Introduction of Time series database
and exploring kdb+

Course: INFO-H-415 Advanced Databases

Project Report

Eugen Patrascu
Kunal Arora

Université Libre de Bruxelles

UNIVERSITE
LIBRE
DE BRUXELLES

Title:

Introduction of Time series database

and exploring kdb+

Course:
Advanced Database

Project Period:
Fall Semester 2018

Project group:
Kunal Arora

Eugen Patrascu
Supervisor(s):
Esteban Zimanyi

Page Numbers:

Date of Completion:
December 17, 2018

Université Libre de Bruxelles
http://www.ulb.ac.be

Abstract:

Time series data is becoming more
and more popular as it offers valu-
able insights in many industries. How-
ever, due to its unique characteristics,
time series database technologies are
required to efficiently store and anal-
yse it. This report describes time series
data, time series databases with kdb+
and details a financial application im-
plemented using kdb+. It shows that
usability and scalability of TSDBs are
their main important features. Then
it presents kdb+ as the second most
popular time series database, widely
used in the industry, especially in fi-
nance. Its 64-bit, columnar, in-memory
architecture ensures its very high per-
formance for both real time and histor-
ical data, way better than many other
databases. Finally, various queries are
run on stock trading data using kdb+’s
language, q, which offers insights into
the real world usage, as well as a com-
parison with general sql.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

http://www.ulb.ac.be

Contents

Introductionl 1
[I__Time-series Database Fundamentals| 2
1.1 Timeseriesdatal 2
[.1.1_ Definitionl 2

1.1.2 Examples of time seriesdatal 2

1.1. t time seriesdatal. 0L 3

1.2 Time series databases|. 3
1.2.1 Definitionl o L 3

[1.2.2 Benefits of time series databases| 3

[L.2.3 Properties of time series databases|. 4

(1.3 Popularity and trends in time series databases| 5
2__kdb+ databasel 8
2.1 Generalfeatures. Lo o 8
2.2 Architecturel 9
2.3 Overview of Q language| 10
231 Keyfeatures 10

2.3.2 Basic CRUDoperations| 11

2.4 Installation and Dev environment setup|. 12
2.5 Performance characteristics| 14
2.6 Performance benchmark] 14
2.7 Which industry is using kdb+ software the most?| 16
.71 Use-case scenario of kdb+ of 3 major companies|. 16

2.8 Kdb+weakness| oo 17

3 Application using kdb+ and q 18
B.1 Data Generation|. 0L 18
32 Queries| 21
83.2.1 Basic queries with constraints|. 21

B.2.2 Aggregate queries on trades table] 23

3.3 Comparative Queries (q-SOLvsSQL) 26
Conclusion 29
[Bibliography| 30

ii

Introduction

Nowadays the volume and type of data are changing constantly and rapidly. We
are dealing with larger amounts of data than ever before, often in the order of ter-
abytes, and this data can under very different formats, structured or unstructured:
tabular data, text, audio files, images etc. Another type of data which becomes
more and more popular in many industries is time series data. If used properly,
it can offer valuable information to many organisations. Time series data consists
of values of certain parameters measures over a certain period of time, such as
the evolution of stock prices, or the levels of CO2 in our homes as measured by a
smart device. As this data has unique characteristics, it needs database systems op-
timised to deal with this type of information. Kdb+ is one of these databases, with
high performance, increasing popularity, and which is used a lot in the financial
services industry.

In this report, we will focus on time series data and one of the databases used
to store, manage and analyse it, kdb+. It will start by defining time series data in
more detail, offering more examples of where this kind of data is used currently,
and will also describe the benefits of storing and analysing it. The report will
next focus on time series databases, detailing the benefits, requirements and the
recent trends of these systems. It will then describe the kdb+ database, its fea-
tures, architecture and performance, and it will explain the characteristics that its
own programming language, q, offers. The final chapter contains an application
scenario of how kdb+ and q could be used in real life in the financial services
industry.

Chapter 1

Time-series Database Fundamentals

This chapter will introduce and describe the concepts of time series data and time
series databases. It starts by explaining what time series data is, where it is pro-
duced and how it can be effectively used. The second part of the chapter will
focus on time series databases, presenting their properties, benefits and giving an
overview of the change in popularity of time series databases over the years.

1.1 Time series data

1.1.1 Definition

Time series data “consists of repeated measurements of parameters over time to-
gether with the times at which the measurements were made.” [1] The nature of
these measurements, or data points, can vary greatly depending on the use case,
but they are usually represented as numbers.

1.1.2 Examples of time series data

There are many industries and scenarios where time series data is used. A popular
application is in finance, where the evolution of stock and commodities prices over
time can be represented as time series. Sensor measurements are time series data
as well: GPS data from our mobile phones, temperature and humidity levels from
smart home devices, or environmental measurements data such as levels of CO2
or wind direction. Similarly, monitoring data can be produced, for example the
CPU load, level of utilised disk storage and usage of memory in the case of data
centres, or health rate and blood pressure variations in the case of healthcare data.
There are many other examples of time series data, such as taxicab ride data, fuel
consumption, or web event streams, therefore any data that collectively models
how a system or process varies over time represents time series dataﬂ

lhttps:/ /blog.timescale.com /what-the-heck-is-time-series-data-and-why-do-i-need-a-time-
series-database-dcf3b1b18563

