
Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

1

Advanced Databases

Search Engines and Elasticsearch

Submitted to: Submitted by:
Prof. Esteban Zimanyi Ioannis Prapas (000473813)
INFO-H-415 Advanced Databases
(2018-2019)

Sokratis Papadopoulos (000476296)

December 2018

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

2

CONTENTS

1 Introduction .. 4

1.1 What are search engines? ... 4

1.2 How search engines differ from relational databases? .. 5

1.3 Other search engine DBs ... 7

1.3.1 Splunk ... 7

1.3.2 Solr ... 8

1.4 Rest of the report .. 9

2 The Elastic Stack ... 10

2.1 Elasticsearch .. 11

2.1.1 Key concepts .. 13

2.1.2 CRUD operations .. 15

2.1.3 Querying plan ... 16

2.2 Beats .. 17

2.3 Logstash ... 18

2.4 Kibana .. 19

2.5 Industry use cases ... 24

3 Practical Example .. 25

3.1 Installation Guide .. 25

3.1.1 Installing Elasticsearch ... 25

3.1.2 Installing Kibana ... 26

3.1.3 Installing Logstash .. 26

3.1.4 Installing Filebeat ... 27

3.2 Importing the data .. 28

3.3 Building Visualizations in Kibana ... 31

3.3.1 Accidents map .. 31

3.3.2 Other Visualizations ... 32

3.4 Querying Elasticsearch .. 32

3.4.1 URI Search .. 33

3.4.2 Request Body Search ... 35

4 Conclusion .. 36

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

3

Figure 1: DB-Engines ranking of search engine DBMS according to their popularity 4

Figure 2 Splunk use case for healthcare .. 8

Figure 3 The elastic stack architecture .. 10

Figure 4 Sample documents and resulting inverted index ... 11

Figure 5 Example of a json document.. 12

Figure 7 Elasticsearch core elements .. 14

Figure 6 How Elasticsearch works .. 17

Figure 8 The family of Beats data shippers .. 17

Figure 9 Logstash pipeline structure .. 18

Figure 10 Kibana Discover interface .. 19

Figure 11 Kibana Visualize interface, simple bar chart .. 20

Figure 12 Kibana Dashboard interface .. 20

Figure 13 Kibana Timelion interface for time series visualization ... 21

Figure 14 Kibana Canvas interface for web traffic ... 21

Figure 15 Kibana Canvas interface for e-commerce .. 21

Figure 16 Kibana Dev Tools: Console ... 22

Figure 17 Constructing query using Auto-complete in Kibana query bar 23

Figure 18 Adjusted visualizations upon result of the query on Kibana dashboard 23

Figure 19 Adjusted documents list upon result of the query on Kibana discover 24

https://universitelibrebruxelles-my.sharepoint.com/personal/ioannis_prapas_ulb_be/Documents/Sokratis%20-%20Prapas%20team/Adv%20Databases/Advanced_Databases_Project_Report.docx#_Toc532782194
https://universitelibrebruxelles-my.sharepoint.com/personal/ioannis_prapas_ulb_be/Documents/Sokratis%20-%20Prapas%20team/Adv%20Databases/Advanced_Databases_Project_Report.docx#_Toc532782202
https://universitelibrebruxelles-my.sharepoint.com/personal/ioannis_prapas_ulb_be/Documents/Sokratis%20-%20Prapas%20team/Adv%20Databases/Advanced_Databases_Project_Report.docx#_Toc532782203

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

4

1 INTRODUCTION

With “google” being an official verb in English dictionary and “googling” occurring more than

3.5 billion times per day, search engines’ importance hits the top of our online world. In this

project we are looking into search engine databases and dive deeper into the most popular

of them (Figure 1), Elasticsearch. It is worth mentioning that Elasticsearch is now the 8th most

popular database management system across all different database models and being on a

rising path ever since its creation.

