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1 Background

1.1 From centralized to distributed databases

Databases technologies were developed due to a data integration necessity for
applications, when local storage started being a restriction and non-viable. The
earliest versions of this databases were developed under the centralized schema,
considering the limitations regarding hardware and technology. Therefore, cen-
tralization is an ease on the implementation and a physical restriction, but not a
principle of databases design. A database technology objective is the integration
of data, not the centralization of it [1].

Nowadays, computers are highly accessible, networks support multiple types
of technologies and heavy loads within a small time-frame. Moreover, databases
started to face challenges such as volume and velocity where an individual pro-
cessing entity have not been able to cope with, and, increasing the capabilities
beyond the needs, is no longer an option by economic and hardware restrictions.

Considering the needs of the new data world and still following the inte-
gration principle, distributed databases are born as an alternative to face those
challenges. Resources scalability stopped being a problem of single unit power
and became a challenge of a divide and conquer paradigm where most of the
challenges reside in the logic.

Even though the main centralized databases restrictions were overcome by
distributed databases, a trade off was expected. The abstraction required to keep
a similar interaction to centralized databases puts lots of effort on implementa-
tion and development tasks; reaching new challenges on networks, security, and
general transparency of data.
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1.2 Role of distributed databases in cloud based systems

Cloud based systems have gained strength over the last years due to the flex-
ibility and accessibility. Developing and deploying applications to the cloud is
available to everyone. Platforms such as Amazon Web Services or Google Cloud
Computing are just some examples where any user can deploy and scale its
system.

Still, considering the architecture design of the cloud and its paradigm, dis-
tributed databases have played an important role.

2 Distributed databases

Even tough distributed databases keep the basic functionality of any type of
database, they face concerns specific of their implementation and most of the
differences relay on the following promises:

– Data independence: On a distributed database, the data may be fragmented
into several parts, replicated and distributed. This means that data logic
structure should not affect the data retrieval (logic independence) and the
storage structure neither should affect the upper layers (physical indepen-
dence).

– Transparency: There exists a separation of the implementation layers. The
goal is that a query should not care about fragmentation, replication or
location of the data. Even though, there exists several levels of transparency
that affects the upper levels and the queries:
• Network transparency: This layer is entirely a responsibility of the Dis-

tributed Database Management System(DDBMS), so it should be shielded
the same way the data is. This means location or object naming should
be careless to the user as it should work the same way as a centralized
database works.

• Replication transparency: Due to performance, reliability and availabil-
ity, it is usual to replicate data among nodes, but this means managing
the replication without the user knowing the data has copies.

• Fragmentation transparency: The network also needs to translate a global
query to a fragment query. Within this scenario a horizontal fragmen-
tation splits the data by sub-relations such as tuples, and a vertical
fragmentation splits by attributes, such as columns; but the user only
cares about the conceptual model of the data.

As the figure 1 shows, data is covered by abstraction layers that cover all the
promises on a DDBMS. The closer a promise is to the data, the more important
the abstraction is, as the implementation is more related to the distributed
schema and worthless to expose to the user. The outer the promise, the more
valuable it can be to the user and the less the DDBMS is willing to take care of
it. As an example, a user can take care of the network, but knowing the internal
network and all the protocols is more work to the user and almost no value
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Fig. 1. Promises of a Distributed Database Management System.[1]

shown. On the other hand, a user may want to specify how fragmentation and
replication will work, as the user know the environment, the user can optimize
how many replicas, where should the replicas be stored and even how to fragment
the data; as it may be geographically closer, for example.

To summarize this section, we will provide the formal definition of defining
two critical terms, along with a graphic representation of the typical topology
of a distributed database.

– Distributed database: collection of multiple, logically interrelated databases
distributed over a computer network.[1]

– Distributed database management system: software system that permits the
management of the distributed database and makes the distribution trans-
parent to the users.[1]

Fig. 2. Distributed database topology example.[1]
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2.1 Data independence

Data independence is the concept responsible for the creation of DBMSS. Before,
each application had to understand and manage their own data, then, store it
in a safe repository. This did not only mean that application development was
more complex, but it limited resource sharing because of possible heterogeneous
physical and logical structures. In order to relieve applications from the burden
of data management and to make all data standardized (at least in a single site),
centralized DBMS were created. In this new model, even if the physical or logical
structure of the data is modified in a DBMS, all applications consuming its data
will continue to function properly without the need to perform modifications.

