

SQL Terms MongoDB Terms

Database Database

Table Collection

Row Document

Column Field

Joins Embedded documents, linking

2.3. Installation
Install MongoDB

1. Download MongoDB installer (.msi) that compatible with your window version
from https://www.mongodb.com/download-center. This report is used window
x64 bits community edition.

2. Run MongoDB installer (.msi file) by navigating to the directory that stores the

program and follows the wizard instruction.
Start MongoDB as a windows services

1. Open Command Prompt as an Administrator.
2. Create MongoDB database directory for storing data.
3. Change file path to the directory that you need to store database and create a

data directory

4. Start MongoDB by running mongod.exe. You can point to your database

directory by running command --dbpath following with directory path

https://www.mongodb.com/download-center

5. Open another ‘Command Prompt’ as an Administrator to connect to MongoDB

by running mongo.exe

2.4. Connect to MongoDB
Overview

To connect to MongoDB Server, there are multiple choices to install the MongoDB
client. The figure below shows two main method, drivers and shell. If users create their own
application and desire to use MongoDB to manage data, they have to install a MongoDB
driver which is matching their programming language. The driver will send the queries from
backend server code to MongoDB server. On the other hand, users can also only use
MongoDB shell to interact with MongoDB server. After MongoDB server receives the queries,
it will communicate with Storage Engine. Here the MongoDB default Engine is WiredTiger.
The storage engine can manage and work with data efficiently, so it handles all data access
such as data-read and data-write with memory and disk.

Drivers
For different programming languages, MongoDB provides different kinds of drivers to

let application interact with MongoDB Server. After installing the driver, programmers can
embed it inside their application code to link MongoDB server. Multiple MongoDB drivers can
be found on the official MongoDB Docs page in the following link:
https://docs.mongodb.com/ecosystem/drivers/

https://docs.mongodb.com/ecosystem/drivers/

Shell
From the MongoDB official website as below, there are multiple methods of different

programming languages for users to be selected.[2]

Insert Command from Mongo Shell [2]

Insert Command from NodeJS [2]

Insert Command from PHP [2]

Insert Command from JAVA [2]

The shell allows us to write queries which are very similar to the queries in different

drivers. Using MongoDB shell is an easier way to learn and connect with MongoDB no matter
which programming language is used. Although the syntax of programming languages are
different, the core method to deal with data is similar. Therefore, we will use MongoDB shell
which is connected to our local MongoDB server to introduce how to write commands in the
upcoming part.

Start to run MongoDB server in the background of Windows

If you are a Windows user, after following 2.3 Installation, MongoDB Server will run
automatically once you turn on your computer. There is another option that allows users to
stop running MongoDB server and start running it again by Command Prompt.

1. Open Command Prompt and run as Administrator.
2. Type net stop MongoDB to stop MongoDB server
3. Open Command Prompt again
4. Type mongod --dbpath following with directory path to start MongoDB server
5. Keep the server running (Do not close)

Use Mongo Shell to connect to MongoDB Server
1. Open another Command Prompt
2. Type mongo

2.5. MongoDB Data Storage Structure
Database & Collection & Documents

MongoDB as a NoSQL document-based database has a different data storage
structure from SQL. From the figure below, in MongoDB, users can have multiple databases.
Each database can have multiple collections and each collection can have multiple
documents. Compared to SQL, collection in MongoDB equivalent to a table in SQL, and
documents equal several rows in a SQL table.

JSON Document
MongoDB uses JSON documents to store its data. There is an example of a JSON

document below. The document is always surrounding by curly brackets. Inside the curly
brackets, it stores fields which each field consists of a key and value. The key is the name of
an attribute and it is normally put inside quotation marks(optional). Value can be different
kinds of data types such as string, number, boolean, array, object, and even another
document. In other words, we can have nested documents inside a document. For the value,
quotation marks are used depending on your data type.

2.6. Basics and CRUD Operations
CRUD stands for Create, Read, Update and Delete operations. These are fundamental

operations that use to manage documents of the collection in MongoDB.
After finish installation and start MongoDB server (section 2.4), you can use CRUD

operations for query or editing data in the database. To see other useful commands apart from
CRUD, you can type help to see more information.

The following command below is the frequency used commands:

● show dbs
○ List all of the databases in the MongoDB server

● show collections
○ List all of the collections in the MongoDB server

● use <db_name>
○ Select a database to be used

Below are the CRUD syntax and structure. [3]

In the following part, we will use a simple example to show how to use CRUD

operations. We create a database named sample and a collection named bookstoreproduct
to store the information of the books we sell.