Figure 1: DB-Engines ranking of search engine DBMS according to their popularity1

1.1 What are search engines?

Search engines are NoSQL database management systems dedicated to the search for data

content.2 Typically, search engines offer the following features:

• Full text search

• Stemming (reducing inflected words to their stem)

• Faceting, Highlighting, Fuzzy matching

• Support for complex search expressions

• Ranking and grouping of search results

• Creation of dashboards to visualize and analyze results

• Geospatial search

• Distributed search for high scalability

• Support alerting/events notification when a specific criterion is met

Search engines allow benefiting from the analysis of machine data, coming in unstructured

waves of different sources (sensors, IoT, mobiles, website logs, etc.), extracting useful insights

1 https://db-engines.com/en/ranking/search+engine

2 https://db-engines.com/en/article/Search+Engines

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

5

from them. Potential applications are covering a wide spectrum; from data-driven decision

making, to network security and failures management.

Full-text search engines evolved much later than traditional database engines, as

corporations and governments found themselves with more and more unstructured textual

data in electronic format. These new text documents didn't fit well into the old table-style

strictly defined databases and querying in that format is hard, so the need for unstructured

full-text searching was apparent.

Since it was developed later, search engine technology borrowed heavily from the database

world, and many search engines still employ some type of traditional table structures in their

underlying architecture. As traditional relational databases had dominated the spectrum of

databases being so well established for many decades, many of the key RDBMS paradigms

have also migrated into search engine technology, though often renamed or recast.

Search engines may use other document stores as secondary database model. Document

stores, also called document-oriented database systems, are characterized by their more

flexible schema and organization of data, with most popular of them being mongoDB.

1.2 How search engines differ from relational databases?

Relational Databases are neatly organized collections of data, based on a strictly defined

schema storing information into specific fields that offer consistency and reliability. You can

retrieve all kind of stored information by searching on specific keywords, titles, headings and

more specific fields. Results are always relevant and an exact reflection of your request. If you

are looking for a consistent, carefully organized way to store and retrieve information,

relational databases will perform just fine.

Moving to an unstructured online world, relational databases tend to struggle to keep up with

the user demands in a wide variety of cases. Let’s now focus on searching and study examples.

A relational database stores data by splitting into different fields and tables. Most users would

not like to select a specific field before performing a query. Indeed, databases could still try

to answer user’s query searching on all possible fields, joining all possible tables, however this

leads to the construction of complex queries that will result in very slow performance. In

another perspective, search engines come into place and let the searching of smart indexes

instead of the full text. They manage to be better at the specific field of searching by relaxing

the requirement for ACID transactions, in favor of fast lookup times.

As proven, relational DBs tend to work better for exact matches. Search engines facilitate

searching in a way that is intuitive for users, by using smart indexing and prefix trees that help

with additional tricks like fuzzy matching e.g. spelling mistakes, lowercase, ä->a or ae, prefix

matches, n-gram matches, just to name a few. Search engines are NoSQL

Databases featuring no relations, constrains, or any transactional behavior and this imply

much easier scalability.

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

6

Let us assume that you search documents for the word “cats”. Even if you logically expect to

also get results with the word “cat” (or even “Cats”) this will not be the case with relational

databases, as the keyword should exactly match what is stored on the relevant field. What is

more, you cannot search for “cat family” and get results for “family of cats”, or search for

“cafe” and get results for “café”, “Cafe”, or “coffee”.

As you understand by now, the more we experiment with text, the more trouble will arise for

relational databases to keep up with the demands. And there come search engines.

On the one hand, a relational database offers primarily consistent data storage and retrieval

capabilities, the second of which can be improved by indexes. A search engine primarily

focuses on indexing data to look them up fast. Databases are good for storing data neatly into

tables with static format and doing ACID transactions, while search engines are good at

indexing data for searching.

Considering size, relational databases perform well, when data is at the Gigabyte scale, but

today it is a big data world and you have to deal with Petabytes of data. The more the data

grows, the more we are shifting away from relational databases and search engines is a very

good alternative for a batch of cases. But let us showcase how these two technologies differ

at core under the hood.