Fig. 3. Transition to data independent model.[6]

Centralized DBMS have inherently the same physical structure for all data it
contains, and the logical structure (schemas and mappings, among other infor-
mation) is stored in a data directory. However, on a DDBMS different sites may
be both physically and logically diverse. Physical structure is of no relevance to
us, since each DBMS is able to manage it independently, but there should be a
logical structure that pertains to the whole DDBMS; the global directory. The
global directory must have the schema and mappings for information on all of
its sites. This directory can be centrally stored in one site or distributed over all
sites, each with its own drawbacks. Centrally stored directories will have to deal
a bottle-neck of access to them, while looking for data on a distributed directory
would be inefficient. This global directory could also be replicated throughout
sites, but then maintaining all copies up to date would be more difficult.

2.2 Replication transparency

Distributed databases are usually replicated because of the many advantages
related to it. First off, since data is replicated, if a one or several sites are down,
data can be accessed in other sites, thus improving system availability. Second,
since communication costs should now be considered during query optimization,
placing data closer to the sites that will require it will significantly improve the
DDBMS performance. Finally, since systems tend to grow in terms of sites (eg.
a company opening a new operations hub) and transactions, data replication
allows to maintain performance standards regarding response times.

As we can see, replication of data has several benefits, but keeping all copies
up to date and consistent can be a challenge. The DBMS should be capable
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of replicating all modifications done to the data to all copies throughout the
system; the number of transactions will therefore depend on whether or not a
system is partially of fully replicated. Depending on the DDBMS architecture,
updates could be performed either only in the master copy or on distributed
copies. Another aspect of the architecture that must be considered is the update
propagation, which, according to literature, can be eager or lazy. The former
performs updates on all copies before the transaction commits, while the latter
updates the information after the transaction commits. Regardless of the con-
figuration, the database is never considered mutually consistent until all copies
of all data elements contain the same values.

2.3 Fragmentation transparency

Fragmentation transparency ensures that the user is not aware of and is not
involved in the fragmentation of the data [6]. Fragmentation, along with data
replication, are cornerstone to having concurrent transactions and parallel exe-
cution in a DDBMS, thus improving performance and availability of the data.

However, deciding whether or not, or to at what degree you should imple-
ment fragmentation is not a simple decision. If data is not fragmented enough,
operations over such fragment would be more expensive, while having overly
fragmented data would affect performance by complicating fragment retrieval
and integrity checks.

Before describing the three different typed of fragmentation, we will like
to state the three rules of fragmentation. One, every tuple should be in one
fragment of the original relation, this way data is not lost and the fragmentation
is complete. Two, it should be possible to reconstruct the original relation by
joining all of its fragments. And three, no tuple should be repeated in the same
or any other fragment. These three rules will ensure the integrity of the original
relation, regardless of the type of fragmentation implemented.

There are three different types of fragmentation: horizontal, vertical and hy-
brid as depicted in figure 4. Horizontal fragmentation means that a relation is go-
ing to be split by tuples; Vertical fragmentation means that a relation is going to
be split by relation attributes or columns; lastly, hybrid is the nested implemen-
tation of the previous. While horizontal fragmentation is quite straightforward
and usually done through the selection of one attribute, vertical fragmentation
requires the implementation of heuristics to determine which attributes should
be split (since the number of combinations grows exponentially). It should also
be noted that while doing a vertical fragmentation, one must always repeat the
primary key attribute in every resulting fragment.

2.4 Query processing

Non-procedural languages like SQL allow users to access and manipulate data
in a simple manner. This is partly possible because the query processor is able
to transform such query into an optimal procedure utilizing information about
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Fig. 4. Fragmentation types.

data. In DDBMS, it is even more complicated since one has to take other param-
eters into consideration, particularly associated with fragmentation, replication
and network related costs of communication. Thus in a DDBMS the cost to be
minimized must not only consider I/Os and CPUs, but communication costs as
well. In order to understand how query processing is done, we will follow the 4
step methodology proposed by Tamer and Valduriez, where the first 3 steps are
done by the control site and the fourth is done in local sites.