2.6.1. Create operation
To create data into the database, MongoDB provides insertOne and insertMany

command as below depending on how many data you intend to create. For these two
functions, you can put two kinds of arguments. The first one is your data, and the second one
is writeConcern for optional use. The writeConcern argument allows you to set many extra
conditions such as the timeout option to specify a time limit to prevent write operations from
blocking indefinitely and another option to request acknowledgment that the write operation
has been written to the on-disk journal. However, if we use only data argument and omit the
writeConcern, MongoDB will assign writeConcern default value to that command
automatically. [2]

Create collection methods Description

insertOne(<data>,<options>) Inserts a single document into a collection.

insertMany(<data>,<options>) Inserts multiple documents into a collection.

Now, we try to use insertOne command to insert one data into our bookstoreproduct

collection.
Command:

After executing the command, we get the result as below. If inserting is completed, we
will receive a unique automatically generating id for the inserted data. The id is related to the
order of the data you insert, and it can be changed later by the users as well.

Result:

Below is the data we just inserted:

Next, we try to use insertMany command to insert more than one data at one time into
our bookstoreproduct collection. For this operation, all required documents for inserting should
create as a 1 object. So, the syntax must be covered with square blankets. For example,
db.bookstoreproduct.insertMany([<document>,<document>,...]).

2.6.2. Read operation
To read data from the database, MongoDB provides find and findOne command as

below depending on how many data you intend to show. For these two functions, you can put
two kinds of arguments. The first one is your filter condition using query operators to return the
matching documents in a collection, and the second one is the fields you intend to return in
the matching documents.

Read collection methods Description

find(<filter>,<options>) Return a cursor object(allow us to cycle through the
results) which only show the first 20 documents by
default at one time.

findOne(<filter>,<options>) Only return the first matching document in the
collection based on the filter.

Example: find
Command:

Result:
It will only show the first 20 documents by default because if it always returns all the

data, it will take too long if we have a million documents. By typing it, MongoDB will use the
find’s cursor to fetch and display the next bunch of data on the screen.[3]

To see the result in a well-format, we can use .pretty() method. It will show the data in

the database that easier to read.
Command:

Result:

Sometimes we just want to find a subset of our data, so we can use a filter to fetch

specific documents. There is an example below to show how to use find() to get the
information of books which price is greater than 25. Here we use a reserved operator of
MongoDB $gt which means “greater than”.

Command:

Result:

To get the name of books which price is greater than 25, we add the second argument

{name: 1} which means only get the key “name” information of the document.

Command:

Result:

To only return the first matching document in the collection based on the filter.
Example: findOne
Command:

Result:

2.6.3. Update operation
Update operator is used for modifying and adding extra data to the database.

MongoDB provides updateOne, updateMany, and replaceOne commands to select
documents that needed to be updated. There are 3 arguments, the first one is your filter
condition using query operators to return the matching documents in a collection, the second
one is information that you need to update over the existing value. The last one is the option
for your command. Below are the syntax and structures of update operation.

Update collection methods Description

updateOne(<filter>,<data>,<options>) Update a first single document in the
collection based on the filter.

updateMany(<filter>,<data>,<options>) Update all document in the collection
based on the filter.

replaceOne(<filter>,<data>,<options>) Replace a first single document in the
collection based on the filter.

Operators for filter update operation

Operation names Description

$set Replace the value of the field with a specific value of the
operation. If the field does not exist, $set will add a new field to
the document.

This operation has the following form:
{ $set: { <field1>: <value1>, ... } }

$min Update value while the specified value of the operation is less
than the current value of the field. If specified field does not
exist, $min will set the field to the specified value in the
operation.

This operation has the following form:
{ $min: { <field1>: <value1>, ... } }

$max Update value while the specified value of the operation is
greater than the current value of the field. If specified field does
not exist, $max will set the field to the specified value in the
operation.

This operation has the following form:
{ $max: { <field1>: <value1>, ... } }

$inc Increment the value of the field with the specified value of the
operation.

This operation has the following form:
{ $inc: { <field1>: <amount1>, <field2>: <amount2>, ... } }

$rename Update the name of the field with specified value of the
operation.