1.2. Time series databases 3

1.1.3 Use of time series data

There are various use cases in which time series data can be helpful. The timeseries
data by itself does not provide much information unless it is analysed: observing
a measurement value at a certain point in time is less interesting than observing its
variation over time. For example, in finance it would be important to observe how
specific stock prices change depending on seasonality to see if they go through
up and downs at regular times each year. Another use of the data could be in
time series forecasting, where we use historical values of the parameters and their
correspondent trends to try and predict future behaviour (e.g. such as how the
price of a specific stock would behave in the next quarterﬂ

Based on the previous examples we can observe certain aspects which apply to
any type of time series data: new data that arrives generally represents new data
points (rather than an update of old measurements), there is a time order between
the values, and the time is the primary axis of the dataset. Additionally, time series
applications make use of very large amounts of data, as the speed of inserting new
data points may be very high. These constrains are important in deciding how we
store, manage and analyse time series data and thus they must be considered in
designing suitable technologies.

1.2 Time series databases

1.2.1 Definition

A time series database (TSDB) is a software system optimised for handling time se-
ries data, considering the above-mentioned challenges: constantly increasing large
volumes of data and a specific format. TSDBs allow the basic operations of cre-
ation, read, update and deletion of time series, as well as other operations. Some
examples of those include the addition and multiplication of series, or other types
of combinations of multiple time series into one, selections of time ranges, filters
of high and low values, and possibly other statistical functions that can be applied
to time series data[1].

Considering the requirements regarding the storage and retrieval of time series,
in a survey from 2017 regarding the type of databases used for storing time series
data 58% of the respondents replied that they used a database engine purposely-
built for time series data, while 42% used other types of database.

1.2.2 Benefits of time series databases

The reasons the majority of the people use TSDB for time series data is because of
the following benefits of TSDB:

2 https:/ /www.investopedia.com /terms/t/timeseries.asp
3Percona, February 2017. https://www.percona.com/blog/2017/02/10/percona-blog-poll-
database-engine-using-store-time-series-data/

1.2. Time series databases 4

1. Scalability

Time series data scales up very quickly, and an effective TSDB is able to store
and analyse continuously growing large data sets of millions of data points.
Relational databases do not perform well on very large datasets, and while
NoSQL databases are designed to perform at scale, their performance can
be improved substantially when the focus is on the time dimension. This
is what is achieved by using time series databases, which are optimised for
dealing with time series data. Improvements are noticeable in the areas of
data compression, ingest rates and speed of queriesﬁ

2. Usability

Time series databases contain numerous useful commands and functions that
are typically applied to time series data: aggregations of time series, range
queries, value filters, continuous queries. The queries are constructed to
provide a good user experience, so they provide value even when the data
scale is not an issue. For these reasons TSDBs are used in a large number
of systems and applications: financial software for trading (e.g. shares, com-
modities), applications collecting web traffic data (e.g. web logs), software
that monitors physical systems (e.g. in data centres to monitor severs, health
systems monitoring the health conditions, IoT devices), business decision
making systems etc.

3. Reduced downtime

The architecture of time series databases ensure availability of data in cases
of hardware break-down or network partitions, in the cases where downtime
is not acceptable.

4. Lower expenses

As explained above, the resiliency of the TSDB means that there will be lower
costs in case of outages. Similarly, scaling is also affordable and efficient by
employing commodity hardware.

5. Better business decisions

By using a time series database, a business is able to analyse data in real time,
allowing them to make informed and timely decisions regarding resources
consumption, systems maintenance or other business-relevant issues.

1.2.3 Properties of time series databases

A performant time series database would have the following properties ﬂ

4 https:/ /blog.timescale.com/what-the-heck-is-time-series-data-and-why-do-i-need-a-time-

series-database-dcf3b1b18563
Shttp:/ /basho.com/resources /time-series-databases/

1.3. Popularity and trends in time series databases 5

1. Data location

When the time series data is located in multiple machines, a TSDB should
be able to co-locate data in related time ranges to the same physical part of
the database so that the query execution will be faster. Otherwise, the data
access will be slower and make the operations inefficient.

2. Fast, easy range queries

Analysing range queries is an important operation for time series data and in
the case of very large data sets many databases would perform very slowly.
A time series database needs to read and write efficiently using the data
location property mentioned above, and the queries should be easy to write
and understand for the users.

3. Data granularity

A TSDB should be able to allow the user to modify the levels of granularity
of the data depending on the business needs, because as time series data gets
old different granularity levels might be needed.

4. High write performance

When dealing with time series data we are considering very large data sets
that pile up fast, therefore the TSDB should have high availability and high
performance for both read and write operations even during peak periods.

1.3 Popularity and trends in time series databases

Considering the benefits of using TSDB in the current context it is not surprising to
see that time series databases have risen greatly in popularity in the last 24 months,
as in figure They are well above the popularity of other types of databases,
with graph databases and key-value stores completing top 3. The popularity has
been almost constantly rising in the past 2 years and the trend seems to continue
like this. Another interesting thing to observe is that the popularity of relational
databases is on a decreasing trend.

In table we can observe the popularity of various time series databases.
Influx DB dominates the list with a constant increase in popularity, while kdb+
is second in the list, with a recent strong growth in usage. While there is indeed
a substantial difference between the popularity of Influx DB and kdb+, the usage
scores confirm the stability of kdb+ as the second most used time series database.