A core difference is that in traditional relational databases we use a fully predefined schema,

whereas search engines implement a more unstructured way of storing, called mapping. On

the Table 1 we display how different elements (hierarchically top-to-bottom) are defined in

each technology along with their equivalents.

RDBMS Terminology Search Engines Terminology

DB Instance Node

DB Cluster Cluster

Database Index

Table Type

Schema Mapping

Physical Partition Shard

Logical Partition Route

Row Document

Column Field

SQL For ES: DSL (Query DSL)
Table 1: Terminology differences of RDBMs and Search engines3

3 https://www.oreilly.com/library/view/data-lake-for/9781787281349/5e06ee29-742f-4b6d-bbad-b59bb0987901.xhtml

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

7

Plus, some further differences between RDBMS and Search Engines on different categories.

Category RDBMS Search engine

Transaction Capability Supports ACID (Atomicity,
Consistency, Isolation,
Durability) properties

Very less support or no support
for ACID

Partitioning Horizontal partitioning and
sharding

Supports only sharding

Consistency Immediate consistency Eventual consistency

Keys Support primary and foreign
key

Supports only primary key

Models Relational model Document store
Table 2: Differences of RDBMs and Search engines4

1.3 Other search engine DBs

The search engine database field has been dominated by Elasticsearch from the moment it

came out, because of its ease of usage and the fast, near real-time performance. However, in

recent years big players of the technology arena are starting to catch up. An exhaustive list

can be found in the dbengine site5. Let’s see briefly what the most popular of them (Splunk,

Solr) has to offer, showcasing the power of this technology.

1.3.1 Splunk

Splunk has been named the “Google for log files”. It was the first log analysis tool, released in

2003, identifying itself as a data collection, indexing, and visualization engine for operational

intelligence, commonly used for analyzing logs and machine data. Splunk accepts any data

type and structure from multiple sources in parallel and manages to analyze data and provide

results in real-time, sending alerts or notifications when needed. Below you can find the

general structure of how Splunk works.

Here we present a small Splunk use case for a better understanding of the tool. This is how

Bosch used Splunk for data analytics.

• Forwarder collected the healthcare data from the remotely located patients using IoT

devices (sensors), in real-time.

• Indexer indexed and stored the input accordingly in real-time.

4 https://dzone.com/articles/search-engine-solr-vs-relational-database
5 https://db-engines.com/en/ranking/search+engine

Forwarder

•Collects data of any
structure and type from
many sources in parallel

•Forwards data to
Indexer in real-time

Indexer

•Processing incoming
data in real-time

•Stores and indexes data
on disk

Search Head

•End-users interaction
with data, allowing
searching, analysis and
visualization

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

8

• Search Head analyzed data and any abnormal activity (based on thresholds previously

set) would be reported to the doctor and patient via the patient interface.

Figure 2 Splunk use case for healthcare6

Using Splunk Bosch could not only delve deeper into patients’ health record analyzing

patterns, but also guarantee a real-time monitoring of patients’ health conditions, alarming

both doctors and patients when patients’ health degrades.

1.3.2 Solr

Apache Solr, as Elasticsearch is a Lucene-based search engine and platform for fast and

scalable search7. Solr stands for “Search on Lucene and Resine“, it is primarily programmed in

Java and it was released on 2004. Its major features include full-text search, hit highlighting,

faceted search, dynamic clustering, database integration and rich document handling. Instead

of searching the text directly, Solr searches an inverted index. This is like retrieving pages in a

book related to a keyword by scanning the index at the back of a book, as opposed to

searching every word of every page of the book. In Solr, a Document is the unit of search and

index. The schema is defined before documents are added and it is represented in a file called

schema.xml. The schema declares the existing fields, the primary keys, if fields are required

and how to index and search each field.

Then, for each field we need to declare name, type, if it is indexed, if original value is stored

and if it is multivalued. Below you can find an example8 of a field definition.

