
Project: Memcached Database

INFO-H-415 - Advanced Database

DELBEKE Julien 000425720
HULLEBROECK Nathan 000428458

Université Libre de Bruxelles, Department of computer science

18 December 2018

Contents

1 Introduction 2

2 Key-value database 2
2.1 How it works . 2

2.1.1 Linear search . 3
2.1.2 Binary search . 3
2.1.3 Hashing . 4

3 Cache memory 5
3.1 Multi-level caches . 5

4 NoSQL 6

5 Memcached 7
5.1 How it works . 7
5.2 Hash algorithm . 8

5.2.1 Client . 9
5.2.2 Server . 11

5.3 Commands . 11
5.4 Popularity . 12

6 Application 13
6.1 Architecture . 13
6.2 Test plan . 14

6.2.1 Queries . 16
6.3 Test results . 17

7 Conclusion 23

1

1 Introduction

Memcached is a system of memory caching based on the key-value storing prin-
ciple and the NoSQL paradigm. It is a cross-platform and Open-Source project
coded in C that has been released in May 2003. It has been updated and im-
proved continuously as the latest stable version was released in late October
2018 [6]. The main purpose of this system is to speed up other application,
mainly web applications, by saving the data in the cache memory which pro-
vides fast access. The principle of a key-value storage is to assign a specific key
to a specific data which allows the application to retrieve this data by using
only its key. [8]

2 Key-value database

Key-value storage is a paradigm developed in order to save, modify or retrieve
data. The advantages of this method are its:

• Efficiency, indeed only by knowing the key it is possible to retrieve the
data which allow high performance.

• Flexibility in terms of structure which is in tables and where the schema
is predefined but also can be re-scaled on demand with little cost.

• Simplicity of use where the commands are only to add, modify, delete or
get some data. (See section 5.3 for Memcached commands).

2.1 How it works

It works as a Key-Value Pair (KVP) which consists in a one dimensional table
where each keys are linked to a value. To illustrate this, here is a short example:

key value
Didier ULB

Arthur VUB

Eduardo ICHEC

Charlotte ESI

Barbara HELB

Fiona UCL

The key is the name of the person and the value is the school where this person
works, so if you are interested where Fiona works, you would have to find Fiona
in the table and retrieve the linked value to this key. This example shows us
that we would need an efficient way of searching for the key.

2

2.1.1 Linear search

An easy method to find a key in the key-value table would be the linear search
which consists in comparing incrementally each key to the wanted key until we
find it. This method is inefficient because its complexity is O(n), indeed in the
worse case scenario, the key that you are searching for is the last one of the
table. In the above example, if we are searching for Fiona we would need to
compare every keys.

2.1.2 Binary search

A clever way to do it would be to maintain a sorted table on the keys and then
we could use the binary search which consists in looking recursively for the key
in the middle of the table :

• If the key is the same, we stop.

• If this key is greater, we repeat this method on the superior part of the
table.

• If this key is smaller, we repeat this method on the inferior part of the
table.

This algorithm is much more efficient than the previous one with a complexity
of O(log n) and also the most efficient to search a value in a sorted table. This
can be proven by using the Yao’s Minmax Principle.
Here is what our table would look like with the Binary search algorithm:

key value
Arthur VUB

Barbara HELB

Charlotte ESI

Didier ULB

Eduardo ICHEC

Fiona UCL

If we are still searching for Fiona, we would start the algorithm on Didier and
compare it with the key we are searching and we see that Fiona is greater. We
then reiterate on the middle key of the superior part of the table which is Fiona.
We have found the key we were searching for in 2 iterations where the linear
search would have found it in 6 iterations.

3

2.1.3 Hashing

It is a function that consists in converting any type of value to a numerical value
of any size depending on the algorithm used. The main idea of this method is
that the hashing function must be deterministic which means that for a given
input, the result of the hash function must always give the same output.

One of the big advantages of hashing is its efficiency which has a complexity
of O(1).