1. Query decomposition: the original query is translated into algebraic query
in the same way as it is done in a centralized DBMS, utilizing the DDBMSs
global schema as if it was not distributed. This means that it has to be
normalized, analyzed, simplified and restructured while optimizing by I/Os
and CPUs.

2. Data localization: in this step we determine all involved fragments of rela-
tions by means of from the fragment schema. This is done by substituting
each relation by its reconstruction program, then it is again simplified and
restructured.

3. Global optimization: it receives algebraic queries on fragments and finds the
best order of operators that minimizes the cost function based on statistics,
cost formulas and communication costs to the relevant sites (it is no longer
the case when communication costs took longer than I/Os). Figure 5 shows
an illustrative example of two possible executions plans that take into con-
sideration communication costs and differences in computing capabilities.

4. Distributed execution: the control site then sends all transactions to the
corresponding sites so they can execute the operations on fragments and
return the corresponding results.
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Fig. 5. Query execution plans.

In case that the DDBMS is composed of heterogeneous DBMSs, a different
process is needed since each DBMS will have different computing and optimiza-
tion capabilities, processing costs possibly different languages. Another factor to
consider is that individual DBMSs are fully autonomous and have no concept
of cooperation [7]. In this case, a mediator site will be needed to transform the
query according to the other DBMSs wrapper schema (containing schema, data
and processing capabilities). The first two steps are done in the mediator site
and the third is done in the other DBMSs or wrapper sites.

1. Rewriting: transforms the global query into local queries by means of the
global schema.

2. Optimization and execution: just like the optimization step from before, it
minimizes the cost function based on statistics, cost formulas and communi-
cation costs; the difference lies in that the mediator site utilizes a capabilities
schema (from executing sites) to estimate costs. Once it has the distributed
query execution plan, it sends the transactions to the executing sites.

3. Translation and execution: utilizing the wrapper schema, it translates the
transaction, executes it and returns results to the mediator site.

2.5 Concurrency

There is no better way to achieve database consistency than performing serialized
transactions. This means that only one transaction may run at a single time.
However, this is not consistent with the usage of modern systems, where multiple
users are demanding information from the same DBMS.

This has led to develop concurrency algorithms that, given certain assump-
tions and implementing certain tools, allow for several transactions to be exe-
cuted at the same time without compromising consistency. One must remember,
though, that if two or more transactions are using the same data, they need
to be serialized in order to avoid breaking consistency. Two of the most widely
implemented algorithms for concurrency are the locking-based and timestamp
ordering-based. Both of these algorithms are considered pessimistic, because it
assumes that a transaction will have a conflict with other transactions.
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The locking-based algorithm applies physical or logical locks on some portion
of the database so that no other transaction can modify it while it is still in use.
However, whenever there are locks, there is a way to create a deadlock. This
is avoided to (some extent) with a wait-for graph, which is basically a directed
graph that explores transactions in a queue to see whether or not it will create a
deadlock. In DDBMSs, these wait-for graphs are done by lock managers at both
global and local sites. Another less used possibility is to have the wait-for graphs
only in local sites and have them communicate its graph to other local sites. The
latter will then add the received structure to their own graphs in order to check
for deadlocks.

The lock manager handles all lock responsibilities, but he will not serialize
transactions, this is why we need to implement the two phase locking algo-
rithm (2PL). The difference between the standard locking algorithm and the
2PL is that a transaction should not request a new lock after releasing a lock.
Or rephrasing the previous statement, a transaction will not release locks until it
is certain that no other lock is needed. Furthermore, if you implement the Strict
2PL, the lock manager will wait until the locking transaction is complete, then
it will release all locks, reducing the chance for aborting transactions. Figure 6
represents the communication structure of a distributed 2PL, where TM is the
transaction manager, Participating Schedulers are the other sites local managers,
and DM are the data processing sites.