This operation has the following form:
{$rename: { <field1>: <newName1>, <field2>: <newName2>,
... } }

Example: updateOne
This is current data in the database.

Command:

Result:
Book’s name has been updated from Smuffs to Smurf.

Example: updateMany
We have inserted 3 books to the collection. All of the books price are set to 59. In this

example, we will use updateMany() to update the prices of the books to 69.
Below is the inserted books information.

Command:
We used reserved operator $regex to find all book names that contain “TEST” inside.

Then, we updated the price to 69.

Result:

Example: replaceOne
Replace the document details of the first book which contains “TEST” in its name.
Command:

Result:
From the previous example result of updateMany(). Book name “TEST 1” has

ObjectID(5c153d251e0007f2dfc39d68). However, when we use replaceOne() operation. It will
replace all the document. So, the current document of ObjectID(5c153d251e0007f2dfc39d68)
structure will be changed to {“price: 49”} based on replacement command that was run.

2.6.4. Delete operation
Delete operator is used to remove documents from a collection. There are 2

arguments, the first one is your filter condition using query operators to return the matching
documents in a collection, the second one is the option for your command. Below are the
syntax and structures of delete operation.

Update collection methods Description

deleteOne(<filter>,<options>) Delete a first single document from a
collection in the database based on the filter

deleteMany(<filter>,<options>) Delete all document from a collection in the
database based on the filter

Example: deleteOne()
Currently, we have 3 documents in the database. We can show the number of

collections by using .count() function.

Command:

Result:

Example: deleteMany()
There are 5 documents in the database. We will delete all books that its name contains

“TEST”. From the previous example, there are only 2 books left which are “TEST 2” and
“TEST 3” to be deleted

Command:

Result:
After running deleteMany(), Book name “TEST2” and “TEST 3” were deleted from the

database.

For more information about CRUD operations, you can refer to the official MongoDB

site in the following link: https://docs.mongodb.com/manual/crud/

3. Implementation
3.1. Application Overview

In this project, we implemented ‘Travel Agency’ webpage to store data about the trips that the
company provided to customers. Users can see trip lists, add more trips, deleted and modify trip
details such as location, date, price, image, and detail. This website was implemented by Node.js
together with MongoDB Altlas cloud database. More explanation will be explained in the following
section.

https://docs.mongodb.com/manual/crud/

The main page of the website:

Details page:

Add Trip page:

3.2. Environment setup
3.2.1. NodeJS with MongoDB Atlas (Cloud services)

What is NodeJS?
NodeJS is an open source run-time server environment that executes

JavaScript code outside of a browser and it is compatible with various operating
systems e.g. OS X, Microsoft, and Linux. There is an asynchronous feature for all APIs
of NodeJS that help server get a response faster.[4][5]
What is MongoDB Atlas?

MongoDB Atlas is a could services that fully-managed database by handling
complex configuration and helping users to seamlessly integrate their business with
the newest database facilities. Atlas also provides a friendly user interface and API that
helps users reduce database management time.[6]

3.2.2. Installation MongoDB NodeJS driver
Download MongoDB NodeJS driver from
https://mongodb.github.io/node-mongodb-native/ and use the command below
to install. [7]

https://mongodb.github.io/node-mongodb-native/

3.2.3. Connect Application with MongoDB Atlas
How to create MongoDB Atlas cluster? [3]

1. Create an Atlas user account by the following link:
https://www.mongodb.com/cloud/atlas

2. Create Atlas Cluster
a. Select ‘Cloud Provider & Region’
b. Select Cluster Tier
c. Name your cluster
d. Click ‘Deploy’to deploy the cluster

3. Configure security for the cluster

a. Select ‘Security’
b. Go to ‘MongoDB users’ tab, click ‘+ Add new user’

c. Enter username and password
d. Select user privileges
e. Click ‘Add user’

https://www.mongodb.com/cloud/atlas

4. Go to ’IP Whitelist’ tab, click ‘+ Add IP Address’

How to connect to MongoDB Atlas?
1. Select ‘Overview’ and click ‘Connect’

2. Choose ‘Connect Your Application’

3. Select ‘Short SRV connection string (shell 3.6+)’ and copy the SRV

address

4. Replace <Password> for your user and specify the database name.

Otherwise, your collection will be in default database named ‘test’

5. Connect Atlas cluster to NodeJS application

How to start the connection?