When data is added to Solr, it goes through a series of transformations (lowercase, stemming,

etc.) before being added to the index, this is called the analysis phase, which finishes with the

output tokens being added to the index. So, when queries are performed, Solr searches based

6 https://www.edureka.co/blog/what-is-splunk
7 https://www.edureka.co/blog/solr30thoct
8 http://www.solrtutorial.com/basic-solr-concepts.html

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

9

on these tokens and not the original text. Only the fields that we specify as indexed are the

fields which undergo the analysis phase and are finally added to the index. If a field is not

indexed, it cannot be searched on, but it can be displayed in the search results if its stored

variable is set to true. The reason why it is not advisable to store all fields is because the more

the storing fields the more size Solr needs to store the index. And the larger the index the

slower the search because of more I/O’s needed to fetch results.

A typical example of Solr use case is text analytics for HR9. Solr can be the favorite tool of

hiring managers as it can provide a much faster alternative than going through all these big

piles of resumes that reached their company, in order to analyze and filter only the ones they

are interested in. Solr can be fed resumes in any document type like PDF, Word, XML or plain

text and integrate those into its index. With its development as a search engine, it can easily

process the unstructured text. It can extract key words and phrases, perform language

detection and transparently deal with differing word forms. After a hire, periodic reviews can

be combined with keywords, key phrases and other metadata extracted from the source

resume to form a predictive model, which can then be used in later hiring processes.

1.4 Rest of the report
In this report we are focusing more on how Elasticsearch and the Elastic Stack fit in the search

engine database domain. In the next chapter, we give a brief overview of the different parts

that comprise the Elastic Stack and then go through the basic concepts of Elasticsearch. In

Chapter 3 we dive into a concrete example from products installation to end visualization with

real data and show some representative queries. Lastly, Chapter 4 concludes the report.

9 https://www.blue-granite.com/blog/apache-solr-3-analytic-use-cases

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

10

2 THE ELASTIC STACK

Elasticsearch is the base of a wide range of products that construct the elastic stack. And while

you can do everything with Elasticsearch’s API, there have been built some tools around it

that offer even easier ways to interact with it. In this chapter we go through them. Let us start

by showcasing the structure of the whole elastic stack products.

Figure 3 The elastic stack architecture10

Reading Figure 3 bottom-up, this product is offered both in cloud and as self-managed

standalone deployment. Setting it up in cloud is very straight forward as everything is

orchestrated together and maintained by the Elastic Stack team, though setting it up locally

is also a very easy process. From our own experience, we set it up on our local machines

(Windows & Linux) within minutes, without facing any obstacles.

At the bottom of the elastic stack lies the ingest products, responsible to bring data into the

game. While Beats and Logstash are the main products performing this task, there are a lot

of plugins that take care of seamlessly import many kinds of data input. Beats are lightweight

data shippers and thus they are used to import specific types of data, having a small footprint

and using fewer system resources that its brother Logstash. Logstash is the standard product

of loading data into Elasticsearch, having a larger footprint but providing many alternatives

for input, filter and output. As more and more plugins are added, Logstash becomes a robust

point of reference for any kind of data collection and transformation from a variety of sources.

Elasticsearch is the core product, being responsible for storing, searching and analyzing data,

being at the moment (December 2018) at top of the market.

10 https://www.elastic.co/products

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

11

Kibana is the data visualization tool, managing all the data that have been inserted into

Elasticsearch by Logstash/Beats. It offers a wide variety of charts and data analysis tools,

featuring a user-friendly interface and query language (Query DSL).

Finally, the presented model (Elastic Stack) can support a wide variety of applications,

featuring cutting edge full text search capabilities and analytics. Considering the current

dominance of elastic products in the market along with its large community, it is safe to

assume that it is developing in fast pace and the community is anticipating the future

developments.

2.1 Elasticsearch

Elasticsearch is the heart of elastic stack. It is an open source, Lucene-based11, distributed,

scalable, highly available, document-oriented, RESTful, full text search engine with real time

search and analytics capabilities12. It is built to handle huge amounts of data volume with

very high availability and to distribute itself across many machines, to be fault- tolerant and

horizontally-scalable; all while maintaining a simple but powerful API that allows applications

from any language or framework access to the database. It delivers a full-featured search

experience across big amounts and different structures of data. It is written in Java

and therefore it is a cross-platform product. It is designed to take data from any source and

make it searchable.