Chart (1.2 shows the evolution of trends of time series databases over the past
5 years. As we can observe, kdb+ has been around for longer than the majority of
the other time series databases, and its popularity has been constantly rising.

The rest of the report will focus on kdb+ as a time series database, detailing fea-
tures, benefits, performance and demonstrating its usage in a financial application
context.

1.3. Popularity and trends in time series databases

Trend of the last 24 months

225

200

150

Popularity Changes

100

75

50

Jan 2017

Apr 2017

Jul 2017

Oct 2017
© 2018, DB-Engines.com

Jan 2018 Apr 2018

Jul 2018

Oct 2018

- Time Series DEMS
-8~ Graph DBEMS
- Key-value stores
¥~ Search engines
RDF stores
=+ Native XML DBMS
- Document stares
- Object oriented DBMS
=& Multivalue DEMS
-+~ Wide column stores
-8 Relational DEMS

Figure 1.1: Line chart displaying the popularity changes in databases trends over the past 24

months (Source: https://db-engines.com/)

Rank
Nov Oct Nov
2018 2018 2017
1. 1. 1.
2. 2. A4
3. 3. 3.
4. 4. Y 2.
5. 5. 5.
6. 6. ANT.
7. 7. 6.

8. 8.
9. S. 8.
10. 10. 9.
11. 11. W 10.
12. A 13. A 14,
13. 12, J11.
14. A~ 16. A~ 15.
15. J 14. A~ 18.

DBMS

InfluxDB &
Kdb+ E3
Graphite
RRDtool
OpenTSDB
Prometheus
Druid
TimescaleDB
KairosDB
eXtremeDB &
Riak TS
Axibase
FaunaDB EJ
GridDB E3
Warp 10

Database Model

Time Series DBMS
Multi-model @

Time Series DBMS
Time Series DBMS
Time Series DBMS
Time Series DBMS
Time Series DBMS
Time Series DBMS
Time Series DBMS
Multi-model @

Time Series DBMS
Time Series DBMS
Multi-model @

Multi-model

Time Series DBMS

Score

MNowv
2018

13.64
4.84
2.85
2.73
2.02
1.95
1.36
0.54
0.49
0.30
0.27
0.21
0.21
0.17
0.14

Oct
2018

+0.66
+0.47
+0.04
+0.05
+0.07
+0.24
+0.04

-0.03

-0.05
+0.00

-0.02
+0.04
+0.02
+0.06
+0.02

Nov
2017

+4.30
+2.99

-0.01

-0.47
+0.32
+1.14
+0.38

+0.02
+0.00
+0.06
+0.12
+0.04
+0.08
+0.09

Figure 1.2: Table displaying the current popularity scores and ranks of time series databases,
as well as their scores and ranks in the previous month and previous year (Source: https://db-

engines.com/)

1.3. Popularity and trends in time series databases 7

DB-Engines Ranking of Time Series DBMS
- InfluxDB
-+ Kdb=
0 Craphite
RRDtool
¥ OpenTSDB
-# Prometheus
Druid
& TimescaleDB
- KairosDB
eXtremeDB
-#- Riak TS
-+ Axibase
FaunaDB
CridDB

0.1 =+ Warp 10

Score (logarithmic scale)

0.001 © November 2018, DB-Engines.com
2013 2014 2015 2016 2007 2018

Figure 1.3: Chart displaying the change in popularity of time series databases over the past 5 years
(Source: https:/ /db-engines.com/)

Chapter 2
kdb+ database

Last chapter briefly introduced the time-series database technology which is needed
to follow this report. This chapter is going to explain about one of the very popu-
lar time-series database called, kdb+ along with it’s powerful and expressive query
language called, Q. Due to its high demand in the market it has been a topic of
interest and leading time-series database technology in almost all major financial
institution.

2.1 General features

Through this section, we are going to explore some basic features of kdb+ database
and q query language. kdb+ is a commercial column-based relational time-series
database with in-memory abilities. The column-based database architecture is
primarily useful when performing aggregate queries like, sum, count, avg etc.
Backing up this database, is it's Q query language. According to it’s developers
[4], the primary design objectives of Q are efficiency, speed and expressiveness.

Few key features of kdb+ are as follows:

* Column-oriented : The tables in kdb+ are stored as columns and applies
an operation to an entire column vector. This is specially useful when you
have billions of records and want to aggregate based on columns which is a
general case in financial data analysis.

* In Memory database : One of the important features that give speed to kdb+
is it’s in memory storage and manipulation of the data. Since the tables are
stored in memory and data manipulation is performed in memory with Q,
there is no need for stored procedure language. In memory storage makes it
really fast but it requires a lot of RAM which is no longer a major problem
as servers with high RAM are now inexpensive.

* Ordered lists : In kdb+ database, all the rows are stored in a specific order as
ordered lists are the foundation of all data structures. This makes processing
the large amount of data very fast and efficient.

8

2.2. Architecture 9

2.2

Architecture

Kdb+ is a high-performance, high-volume database designed to handle vast mil-
lions and billions of records of data. Kdb+ architecture allows capturing and pro-
cessing of real-time, statistical and historical data. It runs on Windows, MacOS,
Linux, and Solaris 32 64-bit server platforms and has wide range of possibility of
storage architecture consisting of, local disks, In memory RAM, SANs and NAS

[4].

Example of a typical kdb+ architecture in a financial trading application:

The data from companies like, Bloomberg etc. or directly from Exchange is
fed to the Ticker plant.