1. Open Command Prompt, go to your application directory and run the
command ‘npm start’. This command will call your application. However,
you will get an error because the connection between application and
Atlas cluster is not connected yet.

2. Repeat step 1) by opening a new window and run ‘npm run start:server’

to make a connection between your application and Atlas cluster

3. Refresh your application connection

3.3. Function Design
According to the advantage and flexibility of MongoDB with other programming
languages, we selected NodeJS to develop our ‘Travel Agency’ website. In this topic,
we will show how we integrate NodeJS application with MongoDB Altas database. [3]

3.3.1. Add product
To insert data, we need to use MongoDB NodeJS syntax below:

db.collection(<collection name>).insertOne(<your doucument information>)
.then(result =>{
 //adding actions. You can add log or response message, etc.
 })
.catch(err => {

//adding log or error message
 });

Below is a part of our implementation for adding the trip to the database:

The result of adding a trip on the website:

3.3.2. Display products
To display all of the data, we need to use MongoDB NodeJS syntax below:

db.collection(<collection name>).find()
.forEach(

//adding actions.
)
.then(
 //adding actions. You can add log or response message, etc.
).catch(err => {
 //adding log or error message
 });

Below is a part of our implementation for display all the trips on the website:

Our implementation is using find().forEach() function in order to read the data one by
one and display them on the main page.

The result of displaying the trip on the website:

To display one single data, we need to use MongoDB NodeJS syntax below:

db.collection(<collection name>).findOne(<fitered by document information>)
.then(
 //adding actions. You can add log or response message, etc.
).catch(err => {
 //adding log or error message
 });

Below is a part of our implementation for display the trips on the website:

The result of displaying the detail of a trip on the website:

3.3.3. Edit product
To update data, we need to use MongoDB NodeJS syntax below:

db.collection(<collection name>).updateOne(<fitered by document

information>, {$set: <update information>})
.then(result => {
 //adding actions. You can add log or response message, etc.
 })
.catch(err => {
 //adding log or error message
 });

Below is a part of our implementation to update the trips on the website:

The result of editing the trip on the website:
Once we click ‘Edit’ button on the main page, it will direct you to another page
to update data.

In this example, we updated ‘Start Date’ and ‘Detail’ as shown below

The ‘Start Date’ and ‘Detail’ has been updated.

3.3.4. Delete product
To delete data, we need to use MongoDB NodeJS syntax below:

db.collection(<collection name>).deleteOne(<filtered by document
information>)
.then(result => {
 //adding actions. You can add log or response message, etc.
})
.catch(err => {
 //adding log or error message
});

Below is a part of our implementation to delete the trips on the website:

The result of deleting the Vancouver trip on the website:

4. Conclusion
MongoDB is a powerful document database that provides a lot of flexibilities for users.

It can be used with various programming languages with similar query syntax as normal
MongoDB query. The schemaless property provides suppleness of rapid growth of complexity
of data. Developers can migrate data from the existing database to MongoDB and start
running MongoDB database promptly. Moreover, it also has MongoDB Atlas cloud services to
support business nowadays.

5. References
[1] MongoDB. (2018). Document Databases. [online] Available at:

https://www.mongodb.com/document-databases.

[2] Docs.mongodb.com. (2018). MongoDB Documentation. [online] Available at:

https://docs.mongodb.com/.

[3] udemy. (2018). [online] Available at:

https://www.udemy.com/mongodb-the-complete-developers-guide/.

[4] En.wikipedia.org. (2018). Node.js. [online] Available at:
https://en.wikipedia.org/wiki/Node.js.

https://www.mongodb.com/document-databases
https://docs.mongodb.com/
https://www.udemy.com/mongodb-the-complete-developers-guide/
https://en.wikipedia.org/wiki/Node.js

[5] www.tutorialspoint.com. (2018). Node.js Introduction. [online] Available at:

https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm .

[6] MongoDB. (2018). Fully Managed MongoDB, hosted on AWS, Azure, and GCP.

 [online] Available at: https://www.mongodb.com/cloud/atlas.

[7] Mongodb.github.io. (2018). Installation Guide. [online] Available at:
 http://mongodb.github.io/node-mongodb-native/3.1/installation-guide/installation-guide/.

https://www.tutorialspoint.com/nodejs/nodejs_introduction.htm
https://www.mongodb.com/cloud/atlas
http://mongodb.github.io/node-mongodb-native/3.1/installation-guide/installation-guide/