Here is what our table would look like with the Hashing function:

index value
9 ULB

54 ICHEC

98 UCL

122 VUB

333 HELB

1654 ESI

If we are searching for a specific key like Fiona, we should hash this key which
would give us the index corresponding to the value we are searching for. Here,
the h(”Fiona”) gives us the index 98 which allow us to retrieve the value. One
of the downside of a hashing function is collision which occurs when two different
inputs give the same output, that is why it is necessary to use a good hashing
algorithm which can prevent this from happening. Even with an algorithm
that results in some collisions, there are some mechanisms to resolve this issue
but with cost to its efficiency. For example, rather that storing the value at a
specific index, we store a list of values corresponding to this hash and then use
the linear/binary search on this list, but as mentioned earlier, it would obviously
increase the cost.
Another downside of using a hashing function is the memory space required
which is greater than the required space of storing the values. Indeed, a hashing
function uses a table where the value are not subsequent which gives empty
spaces between each values. The Rule of thumb is used in this case:

• Try to keep utilization of space between 50% and 80%.

• If < 50%, wasting space.

• If > 80%, high risk of collision depending on the hash function used.

Moreover, in order to avoid collisions, we choose to increase the size of the
index which use even greater memory space for the table. Fortunately there
are some dynamics algorithm that can improve this problem by looking to a
smaller portion of the hash in order to decrease the possible indexes, like the
Linear hashing or the Extensible hashing.

4

3 Cache memory

The cache memory is a small hardware component that allows a faster read in
memory. It is a memory used by the CPU (Central Processing Unit) to reduce
the costs or reading in the hard drive and stores on it frequently accessed data
by applications or programs. It is faster for two main reasons:

1. Location: the cache memory is located near the CPU which allows smaller
travel time to get information.

2. Type of RAM: the cache memory is composed of SRAM (Static Random-
access Memory) and not DRAM (Dynamic Random-access Memory)

Unfortunately a very efficient product is very expensive, that is why it is
usually very small in terms of capacity. When we want to access some data in
the cache, we first need to look if it is really stored so there are two possible
scenarios:

• Cache hit : means that we find what we are looking for.

• Cache miss : means it is not stored in the cache memory.

When we have a cache miss we need to get the information in the main
memory.

3.1 Multi-level caches

To increase the size of the cache a method is to have multi-level of caches. Like
we said, the bigger the size of the cache is, the bigger the cost is, but in order
to have bigger caches, we decrease the efficiency to keep an affordable price.
Here we have different caches sorted by size. So, first we look if what we are
searching for is in the first level, if it is we are done, if not we need to look on
the next level. We repeat this until we are at the last level. When we are on
the last level and we have a cache miss we look on the main memory.

5

4 NoSQL

NoSQL is a paradigm of database that distant itself from the traditional SQL
and the relational database. It means Not only SQL because it may also accepts
SQL queries. It is a new way of thinking of the database that wishes to be more
accurate regarding the use of the user because relational database are not always
the best way to store the data.
NoSQL and SQL have made different choices:

1. SQL Store everything in tables so it needs to have a format and we need to
know in advance what we want to store for every table. It is then harder
to make changes and to be flexible, for example: if we want for a given
value different kind of formats like both Integer and String, that would
not be possible in a relational database. NoSQL uses Collections that can
allow it.

2. Usually in SQL we need to give the information in small size to avoid the
duplication of value but the information is splited and thus needs more
time to be recomposed. NoSQL stores it as collections so the data is not
partitioned but has duplications and then takes more memory space but
is faster to access.

3. The scalability in SQL is easier to scale horizontally by adding new columns
than to scale vertically and in NoSQL it is the opposite.

There are other differences but we will not explicit all of them here.
In key-value storing it is really interesting to avoid formatting, indeed the key

and the value can change, sometime we want to store picture, text or code... we
don’t want to add tables for every type of key or value that we want to store.

6

It is also not really interesting to scale horizontally because we want to add
new item rather than add information on the item that are already inside the
database. The user also don’t want to remove duplication and start to uncouple
the values, he is more interested by speed than memory use.

So it looks more interesting to use NoSQL rather than SQL in a key-value
database.

5 Memcached

Memcached is based on a client server architecture it work with TCP and UDP.
It is a distributed server which means that they are many servers and is then
not centralized. When the client wants to add or receive information it first
needs to hash the key and choose a server regarding the value of a hash.The
values will be stored in RAM and removed when more memory is needed.