Before Ticker plant start it execution, the data from Exchange is parsed by
Feed Handler in order to get the relevant data for Ticker plant to process.

In order to provide recovery management support, the ticker plant first stores
the data in Logfiles and then updates its own tables.

After the data has been stored in logfiles and updated in the ticker plant
tables, it is sent/published to the real-time database and sent to subscribers
who asked for it.

At the end of certain time period typically, a business day all the data from
the real-time database is transferred to historical database. After the data
is saved to historical database, all the tables are deleted from the real-time
database.

Simple API interfaces in various languages (C/C++, Java, Python, R etc.)
make for easy connectivity to external reporting, graphing and visualization
of data for analysis purposes.

The architecture also supports large-scale distributed architectures such as
cloud.

The kdb+ supports scalability, security, high-availability fail-over, transaction
logging and accessibility.

2.3. Overview of Q language 10

Ticker Real-time
1 plant database
(pub/sub) Streaming
queries

e 4 e
Logfile

Historical
database

Aggregations
Algos
Analytics
Filters

Events

Reference data

pub/ TE—— query/
sub result

Applications/APls

- Algos - Monitoring
Orders + Compliance * Order Management

Figure 2.1: Typical kdb+ architecture in financial trading application.

2.3 Overview of Q language

Q is the programming language to work with kdb+ database. It is because of
this interpreted language support that the retrieval and manipulation of data is
significantly faster. Q expressions can be entered and executed in the q console, or
loaded into the q script, which is a text file with extension .q

It is a vector-based processing language and due to this feature, it is well suited
to perform complex calculations on large volumes of data with less overhead. It’s
syntax allow the select expressions and also, contain a rich super-set of built-in
functions for easy processing.

2.3.1 Key features

¢ Interpreted : Q is interpreted rather than compiled. All the data functions
and queries live on the main memory.

¢ Evaluation order : Expressions are evaluated from right-to-left meaning that,
functions and operator to the left executes on what is to the right of it. This
means that parenthesis are rarely needed to resolve operation order as there
is no operator precedence.

* Types : It is a strongly typed language. There is no explicit declaration of
variables rather, the type of variable name reflects the value assigned to it.

* Null Values : In Q, different types have different Null values. Arithmetic
operations can involve infinite and null values in order to produce result.

2.3. Overview of Q language 11

* Built-in Time data types : As Q have built-in time data types support, it is
highly optimized for time-series analysis operations.

* Support for SQL queries : Q support a lot of database queries which are
similar to SQL counterparts to provide the backward compatibility with SQL
query paradigm.

* Quick reflexivity : It provides a quick immediate robust feedback for faster
development and testing purposes.

2.3.2 Basic CRUD operations

As tables form the basis of kdb+ database and are considered the most important
data structure to store and manipulate data. So, will apply CRUD (create, read,
update and delete) operations on table data structure.

* Create
Creating table is very straight forward process in kdb+ database. As kdb+ is
a key-value store so, we specify the key for each column of table and their
specific values are followed by the key.The columns must be of the same length.
person:([] firstname: Micheal * Karl * Bobby *Woddy; lastname: " Jordan *Marx"

Deol*Woodland; age:"23°45°12°34; salary:"2000°6000°4500°4000;
sex: F"M F'M)

gq)person:([]firstname: 'Micheal Karl Bobby Woody;lastname: Jordan Marx Deol Woodl
and;age: 23 45 12 34; salary:2000 6000 4500 4000; sex: F'M'F'M)

q)person

firstname lastname age salary sex

Jordan

Marx 6000
Deol 4500
Woodland 34 4000

Figure 2.2: Create (operation) the person table

* Read
Reading is performed simply by using select statement on the table.

select sex,firstname, lastname, salary from person where age<30

g)select sex,firstname, lastname, salary from person where age<30
sex firstname lastname salary

Micheal Jordan 3000
Bobby Deol 4500

Figure 2.3: Read (operation) from person table

e Update
Update operation will modify some rows or add additional column to the

2.4. Installation and Dev environment setup 12

table and will return the resulting modified table. The update query is very
similar to the select query.

person:update salary:salary+1000 from person where firstname in
Micheal " Steve

g)person:update salary:salary+1000 from person where firstname in “Micheal Steve
g)person
firstname lastname age salary sex

Jordan

Marx 6000
Deol 4500
Woodland 34 4000

Figure 2.4: Update (operation) on person table

* Delete
Delete operation is also similar to one in sql. It deletes some rows or the
whole column from the kdb+ database.

person:delete from person where firstname in Bobby
person:delete age from person

g)person:delete from person where firstname in “Bobby
gq)person
firstname lastname age salary sex

Jordan 23 3000
Marx 45 6000
Woodland 34 4000

Figure 2.5: Delete (operation) a particular row value from person table

g)person:delete age from person
gq)person
firstname lastname salary sex

Jordan 3000
Marx 6000
Woodland 4000

Figure 2.6: Delete (operation) a column from person table

2.4 Installation and Dev environment setup

The installation and development environment setup process of kdb+ is pretty
straight forward. Although kdb+ is a commercial software, they still have 32-bit
version available to download for trial purpose for almost all major OS’s including,
linux, Windows, MacOS etc.

2.4. Installation and Dev environment setup 13

e Download the 32-bit trial verison from Kx websitell]

» After downloading, if necessary, unzip the archive. A new folder named q
will appear in the Downloads folder.