How does it make all data searchable?

Elastic uses immutable Lucene indexes which follow the paradigm of inverted indexes. An

integral part of Elasticsearch is also text processing that transforms text into the vector space

and allows for highly efficient similarity comparison against a query. While creating the

inverting index, Elastic search offers a wide variety of text processing like tokenization, lower-

casing, stopwords removal and stemming just to name few basic ones.

Figure 4 Sample documents and resulting inverted index13

11 http://lucene.apache.org/
12 https://www.elastic.co/videos/speed-is-key-elasticsearch-under-the-hood
13 https://www.elastic.co/blog/found-elasticsearch-from-the-bottom-up

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

12

Communicating with Elasticsearch is done through an HTTP REST API. Just like No-SQL

databases it stores schema-less JSON documents (mapping), so you do not have to define

fields and data types before adding data unlike traditional relational databases. It is near real-

time, meaning that any document modification is propagated throughout the entire cluster

within one or two seconds.

Elasticsearch uses JavaScript Object Notation, or JSON, as the serialization format for

documents and queries. JSON serialization is supported by most programming languages, and

has become the standard format used by the NoSQL movement. It is simple, concise, and easy

to read, even though rows of files may seem big for the amount of data or actions they carry.

Figure 5 Example of a json document

Elasticsearch as a primary store?

While it is very possible to use Elasticsearch as a primary database store, it is generally

recommended (and a common practice) to use Elasticsearch capabilities on top of any

persistent No-SQL or SQL storage like MongoDB or relational databases. First thing to

consider is that updates are slow in Elasticsearch as they require index reconstruction.

Deletes are also not performed in place, but marked for later removal. Using another

persistent data store you ensure correctness and robustness, while data can also be

pushed to Elasticsearch for performing all kind of fancy searching and analytics. Although

Elasticsearch is extremely good for indexing and searching big datasets, it is not a general

purpose database like MongoDB.

Immutability of indexes

Indexes in elasticsearch are immutable; that is they cannot be changed. This comes with

important benefits with respect to lookup time:

• No need for locking

• Once in memory or cache, it remains valid.

• Large indexes can be constructed, fact which can help keep them compact.

On the downside, updates on documents will cause a reconstruction of the index and

deletes don’t really happen in-place, but are marked so in a bitmap, until an index refresh.

http://en.wikipedia.org/wiki/Json

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

13

Concepts like replication, integrity, consistency, robustness also exist in Elasticsearch. There
are as many replicas of your data as user specifies (by default 1) in different nodes, making it
fault-tolerant and highly available. Just like relational database user can specify constrains to
define consistency, like referential integrity and uniqueness.

2.1.1 Key concepts

To better understand Elasticsearch we are diving into each of its core components presenting the key

concepts following a bottom-up approach:

• Field – The smallest individual unit. Each field comes with two values: data type and

data value. Data types can be simple (full-text, double, date, boolean) or complex (object,

nested, multi-fields, geo information).

• Document – The base unit of storage, it is a collection of fields of a specific schema defined in

JSON format. Every document is associated with a type and it is stored within an index.

Documents also contain some metadata to declare the index and type it belongs to, as well as

a unique identifier.

• Type [Deprecated] – Types are logical collections of documents sharing a set of common fields

present in the same index. Since version 6, types are deprecated and while it was possible to

define many types for one mapping this is no longer possible, and types will be completely

vanished in a later version14.

• Mapping – It is the definition of how a document and its fields are stored and indexed.

Mappings are providing the schema, stating which is the data type of each field in the

documents of the index.

• Index − It is a collection of documents and document properties that somehow portray similar

characteristics. In other words, it is a data organization mechanism, partitioning the data in a

certain logical way, equivalent of a database on the relational world. Indexes use the concept

of shards to improve the performance. During indexing, a concept called analyzer is used, in

order to break down phrases or expressions into terms constructing the inverted index.