The fact that we use multi-server help us, first to have more memory available
and also to have a better use of the memory. From the client point of view all
the servers are in the same virtual pool so it can choose the server that it wants
and doesn’t have to worry where exactly the data is stored. It also helps when
we want to add servers, it is fairly easy and cost effective, so if we need memory
we can add some. The keys can be at most 250 bytes and the values 1 megabyte
long. It also compiles with SASL to have an authentication support if we need
security. [5]

5.1 How it works

To receive a value assigned to a key:

1. The client computes the hash of the key to find the server that stores the
value.

2. The client makes a request on the appropriate server.

3. The server computes the hash of the key.

4. The server checks on its table if the key is stored.

5. (a) If the server has the value assigned to the key it will return this value
to the client.

(b) If the sever has not the value it will tell it to the client.

To store a new value:

1. The client computes the hash of the key to find the server that will store
the value.

2. The client makes a request on the appropriate server.

3. The server computes the hash of the key.

7

4. The server saves the value at the index corresponding to the hash.

To remove an old value:

1. The client computes the hash of the key to find the server that stores the
value.

2. The client makes a request on the appropriate server.

3. The server computes the hash of the key.

4. The server removes the value at the index corresponding to the hash if it
is the right key.

In general, Memcached is uses to speed up a server, so we will only use the
insertion and the receive operations. We will attribute an expiration time to
automatically remove data if they are not requested for a long period using the
Least Recently Used (LRU) algorithm.

1. Client makes a request.

2. The Memcached client will look if the result of the request is stored on
the Memcached server.

3. (a) If the value is stored we return the result to the client, it is a cache
hit. We can also increase the expiration time because the value of
the request is relevant.

(b) If the value is not stored, we will tell the client, it is a cache miss.

If we have a cache hit we have finished.
If we have a cache miss we need to add some new steps.

4. We make a request to the server.

5. The server computes the result of the request.

6. The server returns the result to the client.

7. The Memcached client will store the result and the request as the value
and the key in the Memcached server with some expiration time.

5.2 Hash algorithm

They are two side in Memcached :

1. Client side

2. Server side

8

5.2.1 Client

The algorithm available on the client side will depend on the implementation.
It can change depending on the language or the version that is used. Every
client has at least one hashing function but not necessarily the same. It may
cause some problems and the different clients can be incompatible. Indeed, if
they don’t have a common hashing algorithm they can use the data of the other
client: for the same key they will choose different servers. There is also another
problem on the client side, the number of the servers may change, so we need
to have a consistent hashing. When we add a new server in the pool, it can
create a lot of cache misses because we no longer choose the right server. With
a consistent hashing we should remap less than 10% of the keys while without
it, it is around 40% of the keys than would need to be remapped.

Consistent Hash A consistent hashing is a hashing that is more interesting
when the size of the hash table changes, it allows to remap only K

n in average.
K is the number of key and n the size of number of slots. A non consistent
hashing function needs to remap all the keys in general [4].

The main idea is to associate each value to points in a clock-circle, called
the continuum. Each value is at several point on the circle, we add every value
in different random positions. The si corresponds to the values that are saves
in the hash table.

So when we want to find the value, we hash the key and look for the next value
stored that is higher or equal in the continuum. If there is none, we take the
first. The ki corresponds to the key for which we want find the value.

9

When we want to add or remove a new value we add/remove it on the circle
so only the value that are impart whit the new/removed points are impact by
the change.

10

5.2.2 Server

On the server side there is no need to use consistent hashing because every
server is independent so we only want to have the best hashing function:

1. Efficient.

2. Few number of collisions.

5.3 Commands

Here are some of the main and most useful commands [1]:

11

Command Action Example

get read a value get key

set store a key-value pair set key <flag> <exptime> <bytes> value

replace replace a key-value pair set key <flag> <exptime> <bytes> value

append add after an existing value append key <flag> <exptime> <bytes> value

prepend add before an existing value prepend key <flag> <exptime> <bytes> value

cas update only if not updated since last fetch cas key <flag> <exptime> <bytes> <cas unique> value

delete delete the key-value pair delete key

incr increment the value corresponding to the key incr key <value to increment>

decr decrement the value corresponding to the key decr key <value to increment>

touch update exptime if exist without fetching touch key <exptime>

stats show every statistics stats

version return the Memcached server version version

quit server closes quit

5.4 Popularity

Memcached is ranked as the 3rd most popular Key-value store database accord-
ing to DB-Engines [2].