Fig. 6. 2PL communication flow on distributed databases. [1]

On the other hand, the timestamp ordering-based algorithm organizes execu-
tion according to the order in which transactions were queued. Instead of locking
to ensure serialization, they select a serialization order before executing. This
is done by assigning incremental timestamps to transactions. In a centralized
DBMS, there is a global counter that ensures that every timestamp is unique;
on DDBMS, this global counter is harder to implement, so each site maintains
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its own counter and they add their site identifier to the timestamp to ensure
uniqueness in the system. Since the site identifier is assigned to the least signif-
icant position of the timestamp, it will only be processed when two timestamps
have the same local value. Furthermore, data has a read and write timestamp
of the last time it was read or written; these timestamps are used to approve
or reject operations. If an operation from a transaction is rejected by the sched-
uler, the transaction is restarted with a new timestamp; this algorithm avoids
creating deadlocks, but its implementation may lead to requiring multiple tries
to execute a transaction.

3 Apache Hive

3.1 Background

Apache Hadoop is a software developed to deal with the Big Data world, where
usual tools stopped being feasible. This software framework provides utilities to
work on distributed databases by using the MapReduce programming model.
Such programming model allows to process information, in parallel, within a
distributed environment and therefore, with high throughput.

On the figure 7, the MapReduce process is explained with the example of a
word counting job. The first step is to split the data and map it to the available
instances. Then, each instance, in parallel, counts the word for each chunk of
data the framework mapped to it. The output of all instances is sorted and
becomes the input of the reducer. On the reducer step, each instance will take
a chunk of the sorted output and will reduce it to the final expected output.

Fig. 7. Word counting on a MapReduce schema.

Apache Hadoop will take charge of the mapping, shuffling, and reducing
steps. It will also solve the task scheduling, states monitoring and re-schedule
when a task fails. Moreover, it will improve the performance by running multiple
jobs at the same time and considering DDBMS promises such as fragmentation
and replication.
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Notwithstanding the effectiveness of Apache Hadoop to manage distributed
databases, the implementation is not simple or trivial. Each job needs to imple-
ment the map and reduce phase in Java and this is not straightforward. Specially
for those coming from the relational world where SQL provides a high level lan-
guage compared with Java, the learning curve tends to be complex and an entry
barrier to Apache Hadoop. On the listing 1.1, there is an implementation of the
word count example. The job, essentially, is not a complex algorithm, but the
coding must adapt to the MapReduce architecture and it becomes messy and
difficult to implement and read.

Listing 1.1. Word Count Java job for Apache Hadoop [3]

import java . i o . IOException ;
import java . u t i l . ∗ ;

import org . apache . hadoop . f s . Path ;
import org . apache . hadoop . conf . ∗ ;
import org . apache . hadoop . i o . ∗ ;
import org . apache . hadoop . mapred . ∗ ;
import org . apache . hadoop . u t i l . ∗ ;

public class WordCount {

public stat ic class Map extends MapReduceBase
implements Mapper<LongWritable , Text ,
Text , IntWritable> {

private f ina l stat ic IntWritab le one ;
one = new IntWritab le ( 1 ) ;
private Text word = new Text ( ) ;

public void map( LongWritable key , Text value ,
OutputCol lector<Text , IntWritable> output ,
Reporter r e p o r t e r )
throws IOException {

St r ing l i n e = value . t oS t r i ng ( ) ;
S t r ingToken i ze r t o k e n i z e r = new Str ingToken i ze r ( l i n e ) ;
while ( t o k e n i z e r . hasMoreTokens ( ) ) {

word . s e t ( t o k e n i z e r . nextToken ( ) ) ;
output . c o l l e c t ( word , one ) ;

}
}

}

public stat ic class Reduce extends MapReduceBase
implements Reducer<Text , IntWritable ,
Text , IntWritable> {

public void reduce ( Text key , I t e r a t o r <IntWritable> values ,
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OutputCol lector<Text , IntWritable> output ,
Reporter r e p o r t e r )
throws IOException {

int sum = 0 ;
while ( va lue s . hasNext ( ) ) {

sum += va lues . next ( ) . get ( ) ;
}
output . c o l l e c t ( key , new IntWritab le (sum ) ) ;