* Once downloaded, open the terminal and write following commands to run
kdb+.

[kunalarora®@Kunals—MacBook-Pro ~ $ cd Downloads/

[kunalarora®Kunals—-MacBook-Pro Downloads $ cd q

[kunalarora®Kunals—-MacBook-Pro q $ 1s

README. txt q.k s.k trade.q

m32 q.q sp.q

[kunalarora®Kunals—-MacBook-Pro q $ m32/q

KDB+ 3.6 2018.10.23 Copyright (C) 1993-2018 Kx Systems

m32/ 4()core 8192MB kunalarora kunals—-macbook-pro.local 192.168.0.100 NONEXPIRE

Welcome to kdb+ 32bit edition

For support please see http://groups.google.com/d/forum/personal-kdbplus
Tutorials can be found at http://code.kx.com

To exit, type \\

To remove this startup msg, edit g.q

q)ll

Figure 2.7: Launching kdb+ in terminal

e Try to play around with q commands to ensure that kdb+ is successfully
installed and running. See the below screen for some examples.

kunalarora@Kunals-MacBook-Pro q $ fi

Figure 2.8: Confirm successful installation

* To exit from kdb+ session, type \\
* This confirms that 32-bit version is successfully installed and setup locally.

* To install and download the 64-bit kdb+ version, you need to obtain the
licence key from Kx Systems websiteE|

1h’ctps: / /kx.com/download/
Zhttps:/ /code.kx.com/q/tutorials/licensing /

2.5. Performance characteristics 14

2.5 Performance characteristics

Kdb+ can be efficiently used for both real time and historical data, offering a much
better performance than other competitive databases (as shown in next section). It
deals with the whole process composed of capturing the data, storing it, analysing
it, etc, thus getting rid of the latency of performing these steps separately [4].

Kx Systems documents the following performance features[4]:

* Efficient join and indexing: its columnar setup ensures much faster search

* Fast time series ordered queries: being built for time series data, time ordered
analysis is dramatically fast

* Distributed queries: it offers support for the queries to be be efficiently par-
allellized across multiple cores/systems due to its 64-bit architecture

e No limit on the number of clients: it uses chained servers to distribute the
processing from the main server via publish-subscribe mechanisms

e Efficient for real time data: due to dynamic indexes

* Efficient for historical data: can easily handle trillions of records in historical
databases

2.6 Performance benchmark

Kparc.com [2] has realized a performance benchmark for kdb+ and comparison
with various other databases.

Experiment data: The data on which the experiments were performed is NYSE
data, whose original data sets consist of: 65 billion trades and 1.1 trillion quotes,
that being 100TB of data over 5000 days.

Databases considered: There were various databases that were bench-marked
in this experiment, together with q. The databases were either column-store: ver-
tical, big3accel, hadoop/impala, greenplum or row-store: postgres, big3rdbms,
mongodb, spark.

Queries: 4 classic queries were used for the comparison: queries ql, g2, and
g3 containing aggregations on top 100 symbols S (which is 25% of data), and q4
being an asof-join (where price is less than the current bid).

The queries run were the following ﬂ The q version:

S:100# first flip idesc select count i by sym from trade where date=d
Q1l: select last bid by sym from quote where date=d,sym in S
Q2: select max price by sym,ex from trade where date=d,sym in S
(Q3: select avg size by sym,time.hh from trade where date=d,sym in S
Q4: select time,price,bid from aj[time;select time, price from trade

where date=d,sym="QQQ; select time,bid from quote where date=d,sym="
Q] where price<bid

Shttp:/ /kparc.com/q4/q4.txt

2.6. Performance benchmark 15

And the correspondent sql version:

create table S(sym char(4));insert into S select sym from trade where
date=d group by sym order by count(x) desc fetch first 100 rows only

Q1l: select sym,last(bid) from quote natural join S where date=d group by
sym;

Q2: select sym,ex,max(price) from trade natural join S where date=d
group by sym,ex;

Q3: select sym,hour(time) ,avg(size) from trade natural join S where date
=d group by sym, hour(time);

Q4: select = from (select time,price ,sym from trade where date=d and sym
= Q) t
left outer join (select time,bbid,sym from quote where date=d and sym
=QQ) q
on q.time=(select max(time) from q where time<=t.time and sym="QQQ)
where price<bid;

Experiment conditions: The machine on which the queries were performed
had 16 cores and 256 GB RAM. It is also important to mention that the data con-
tained partition on date, index on symbol and all queries were cached in RAM (no
disk access).

Experiments: There were 3 different experiments run, on datasets of various
sizes: 40 million rows, 640 million rows and 10 billion rows as we can see in tables

2.9 and

SMALL day (48Million rows) times in milliseconds.

Q1 Q2 Q3 Q4 RAM(GE) ETL DSK(GB)
q 17 12 36 3 .2 49 1.8
COLSTORE
vertical 5ee 148 15@ 3900 2.1 52 .5
greenplum 4608 188 200 DNF 5.5 73 4.6
impala AB00 1198 leeo DNF 4.0 22 .3
big3accel 4200 1689 2300 DNF 3.4 20 1.8
ROWSTORE
postgres 71lee 1588 1500 DNF 1.5 200 4.8
big3rdbms 6480 2209 3100 DNF 5.8 60 2.8
mongodb 89ee 1768 5800 DNF 9.8 922 1.8
spark/shark 340008 7489 8400 DNF 50.0 156 2.4

Figure 2.9: Experiment 1 and its results

Observations: for ETL there are seconds to load, and DNF represents ‘Did Not
Finish’. The overhead is milliseconds for fast queries.