In terms of comparison with the same kind of database model which is key-value
store, the main competitor would be Redis which is better than Memcached is

12

some areas like in terms of functionalities but Memcached has better perfor-
mances in time and multi-threading capacities [3].

6 Application

6.1 Architecture

We are going to show the advantages of Memcached, to do so we are going
to make a comparison between queries using Memcached and without using it,
with the data stored in a relational database. To build a database with some
information, we took a dataset sample from IMDb [7] composed of:

Type of data Quantity
Movies 4912

People 8513

Actors 6279

Directors 2396

Genres 26

Languages 101

Countries 79

Years 93

Plot keywords 8029

We then parsed the original CSV file and organized the data into multiple tables
and structured them in a logical way as shown in the diagram below. In this
architecture, there is a table Person from which Actor and Director inherit and
who are linked to a movie by a table ActorMovie or DirectorMovie respectively.
We have also created few more tables to complete this architecture for languages,
genres, countries,... this dataset seemed interesting because of the number of
possible relations and large queries, for instance there are 14736 links between
Actors and Movies.

13

Figure 1: Relational database diagram

6.2 Test plan

In order to point out the differences and the advantages of choosing a key-value
store database using the cache memory, we implemented two different functions:

• The first one is used to make a Memcached request to check if the wanted
key is stored, if it is stored it is a cache hit, if not it is a cache miss and

14

Memcached will then store the data in the cache for a possible future
request, it is the same as explained before in section 5.1.

Figure 2: Function with Memcached

• The second one doesn’t use Memcached and makes then same query to
the traditional database which is store in the hard drive of the computer.

Figure 3: Function without Memcached

We are going to execute different SQL queries with and without Memcached
as shown below:

The goal of such queries is to show the difference between a cache hit and
a cache miss for the key-value store. Indeed, if it is a cache miss, the program
will make the request into the traditional relational database.

1. The first query consists on retrieving all the countries in which a movie
has been shot and where the languages are either Greek, Kazakh, Russian,
Swedish, Arabic or French.

2. The second query consists on retrieving all the actors with all their movies
and all the years on which they acted.

3. The third query consists on retrieving the same information as the previous
one but it will request all the actors for each letter in the alphabet, so it
will make 26 requests in total.

4. The fourth query consists on retrieving all the movie titles where the
budget was smaller than the gross.

15

5. And the last one is to get all the information for the movie ’Avatar’.

6.2.1 Queries

Here we can find the SQL script of those queries:

1. SELECT c.country

FROM Movie m

INNER JOIN CountryMovie mc

ON m.movie_title = mc.movie_title

INNER JOIN Country c

ON c.country = mc.country

INNER JOIN LanguageMovie ml

ON ml.movie_title = m.movie_title

INNER JOIN Language l

ON l.language = ml.language

WHERE l.language in (’Greek’, ’Kazakh’, ’Russian’, ’Swedish’, ’Arabic’, ’French’);

2. SELECT p.name , m.movie_title, y.year

FROM Actor a

INNER JOIN Person p

ON a.name = p. name

INNER JOIN ActorMovie am

ON a.name = am.name

INNER JOIN Movie m

ON m.movie_title = am.movie_title

INNER JOIN YearMovie ym

ON ym.movie_title = m.movie_title

INNER JOIN Year y

ON y.year = ym.year ;

3. SELECT p.name , m.movie_title, y.year

FROM Actor a

INNER JOIN Person p

ON a.name = p. name AND a.name LIKE ’A%’

INNER JOIN ActorMovie am

ON a.name = am.name

INNER JOIN Movie m

ON m.movie_title = am.movie_title

INNER JOIN YearMovie ym

ON ym.movie_title = m.movie_title

INNER JOIN Year y

ON y.year = ym.year ;

16

Of course here A will change in accordance with the letter that we want
to find.

4. SELECT movie_title

FROM Movie

WHERE budget < gross;

5. SELECT *

FROM Movie

WHERE movie_title = ’Avatar’;

We made an experimentation for all the queries: we ran different number of
times the same query on the database and compared the execution times needed.
We ran 10 times every experimentation to make an average of the result. We
made 1 to 100 executions once using Memcached and another without using it.