}
}

public stat ic void main ( St r ing [ ] a rgs ) throws Exception {
JobConf conf = new JobConf (WordCount . class ) ;
conf . setJobName ( ”wordcount” ) ;

conf . setOutputKeyClass ( Text . class ) ;
conf . setOutputValueClass ( IntWritab le . class ) ;

conf . setMapperClass (Map. class ) ;
conf . setCombinerClass ( Reduce . class ) ;
conf . setReducerClass ( Reduce . class ) ;

conf . setInputFormat ( TextInputFormat . class ) ;
conf . setOutputFormat ( TextOutputFormat . class ) ;

Fi leInputFormat . set InputPaths ( conf , new Path ( args [ 0 ] ) ) ;
FileOutputFormat . setOutputPath ( conf , new Path ( args [ 1 ] ) ) ;

JobCl ient . runJob ( conf ) ;
}

}
Since most of the traditional database paradigm is SQL based. Moving and

migrating from SQL paradigm to a MapReduce paradigm does not look like an
easy task. There is a big change on the implementation of the applications, the
learning curve of the developers and most of the SQL-related code can not be
re-used. Going back to the promises of a DDBMS, Apache Hadoop solves most
of the transparency layers, except the language layer, and this can be a deal
breaker while adopting a new technology.

Apache Hive comes to solve the language transparency layer, by providing an
SQL-like syntax for the MapReduce on Apache Hadoop. HQL, HiveQL or Hive
Query Language, allows the user to manage a distributed database by using
SQL commands. Therefore, it allows to manage a distributed database as the
traditional centralized relational database schema. An example can be seen in
the listing 1.2; opposite to the listing 1.1, the implementation of the word count
job is cleaner, easier to read and to implement with the knowledge of SQL.
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Listing 1.2. Word Count query for Apache Hive

SELECT word , count (1 )
FROM

(SELECT explode ( s p l i t ( l i n e , ’ ’ ) ) AS word
FROM document )

GROUPBY word ;

3.2 Hive Query Language

Hive Query Language (HiveQL) has been created to assimilate SQL as much as
possible. Still, queries are restricted to Apache Hadoop and MapReduce limita-
tions. Each newer version tries to create a framework as close as SQL-92 stan-
dard, but there are some differences that are good to know and are explained in
the following sections.

One of the major differences between the typical SQL and HiveQL is that
traditional databases work under a schema on write, meaning the schema is
checked during the data load. Counter to Hive which works on schema on read,
meaning the schema is checked during the interpretation of HiveQL queries. This
allows Hive a fast data load without worrying of a data schema, specially when
queries are not being issued yet [4]. Therefore, HiveQL allows the user to create
queries to load the original data without any ETL. Also, the schema can change
over time, different schemes can be used over the same data and we can load
data without worrying of structuring, so it provides more flexibility on managing
the data. Nevertheless, since HiveQL works almost as SQL, the ideal scenario is
to have structured or semi-structured data. This also means that Apache Hive
is not suitable for OLAP applications, as processing queries on real time is not
a strong point on Hive due to the schema on read and the overhead of applying
the schema on each query.

3.3 Hands on Apache Hive

The objective on this section is present the basic configuration and some basic
usage of the tool, to be able to compare it against the traditional SQL. The
following implementation was done on Ubuntu 18.04.1 LTS, using Apache Hive
3.1.1 and Apache Hadoop 3.1.1, changes between versions or operating system
may differ greatly the Bash commands presented here.

First, set up Apache Hadoop and Apache Hive. The first step is to download
and uncompress the files from the official mirrors:

wget http :// apache . be lne t . be/ hive / hive −3.1.1/ apache−hive
−3.1.1−bin . ta r . gz

wget http :// apache . be lne t . be/hadoop/common/ cur rent /hadoop
−3 .1 .1 . ta r . gz

ta r −xzvf apache−hive −3.1.1− bin . ta r . gz
ta r −xzvf hadoop −3 . 1 . 1 . ta r . gz
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Then, add the following configuration variables to bash by modifying the
.bashrc, as both frameworks need them to function properly.