Conclusions: For these tasks of time series data analytics, q has a much better
performance than all the databases benchmarked. The results depends on the
queries, but in the case of the smaller table of 40 mil rows, in general, q is 10+
times faster than the column store databases, and 100+ times faster than the row
store databases. Moreover, q has a much lower overhead (10-1000 times faster).
It also uses 10 times less RAM, and it has better locality as it uses less SSD and

2.7. Which industry is using kdb+ software the most? 16

SCALE UP (B48Million rows: 1 big day)

q 250 33 138 29
impala 45000 2258 1880 DNF
greenplum 56000 989 10806 DNF

SCALE QUT (18Billicn rows: 16 big days)

q 320 78 188 70
impala laaeeeen 15068 27608 DNF

Figure 2.10: Experiments 2 and 3 and their results

disk space. In table we can see that q also scales much better (than impala for
example, whose performance decreases dramatically over much larger datasets).
In general, most databases perform poorly on Q1 and cannot complete Q4.

2.7 Which industry is using kdb+ software the most?

Kdb+ software is highly used by companies all over the world but due to it’s abil-
ity of storing and manipulating tick data efficiently, financial companies use this
software to solve their complex statistical and financial problems and day-to-day
analysis.

Example of companies which are leading the financial market that are highly de-
pendent on using kdb+ as their enterprise wide tick storage system:

* JP Morgan Chase and Co.

Bank of America

Barclays Capital

* Morgan Stanley group incorporation

Bank of Tokyo-Mitsubishi UFJ Itd.

The Royal Bank of Scotland

2.7.1 Use-case scenario of kdb+ of 3 major companies

Below are the major projects with slight description of three different financial
tirms which are using kdb+ to enhance their work force and make better analy-
sis.[5]
Barclays Capital

* Project name: BATS (Barclays Algorithmic Trading System)

* Description: Distributed multi-server kdb-+tick like setup, with support for
multiple asset classes, credit, FX, fixed income.

2.8. Kdb+ weakness 17

Morgan Stanley
* Project name: Horizon

* Description: The Horizon system provides a holistic time series infrastruc-
ture using a single database technology, KDB+/Q, with consistent tools for
data acquisition/loading, data quality, and production support that covers a
broad range of asset classes, data types, and frequencies that meet current
and future trading, analytical and operational needs for all MS users.

JPMorgan Chase and Co.
* Project name: TicDB

* Description: TicDB captures and stores market data for equities /futures in all
markets across the globe, efficient access is made available to clients globally
and real time and historical analytics are provided.

2.8 Kdb+ weakness

As it’s very clear by now that kdb+ database has high demand in the financial insti-
tutions and reliable as it is backed by Kx systems and out in the market for almost
20 years. The performance has been impeccable as compared to other Time-series
databases for even very large data sets. Given that, every database/technology
have their pros and cons depending on the kind of problem we are dealing with.
This section will explore some of the weaknesses of kdb+ database.

e Hard to read: Through q language support it becomes really easy to write
short script for complex problems which is good. But it makes the code look
very cryptic, which are very difficult to maintain and understand.

¢ Steep learning curve: Although q language use same semantics of SQL but,
it could be really hard to learn it in the beginning and write efficient code.

* Costly: As kdb+ is a commercial software, for small scale companies it could
be costly to purchase when compared with, taking the full advantage of the
software.

Chapter 3

Application using kdb+ and q

In this chapter we will present how the kdb+ database and its own language, g, can
be used in real life scenarios when dealing with financial data. In this scenario we
are focusing on the analysis of share trades of certain companies and the queries
that could potentially be applied in the case of this analysis.

3.1 Data Generation

One important thing about q is that it makes it easy to generate datasets with
certain characteristics, which can be useful in the cases when you want to run
experiments, to benchmark etc. In our scenario we decided to generate data as
it is relatively hard to find open data of the nature that we wanted: volumes of
shares of trades for certain companies at the specific time when they happened.
The majority of the datasets regarding share prices and trades have a much higher
granularity (e.g. day level), present only the selling prices or are not for free.

The data we will generate will have the following format: will contain the date,
the time in 24h format, the company ticker, the volume of shares traded and the
price at which the shares were bought. Our generation of the data will work by
generating each column separately and then combining them into a table. In q we
are using the ’list” data type to generate data.