Analyzers consist of a tokenizer and any number of token filters. The default analyzer removes

stopwords, most punctuation and lowercases terms. There is a wide variety of built-in

tokenizers offered by Elasticsearch, and you can also create and use a custom tokenizer.

• Shard & Replicas – As data scale you reach a point where they do not fit in a single space, or

the query response time is getting slower. Then indexes are horizontally subdivided into

14 https://www.elastic.co/guide/en/elasticsearch/reference/current/removal-of-types.html

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

14

smaller pieces, called shards. Each shard contains all the properties of document but a smaller

number of JSON objects than index. The horizontal separation makes shard an independent

unit, which can be stored in any node, ensuring scalability as it enables distribution and

parallelization of operations across many shards. Primary shard is the original horizontal part

of an index and then these primary shards are replicated into replica shards. Replica shards

are the result of data replication. They are stored in a different node (to provide high

availability in case original node fails) and allow scaling the search volume as searches can be

executed on all replicas in parallel.

• Node − It refers to a single running instance of Elasticsearch carrying through the crucial task

of storing and indexing data. There are different kind of nodes for different kind of jobs: Data

nodes (for storing data and executing search operations on them), master nodes (handling the

whole cluster management and configuration for actions like adding a new node in the

cluster), client nodes (load balancers, forwarding cluster requests to master node and data-

related requests to data nodes), tribe nodes (acting like client nodes, but used to perform

operations against all clusters interconnected through config file), ingestion nodes (used to

preprocess documents before indexing). Every node is by default a data node and within a

cluster master node is by default randomly selected, though this can change in the occurrence

of a failure.

• Cluster – A Cluster is comprised from of one or more nodes. Its job is to hold all your data

together and provide indexing and search capabilities across all the nodes for entire data. It

includes one master node (as defined above). As cluster grows it can reorganize itself, in order

to spread data across its nodes, assuring balanced processing load and faster query times.

 Putting all core elements of Elasticsearch we build the below diagram.

Figure 6 Elasticsearch core elements

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

15

2.1.2 CRUD operations

Taking into account elements defined above, in this section we will briefly showcase by means

of an example how the basic CRUD (Create Read Update Delete) operations happen within

Elasticsearch through Kibana > Dev Tools > Console interface (explained on section 2.4)

To do that let us first create an index named book_index along with a type named book that

will define the schema of the documents we will later load. Note that the creation of type is

optional as we can simply let Elasticsearch guess the data types.

1. PUT book_index
2. {
3. "mappings": {
4. "book": {
5. "properties": {
6. "title": { "type": "text" },
7. "author": { "type": "text" },
8. "pages": { "type": "integer" },
9. "published_at": {"type": "date" }
10. }
11. }
12. }
13. }

Now we create our document with a type of book previously defined and 1 as document id.

If book mapping was not defined, Elasticsearch would define it on the spot. Note that we can

simply insert two authors (as an array of strings) as long as both values match the type of the

field (in this case: “text”). On the left it is our command and on the right the result returned.

1. PUT book_index/book/1
2. {
3. "title": "Data Warehouses",
4. "author": ["Esteban Zimányi", "Alejandro Vaisman"],
5. "pages": "625",
6. "published_at": "2016-08-23"
7. }

In this stage, let us perform a get request to read our recently created document by its id:

1. GET book_index/book/1

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

16

Deleting the document is just a simple command:

1. DELETE book_index/book/1

If we instead want to update the document we can do this :

1. PUT book_index/book/1
2. {
3. "title": "Data Warehouses - Design and implementation",
4. "author": ["Esteban Zimányi", "Alejandro Vaisman"],
5. "pages": "625",
6. "published_at": "2016-08-23"
7. }

2.1.3 Querying plan

As Elasticsearch is distributed, the search process is split into two parts:

1. The query phase
Let us take as an example a top 10 query. The query is sent out to all shards (primary
or replicas) via the coordinating node within the index that is being searched over.
Every single shard performs the query locally and sends back its top 10 results
according to the relevance score.