#Java Home d i r e c t o r y con f i g u r a t i on
export JAVA HOME=/usr / l i b /jvm/ java−8−openjdk−amd64/
export PATH=”$PATH:$JAVA HOME/ bin ”

# Hadoop home d i r e c t o r y con f i g u r a t i on
export HADOOPHOME=/home/ hive /hadoop−3.1 .1
export HADOOP CONF DIR=/home/ hive /hadoop−3.1.1/ e t c /hadoop
export HADOOP MAPRED HOME=/home/ hive /hadoop−3.1 .1
export HADOOPCOMMONHOME=/home/ hive /hadoop−3.1 .1
export HADOOP HDFS HOME=/home/ hive /hadoop−3.1 .1
export YARN HOME=/home/ hive /hadoop−3.1 .1
export PATH=$PATH: / home/ hive /hadoop−3.1.1/ bin

export HIVE HOME=/home/ hive /apache−hive −3.1.1− bin
export PATH=$PATH:$HIVE HOME/ bin

After saving the file, use this command to refresh the current variables:

source ˜/ . bashrc

Now, specify which is the address of the NameNode, which is responsible for
storing Hadoop metadata. In this case, set up a local NameNode, as there is
no need of a cluster or a remote computer. Add the following property to the
hadoop-3.1.1/etc/hadoop/core-site.xml file:

<property>
<name> f s . d e f a u l t . name</name>
<value>hdfs : // l o c a l h o s t :9000</ value>

</ property>

Now, within hadoop-3.1.1/etc/hadoop/hdfs-site.xml, add the following prop-
erties to keep the environment as simple as possible. This will set only one repli-
cation of the file system and set the current user as superuser of Hadoop:

<property>
<name>d f s . r e p l i c a t i o n</name>
<value>1</ value>

</ property>
<property>

<name>d f s . permis s ion</name>
<value> f a l s e</ value>

</ property>

To set a resource manager and job scheduling, modify hadoop-3.1.1/etc/

hadoop/mapred-site.xml. Between the options are the classic MapReduce, a
custom one or YARN. In this case, use Apache YARN by adding the next prop-
erty, as is the most updated MapReduce (MPv2) [5]:
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<property>
<name>mapreduce . framework . name</name>
<value>yarn</ value>

</ property>

To configure YARN, modify the file hadoop-3.1.1/etc/hadoop/yarn-site.xml
with the following properties:

<property>
<name>yarn . nodemanager . aux−s e r v i c e s</name>
<value>mapreduce shu f f l e</ value>

</ property>
<property>

<name>
yarn . nodemanager . a u x s e r v i c e s . mapreduce . s h u f f l e . c l a s s

</name>
<value>

org . apache . hadoop . mapred . Shu f f l eHand le r
</ value>

</ property>

Also, it is ideal to configure Java home path on hadoop-3.1.1/hadoopenv.sh,
since, by default, Hadoop will try the default Java version and it may not work.
This is essential if there are multiple Java versions, specially since Hadoop ver-
sions are not compatible with all Java versions. To do so, modify the following
line with your current Java version:

export JAVA HOME=/usr / l i b /jvm/ java−8−openjdk−amd64/

To apply all the previous configuration to the Hadoop NameNode, format
the filesystem (note this will remove all the HDFS data), by using the following
command:

hadoop−3.1.1/ bin /hadoop namenode −format

Once everything is configured, just initialize all services by command:

hdfs −−daemon s t a r t namenode
hdfs −−daemon s t a r t datanode
yarn −−daemon s t a r t nodemanager
mapred −−daemon s t a r t h i s t o r y s e r v e r

Hadoop should be up and running, now initializa the HDFS folders to storage
the data:

hdfs d f s −mkdir −p warehouse
hdfs d f s −mkdir −p tmp
hdfs d f s −chmod g+w warehouse
hdfs d f s −chmod g+w tmp

To configure Hadoop for Hive, specify the heap size of Hadoop, the config-
uration inherited from the previous configuration, and the Hadoop path. This
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can be done by modifying the file apache-hive-3.1.1-bin/conf/hive-env.sh, if the
file does not exists, copy the template that remains on the same directory and
modify the following lines with your current information:

export HADOOP HEAPSIZE=1024
HADOOPHOME=/home/ hive /hadoop−3.1 .1
export HIVE CONF DIR=/home/ hive /hadoop−3.1.1/ e t c /hadoop