We start by generating one million of dates in November 2018:

dates:2018.11.01+1000000?30
Now let’s generate 1 million time points in the 24h format:
times:1000000?24:00:00.000000000

We generate next 1 million company tickers/symbols for Microsoft (MSFT),
Facebook (FB) and Apple (AAPL):

symbols:1000000? " msft " fb “aapl

We continue by generating the volumes of the transactions for the 1 million
data points, which will be multiples of 10:

volumes:10%1+1000000?1000

18

3.1. Data Generation 19

Lastly, we generate the share prices at the transactions times. Considering the
generated dates, the price of a MSFT share was around 100$. We are going to
uniformly distribute the prices within 10% of 100, and we are going to update the
prices for the other companies later :

prices:90.0+(1000000?2001) %100

The results in the console look like this:

Figure 3.1: The generation of trades data in lists

After the data was generated, we now combine the lists into a table:

trades :([] date:dates; time:times; symbol:symbols; volume:volumes; price:
prices)

Figure 3.2: Generation of trades table

As we can see, the trades are not ordered. That can be done very easily:

trades: date time xasc trades

3.1. Data Generation

20

Let’s inspect the table again:

Figure 3.3: Ordering of the trades by date and by time

A few more updates and the table will be ready and resemble more the real life
data. We have to update the share prices of Facebook and Apple. At the beginning
of November 2018, a Facebook share was traded for about 150$ and an Apple one
for about 200$. We update the values in the table as follows:

trades:update price:1.5*price from trades where symbol="fb
trades:update price:2+price from trades where symbol="aapl

Finally, the generated data looks like this:

Figure 3.4: Final table after share price updates

In order to ensure that the data was generated correctly, we can do some sanity
checks for the "price’ and "volume’ columns. If we take the averages, minimum
and maximum values of these columns by symbols, they should correspond to the
parameters we passed during the data generation step:

select avg price, avg volume by symbol from trades
select min price, max price by symbol from trades

Indeed, they do:

Figure 3.5: The values correspond to our data generation and data update queries

3.2. Queries 21

3.2 Queries

Queries in q are, in general, similar in syntax with SQL, which makes them easy
to learn. At the same time, they are simpler, shorter and more powerful, extending
the capabilities of sql with features useful for time series data [3].

For example, a select q query would normally have the following syntax:

select [coll] [by col2] from tbl [where cond]

While the SQL equivalent would be something like:
select [col2] [coll] from tbl [where cond] [group by col2 order by col2]

3.2.1 Basic queries with constraints

1. Return all Facebook trades

select from trades where symbol in fb

e5 uWwnere sSymoo

Figure 3.6: Query 1 and its result

2. Return all Facebook trades on a particular date
Another interesting feature of q is the declaration of variables, which can be
later used inside queries:

dt: 2018.11.05
select from trades where date=dt,symbol="fb

Figure 3.7: Query 2 and its result

3. Return all Facebook trades with a share price between 145 and 155
select from trades where symbol="fb, price > 145.0, price < 155.0

4. Return all Facebook trades between 19.00 and 19.10, in the evening, on a
particular day

3.2. Queries 22

Figure 3.8: Query 3 and its result

select from trades where date = 2018.11.05, symbol = “fb, time >
19:00:00.000,time < 19:10:00.000

Figure 3.9: Query 4 and its result

5. Return all Facebook trades in ascending order of price within a certain time
period

“price xasc select from trades where date within 2018.11.10
2018.11.13, symbol ="fb

symbol ="fb

Figure 3.10: Query 5 and its result

6. Return all Facebook or Apple trades

select from trades where symbol in “fbaapl

7. Calculate count of all symbols within a certain time period and order de-
scendingly

‘numsymbol xdesc select numsymbol: count i by symbol from trades
where date within 2018.11.10 2018.11.13

8. Find the maximum price of a Facebook share within a time period, and when
this first happen

3.2. Queries 23

es where symbol in ~fb aapl
volume price

Figure 3.12: Query 7 and its result

select date, time,price from trades where date within 2018.11.10
2018.11.13, symbol ="fb, price= exec first price from select max
price from trades where symbol ="fb

e within 2
price from

Figure 3.13: Query 8 and its result

9. Select the last price for each symbol in hourly buckets

select last price by hour:time.hh, symbol from trades

trom trades

Figure 3.14: Query 9 and its result

3.2.2 Aggregate queries on trades table

1. Calculate daily high, low, open and close price for a particular symbol in a
certain month.

3.2. Queries 24

select high:max price, low:min price, open:first price, close:
last price by date from trades where date.month=2018.11m,symbol

="appl

g)select high:max price, low:min price, open:first price, close:last price by dat
e from trades where date.month=2018.11m,symbol="appl
open close

218.
218.
197.
192.
204,
207.
181.
215.
199.
187.
212.
201.
195.
191.
192.
206.
188.
190.
198.

Figure 3.15: Query 10 and its result

2. Calculate the Volume Weighted Average price of all the symbols.

select vmap:volume wavg price by symbol from trades

q)select vmap:volume wavg price by symbol from trades
symbol| vmap

199.9619
150.0143
100.0069

Figure 3.16: Query 11 and its result

3. Daily traded values for all symbols in a certain month

select dtv:sum volume by date,symbol from trades where date.
month=2018.11m

3.2. Queries

25

g)select dtv:sum volume by date,symbol from trades where date.month=2018.11m
symbol |

55332880
5579997¢@
55415280
56539250
54751850
56217470
55634320
56096450
56219130
56086670
54937500
55974920
55213990
55134480
56939390
54781110
55116470
55054210
56112730
5491917@

Figure 3.17: Query 12 and its result

4. Calculate the price range in hourly brackets

select range:max price — min price by date,symbol, hour:time.hh
from trades

g)select range:max price — min price by date,symbol,hour:time.hh from trades
symbol hour| range

appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl
appl

Figure 3.18: Query 13 and its results

3.3. Comparative Queries (q-SQL vs SQL) 26

5. Calculate the hourly mean, variance and standard deviation of price for Ap-
ple

select mean:avg price, variance:var price, stdDev:dev price by
date, hour:time.hh from trades where symbol="appl

q)select mean:avg price, variance:var price, stdDev:dev price by date, hour:time.
hh from trades where symbol="appl
hour| mean variance stdDev

Figure 3.19: Query 14 and its result

3.3 Comparative Queries (q-SQL vs SQL)

This section compares syntax difference between g-SQL and SQL. It also
shows how efficient and expressive q-SQL script is to query simple logic
of manipulating data. We will show this syntactical difference over three
different queries.