2. The fetch phase
Coordinating node gathers the top 10 results from each shard and identifies the final
top 10 documents according to their relevancy score and issues a GET request to the
relevant shards they belong. Shards returns the requested documents and
coordinate node returns results to the user.

Below there is a visualization of the above process.

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

17

Figure 7 How Elasticsearch works15

2.2 Beats
Beats is a family of single-purpose data shippers. They send data from hundreds or thousands

of machines and systems to Logstash or Elasticsearch. You can see the available shippers on

the figure below, along with the kind of data they manipulate.

Figure 8 The family of Beats data shippers

As an example, Filebeat is a robust lightweight way to forward and centralize logs and files. It

worths mentioning that it implements a backpressure-sensitive protocol when sending data

to Logstash or Elasticsearch. If Logstash is struggling to keep up with Filebeat’s pace, it lets

Filebeat know to slow down its read. When Logstash becomes loose again, Filebeat will build

back up to its original pace and keep on shipping.

15 https://dzone.com/articles/what-is-elasticsearch-and-how-it-can-be-useful

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

18

Another example, Heartbeat generates uptime and response time data. For a given list of

URLs, Heartbeat performs a ping, gathers response information and sends them to Logstash

or Elasticsearch for further analysis, visualized with Kibana.

2.3 Logstash

Logstash is a data processing pipeline, fetching data from multiple sources simultaneously

(files, logs, sockets, tpc, udp, etc.) in a continuous streaming fashion, processes it (adding

timestamp, IP-based geoinformation, etc.) and ships it to the destination stash. As expected,

Logstash works seamlessly with Elasticsearch as stash, as it is part of the elastic stack family,

though it can be applied on other kind of stashes too. Similar as with Beats, if Elasticsearch is

struggling to keep up with Logstash’s pace of incoming data, Logstash is notified to slow down

and it resumes when Elasticsearch health is back to green.

Figure 9 Logstash pipeline structure

As data travels from source to store (Elasticsearch), Logstash filters parse each object. Given

the wide variety and richness of filters available, we can confidently assume that any kind of

data transformation can happen. Finally, the filtered input is outputted to a stash. We hereby

present the most typical filters used with Logstash when it dynamically parses data:

• Grok: As data is commonly unstructured, Logstash parses data into fields

• GeoIp: Adds geographical information derived by the IP address

• Fingerprint: Anonymizes data by replacing values with a consistent hash

• Date: Parsing the date field of a data object, it constructs a timestamp

• Mutate: Performs mutations on fields

• JSON: Parses JSON events

• Xml: Parses XLM into fields

• Range: Checks data object values against thresholds of acceptable values range

• i18n: Removes special characters from the data fields

• Drop: completely drops one data object/event

• Clone: makes a copy of a data object/event possibly adding or removing fields

Overall, Logstash is a well-established powerful tool in the market, being very popular at its

category, as it is also used outside elastic family.

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

19

2.4 Kibana

Kibana is an open source analytics and visualization platform, completing the elastic products

family. Searching, viewing, querying and generally interacting with data stored in

Elasticsearch is taken care from the very user-friendly environment of Kibana. It offers a wide

variety of visualization elements like charts, tables, heatmaps and coordinate maps just to

name a few. In addition, advanced data analysis techniques like machine learning are

supported. Its simple browser-based interface enables you to create and share dynamic

dashboards that display changes to Elasticsearch queries in real time. That means that Kibana

instantly displays every data record that is coming into Elasticsearch through Logstash for

example. Setting it up is simple as possible and it is up and running in seconds both in

Windows and in Linux, always connecting seamlessly to the local Elasticsearch installation.

Kibana interface consists of the following elements:

• Discover: interactively explores data, querying using Query DSL syntax, filter results,

view data. When you submit a search request, all the elements of the page (fields,

documents, graph) are updated to reflect the search results. The total number of hits

(matching documents) is shown in the toolbar.