By default, Hive uses Apache Derby as database. First, configure Derby with
the content of Listing 1.3 on the Anexes section, and place the code on the file
apache-hive-3.1.1-bin/conf/hive-site.xml. After that, use the following command
to start the database:

apache−hive −3.1.1− bin / bin / schematool −in itSchema −dbType derby

By now, Apache Hadoop and Hive are up and running, and you can start load-
ing data. You can use the los-angeles-international-airport-air-cargo-volume.csv
dataset located in https://www.kaggle.com/cityofLA/los-angeles-international -
airport-data/version/67

Access the CLI of Hive by calling the command hive and create a table by
using the dataset header name:

CREATE TABLE cargo volume
( DataExtractDate TIMESTAMP,
ReportPeriod TIMESTAMP,
Ar r iva l Depar ture STRING,
Domes t i c In t e rna t i ona l STRING,
CargoType STRING,
AirCargoTons INT)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ’ , ’ ;

By now, you have a database on HDFS. If you want to see the location or
other metadata of the table, call:

DESCRIBE FORMATTED cargo volume ;

To load the data from the csv you can use the LOAD DATA command:

LOAD DATA LOCAL INPATH ’ /home/ dani /Desktop/ hive /
lo s−ange les−i n t e r n a t i o n a l−a i rpo r t−a i r−cargo−volume . csv ’
OVERWRITE INTO TABLE cargo volume ;

To check if the data was loaded correctly, just get the top of the tale with a
simple query:

SELECT ∗
FROM cargo volume
LIMIT 10 ;

If you made a mistake during the process, you can drop the table or truncate
the table to keep the schema the same way as in SQL:
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DROP TABLE cargo volume ;
TRUNCATE TABLE cargo volume ;

Also, Hive allows you to create external tables. This tables are handy if you
want to have multiples schemes over the same dataset or if the dataset is shared
between more applications. When you create as external table, Hive will keep
the original location of the dataset and any drop table will not affect the data,
it will only drop the schema. The query is similar, with the difference of the
metadata specification:

CREATEEXTERNAL TABLE IF NOT EXISTS cargo vo lume ext
( DataExtractDate TIMESTAMP,
ReportPeriod TIMESTAMP,
Ar r iva l Depar ture STRING,
Domes t i c In t e rna t i ona l STRING,
CargoType STRING,
AirCargoTons INT)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ’ , ’
STORED AS TEXTFILE
LOCATION ’ / user / h ive / warehouse / cargo volume ’ ;

Most of the basic operations in SQL are already implemented in Hive and
using the same syntax, as you can see in the following queries:

−−F i l t e r i n g by s e l e c t i o n and boo lean opera tor s
SELECT ∗
FROM cargo volume
WHERE Domes t i c In t e rna t i ona l = ”Domestic”

AND CargoType = ”Mail ” ;

−−Unique p r o j e c t i on
SELECT DISTINCT CargoType
FROM cargo volume ;

−−Ordering
SELECT CargoType , AirCargoTons
FROM cargo volume
ORDERBY AirCargoTons DESC;

−−Counting
SELECT COUNT(∗ )
FROM cargo volume ;

−−Grouping
SELECT CargoType , COUNT(∗ )
FROM cargo volume
GROUPBY CargoType ;
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−−Agregat ion f unc t i on s
SELECTMAX( AirCargoTons )
FROM cargo volume ;

−−Join between t a b l e s
SELECT ∗
FROM cargo volume JOIN cargo vo lume ext

ON ( cargo volume . CargoType = cargo vo lume ext . CargoType )

Apache Hive also has more advanced functions that help to do complex
queries on simple steps. One example is the one seen on the Listing 1.2 for
word counting, where, on the same line, a split is done on blank spaces and
then it returns the array as a table with the explode command; then, a simple
grouping function is required to count words in a few lines using the MapReduce
paradigm without worrying about it.

4 Conclusions

Even though distributed databases promise to be a viable solution for modern
day applications, it is still one pretty undeveloped model. While data indepen-
dence, network transparency and fragmentation seem to have acceptable solu-
tions to ensure a DDBMS reliability; replication and concurrency algorithms are
fields that have yet to be further explored, especially since they are so tied up
together. Replication is cornerstone to a DDBMS performance, since it allows for
parallelization of the workload, but one must be careful with its implementation,
since maintaining database consistency would require background processing as
well. Depending on the degree of replication and the nature of the transactional
throughput (read/write), one could find the DDBMS spends more resources
maintaining data consistency than satisfying user transactions; a clearly non-
desirable scenario. As long as DDBMS administrators keep this in mind and
further research is done, the outlook for DDBMS is good.