Queries dependent on order
Consider the below table stored in mysql and kdb+ database. We need to
find the price change between consecutive rows.

3.3. Comparative Queries (q-SQL vs SQL)

time | price
07:00 | 0.9
08:30 | 1.5
09:59 | 1.9
10:00 | 2
12:00 | 9

Table 3.1: Example table

* q-SQL

update change:price—prev price from a

e SOL

select a.time, b.price —(select a.price from tab a where a.id

b.id + 1)as diff from tab b

The resulting table is as shown below.

time | price | change

07:00 | 0.9
08:30 | 1.5
09:59 | 1.9
10:00 2
12:00 9

0.6

0.4

0.1
7

Table 3.2: Resulting table

Select top N by category

27

Given a table of stock trade prices at various times today, find the top two

trade prices for each ticker. Consider the table as shown below.

time | sym | price
09:00 | a 80
09:03 | b 10
09:05 | ¢ 30
09:10 | a 85
09:20 | a 75
09:30 | b 13
0940 | b 14

Table 3.3: Stock trade table

* q-SQL

select 2 sublist desc price by sym from trade

3.3. Comparative Queries (q-SQL vs SQL)

e SOL

SELECT sym, price FROM (
SELECT
ROW_NUMBER() OVER (PARTITION BY sym ORDER BY
price DESC) AS 'RowNumber',
sym, price FROM trade
) dt WHERE RowNumber <= 2

The resulting table is as shown below.

sym | price
85
80
14
13
30

N T T o o

Table 3.4: Resulting table

28

Conclusion

This report presented an introduction into time series data and time series databases,
with a focus on kdb+. It started by discussing time series data, where it showed
how widely used it was, from the evolution of commodities, to data centre mea-
surements or web event streams. Its popularity was explained by its many benefits
offered through analysis or forecasting. However, due to the characteristics of this
type of data, a suitable database technology had to be implemented: time series
databases. The report offered then an introduction into these systems, explaining
their features, mainly scalability and usability. TSDBs were shown to have had
the highest increase in popularity out of all types of databases, with InfluxDB and
Kdb+ topping the trend chart.

Furthermore, the report described and analysed the kdb+ database. It showed
the database’s main features, such as being column oriented and in-memory. It
also described its architecture, together with its own programming language, q,
and g-sql like CRUD operations. An important section was focused on the perfor-
mance and benchmark of kdb+ with other databases, the main reasons that explain
its popularity, especially in the financial sector. It offers very high performance due
to its architecture, being suitable for both real time and historical data.

The last chapter of the report described the implementation of an application in
a financial context, related to stock trading. It therefore demonstrated the usability
of kdb+ in this sector, through various queries that could be used in the real-life
situation. They were also useful to observe the simplicity of q and g-sql over
general sql, as well as its higher power and ease of use in certain contexts.

29

Bibliography

[1] Ted Dunning and Ellen Friedman. “Time series databases”. In: New Ways to
Store and Access data (2015).

[2] Performance benchmark for q. http://kparc.com/q4/readme . txt. Accessed:
2018-12-11.

[3] Q language queries. https://www.tutorialspoint.com/kdbplus/q_language_
queries.htm. Accessed: 2018-12-11.

[4] Kx Systems. The 21st Century Time-series Database. Tech. rep. Kx Systems, 2010.

[5] TimeStored.com. Who use’s kdb+? What is kdb+ used for? http://www.timestored.
com/kdb-guides/who-uses-kdb. Accessed: 2016.

30

http://kparc.com/q4/readme.txt
https://www.tutorialspoint.com/kdbplus/q_language_queries.htm
https://www.tutorialspoint.com/kdbplus/q_language_queries.htm
http://www.timestored.com/kdb-guides/who-uses-kdb
http://www.timestored.com/kdb-guides/who-uses-kdb

	Front page
	English title page
	Contents
	Introduction
	1 Time-series Database Fundamentals
	1.1 Time series data
	1.1.1 Definition
	1.1.2 Examples of time series data
	1.1.3 Use of time series data

	1.2 Time series databases
	1.2.1 Definition
	1.2.2 Benefits of time series databases
	1.2.3 Properties of time series databases

	1.3 Popularity and trends in time series databases

	2 kdb+ database
	2.1 General features
	2.2 Architecture
	2.3 Overview of Q language
	2.3.1 Key features
	2.3.2 Basic CRUD operations

	2.4 Installation and Dev environment setup
	2.5 Performance characteristics
	2.6 Performance benchmark
	2.7 Which industry is using kdb+ software the most?
	2.7.1 Use-case scenario of kdb+ of 3 major companies

	2.8 Kdb+ weakness

	3 Application using kdb+ and q
	3.1 Data Generation
	3.2 Queries
	3.2.1 Basic queries with constraints
	3.2.2 Aggregate queries on trades table

	3.3 Comparative Queries (q-SQL vs SQL)

	Conclusion
	Bibliography