6.3 Test results

17

1. Query 1:

First we can see than both are represented with linear segments. So if we
increase the number of equations it will grow linearly. We can see that
when there are only few executions, Memcached increases the time needed
for the request: it needs to look if the data is already stored, after it needs
to store the data and all of that takes more time. If we made many times
the same request we can see that both take the same amount of time.
Finally we can see that at the end, using Memcached is a little better and
we can presume that the gap between the two will still grow if we increase
the number of queries.

18

2. Query 2:

Here we have the same linear progression but the gap between the two is
greater so the utility of Memcached is higher. We can still see that at the
beginning, without Memcached the time performance is better but it is a
really small difference and only for the first few requests.

19

3. Query 3:

The cost at the beginning is really high here because we made 26 different
queries so we need to store all the results and we have 26 cache misses
so the cost is indeed higher. But the higher the number of queries are,
the higher the gain for the cost is. Here we have also more memory usage
because we need to store the results in Memcached. So we can store
multiple times the same data because it is the result of multiple different
queries because we ask for different letters.

20

4. Query 4:

The gap between the two is really small and depending of the number of
queries it can be negligible so it can be useful not to use Memcached to
avoid storing multiple times the same data. Note that for really small
numbers of queries, using Memcached is costlier.

21

5. Query 5:

We ran this query that is really simple and really fast to show that Mem-
cached is not useful every time because it gives the same results and can
be worse depending of the number of queries.

During those different tests and experimentation we observed that there are 3
possibilities:

1. Memcached does not change the speed.

2. Memcached helps a lot by improving the speed.

3. Memcached makes the thing worse.

22

So we can see that the use of Memcached is not necessary every time and can
improve a lot but it depends on the scenario and the use of such technology. If we
have only few requests and never or rarely make the same request, Memcached
is not interesting. The true interest is when we need to make a lot of times
the same request that needs a lot of time to be completed. The query 1 and
5 show it clearly but of course if the number of times the request is made is
really huge, the interest increases because at the end of the query 1 we can see
that a gap between the two lines is developing. If we make a small number of
time the same request, it only depends on the memory and time needed to store
the result. Note that in every cases, Memecached increases the time needed for
really small number of uses.
One of the issue is the choice of key in Memcached, if we use the query as key, it
may cause a problem if the number of characters is too big, indeed we can only
store 250 bytes for the key. It is still possible to resolve this problem in different
ways: we could enumerate the query and store the number of the query and
the parameter but it can still be too big depending on the parameter. Another
problem occurs when we change the original values, we need time to change it
for the user because if we have a cache hit we will have the old values stored on
the cache, it is of course possible to remove the value in the cache but it takes
time to compute where the value is store and to remove it.

7 Conclusion

We can conclude that Memcached can be really useful but not in every cases.
Indeed, to be useful we need to have the same request asked a lot of time or
the request needs to be costly in time. The more the request needs time to be
completed, to more Memcached will be useful in terms of speed. It is not the
case for every scenario, the value also needs not to be modify every time because
if it is, Memcached will only store and remove data in the cache without using
its properties effectively.
We also need to be aware that Memcached can increase a lot the memory needed
because it will store every results and some value multiple times, of course this
number will depend on the expiration time. The expiration time needs to be
short to avoid storing data not used for long time but it also needs to be big to
avoid removing data too early and then create a lot of cache misses. So we can
really understand why the websites like : Facebook, Twitter, Reddit ,... need to
use this technology because they have a lot of users who make the same requests
over and over.

References

[1] Elija Halii Adalier. Memcached telnet command summary. https://blog.
elijaa.org/2010/05/21/memcached-telnet-command-summary/.

[2] DB-Engines. Db-engines ranking. https://db-engines.com/en/ranking.

23

[3] Disko. Redis vs memcached. https://www.disko.fr/reflexions/

technique/redis-vs-memcached/.

[4] Joshua and Jekyll Thijssen. Memcache internals. https://www.

adayinthelifeof.nl/2011/02/06/memcache-internal/.

[5] Memcached. Github repository of memecached. https://github.com/

memcached/memcached/wiki.

[6] Memcached. Memcached - official website. https://memcached.org/.

[7] Chuan Sun. Imdb 5000 movie dataset. https://data.world/popculture/
imdb-5000-movie-dataset.

[8] Wikipedia. Memcached. https://en.wikipedia.org/wiki/Memcached.

24