Apache Hive is highly suitable to migrate traditional relational databases as
it provides a language transparency layer to keep the common SQL of relational
databases. But, even though Apache Hive is a powerful framework by mixing
MapReduce with the traditional view, it can not replace the traditional SQL
systems. Apache Hive is not suitable for single inserts, and, since it uses Apache
Hadoop on the background, it has performance problems if used as a transac-
tional system. Moreover, the schema on read facilitates migrating and creating
a database, since the schema is not necessary at this point. This also provides
the flexibility to develop the schema along the way, to evolve the schema and
even to have multiples schemes for different interpretations of the data.

Apache Hive behaves as a data warehousing framework, but is not suitable
for doing real time analysis. Still, this framework provides enough flexibility by
giving a SQL-like interface with the distributed databases and non-structured
data functions.
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5 Annexes

Listing 1.3. Derby configuration XML [6].

<?xml ve r s i on =”1.0” encoding=”UTF−8” s tanda lone=”no”?>
<?xml−s t y l e s h e e t type=” t e x t / x s l ” h r e f=”con f i g u r a t i on . x s l ”?><!−−
Licensed to the Apache Software Foundation (ASF) under one or more
con t r i bu to r l i c e n s e agreements . See the NOTICE f i l e d i s t r i b u t e d with
t h i s work f o r a d d i t i o n a l in fo rmat ion regard ing copyr ight ownership .
The ASF l i c e n s e s t h i s f i l e to You under the Apache License , Vers ion 2 .0
( the ” L icense ” ) ; you may not use t h i s f i l e except in compliance with
the L icense . You may obta in a copy o f the L icense at

http ://www. apache . org / l i c e n s e s /LICENSE−2.0

Unless r equ i r ed by a p p l i c a b l e law or agreed to in wr i t ing , so f tware
d i s t r i b u t e d under the L icense i s d i s t r i b u t e d on an ”AS IS ” BASIS ,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl i ed .
See the L icense f o r the s p e c i f i c language governing pe rmi s s i ons and
l i m i t a t i o n s under the L icense .
−−>
<c o n f i g u r a t i o n>

<property>
<name>javax . jdo . opt ion . ConnectionURL</name>
<value>

jdbc : derby : ;
databaseName=/home/apache−hive −3.1.1− bin / metastore db ;
c r e a t e=true

</ value>
<d e s c r i p t i o n>

JDBC connect s t r i n g f o r a JDBC metastore .
To use SSL to encrypt / authent i ca t e the connect ion ,
prov ide database−s p e c i f i c SSL f l a g in the connect ion URL.
For example , jdbc : p o s t g r e s q l : // myhost/db? s s l=true f o r
po s tg r e s database .

</ d e s c r i p t i o n>
</ property>
<property>

<name>hive . metastore . warehouse . d i r</name>
<value>/ user / h ive / warehouse</ value>
<d e s c r i p t i o n>

l o c a t i o n o f d e f a u l t database f o r the warehouse
</ d e s c r i p t i o n>

</ property>
<property>

<name>hive . metastore . u r i s</name>
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<value />
<d e s c r i p t i o n>

Thr i f t URI f o r the remote metastore . Used by metastore
c l i e n t to connect to remote metastore .

</ d e s c r i p t i o n>
</ property>
<property>

<name>javax . jdo . opt ion . ConnectionDriverName</name>
<value>org . apache . derby . jdbc . EmbeddedDriver</ value>
<d e s c r i p t i o n>

Driver c l a s s name f o r a JDBC metastore
</ d e s c r i p t i o n>

</ property>
<property>

<name>javax . jdo . Pers i s tenceManagerFactoryClass</name>
<value>

org . datanuc leus . ap i . jdo . JDOPersistenceManagerFactory
</ value>
<d e s c r i p t i o n>

c l a s s implementing the jdo p e r s i s t e n c e
</ d e s c r i p t i o n>

</ property>
</ c o n f i g u r a t i o n>
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