Figure 10 Kibana Discover interface16

• Visualize: Using a saved query performed on Discover, or creating a new one from

scratch, visualize interface offers creation of different kind of visualizations with all

kinds of metric aggregations. Currently, Kibana supports:

o basic charts: line, area, bar charts, heat maps, pie charts

o data: data table, metric, goal and gauge

o maps: coordinate map, region map

o time series: timelion, time series visual builder

o other: controls, markdown widget, tag cloud, vega graph

o interactive input controls: dropdown list and range.

16 https://www.elastic.co/guide/en/kibana/current/discover.html

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

20

Figure 11 Kibana Visualize interface, simple bar chart

• Dashboard: Once all kinds of visualizations are created, Dashboard takes over to

display them all into a comprehensive data rich dashboard-like environment.

Dashboards can easily be shared with a permalink. Every chart of the dashboard can

be resized, dragged around or inspected further so as to view or download the specific

data that are hidden behind it in csv or also check the specific Elasticsearch query

behind and its response in JSON format. Of course, as you type queries on the query

bar the whole dashboard is adjusted to your requirements. Plus, it allows you to enter

specific filters independently of the queries or use the interactive input controls

created on visualization step (dropdown list or range – shown on the figure below).

Figure 12 Kibana Dashboard interface

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

21

• Timelion: Timelion is a time series data visualizer interface. It’s driven by a simple

expression language you use to retrieve time series data, perform calculations to tease

out the answers to complex questions, and visualize the results. Its elements can also

be added to the Dashboard in order to construct one general picture of data.

Figure 13 Kibana Timelion interface for time series visualization17

• Canvas: Another way of visualizing data is offered through Canvas. It is indeed a canvas

which you can fill in with data but visualize it in a more creative way than the standard

charts. Canvas combines data with colors, shapes, text, and your imagination to bring

dynamic, data-rich data displays. Below there are two examples of such data displays

for e-commerce and web traffic.

• Dev Tools: Provides three developer tools to interact with data stored in Elasticsearch

directly from Kibana interface. First is the Console, splitting screen into two: on the

left side accepting culr-like commands to interact with the REST API of Elasticsearch

and displaying results on the right side. Here is an example where we request all

created indexes in Elasticsearch:

17 https://www.elastic.co/guide/en/kibana/current/timelion-conditional.html

Figure 15 Kibana Canvas interface for e-commerce Figure 14 Kibana Canvas interface for web traffic

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

22

Figure 16 Kibana Dev Tools: Console

Also, within Dev Tools there is Search Profiler, which communicates with Profiler API

used to inspect and analyze queries. The response is usually a large JSON file, which

Kibana transforms into a visualization, allowing to investigate poorly performing

queries. Last but not least, Grok debugger is the perfect tool to help you construct a

proper pattern for your data. You can insert some sample data, try out different kind

of patterns and immediately review the result.

• Management: This is the place where Kibana configuration takes place. Along with

specifying a configuration and adding plugins, most importantly you can define your

index patterns. These index patterns should match one or more indices stored on your

Elasticsearch instance.

Also, as the time goes by, more and more features are getting added within Kibana. It also

supports machine learning capabilities (identifying anomalous patterns in data, statistical

rarity, unusual behaviors, prediction of future behavior),infrastructure (identifying

infrastructure problems in real-time, explore metrics and logs of servers, containers or

services) , APM (automatically collects in-depth performance metrics and errors from inside

your applications, visualizing application bottlenecks), Graph (discovery of data items

relations, graph-based recommendations for e-commerce), Monitoring (health and

performance data for the elastic products, alerts).

One last thing we want to focus upon regarding Kibana interface is the query bar of Kibana

providing a very simple and intuitive way to search data, hiding beneath the powerful JSON-

based Query DSL that we will explain further on section 3.4. Autocomplete and a simplified

query syntax are available, making the querying experience a very user-friendly process.

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

23

Figure 17 Constructing query using Auto-complete in Kibana query bar

Figure 18 Adjusted visualizations upon result of the query on Kibana dashboard

Of course you are able to use the same query on Discover tab of Kibana, in order to directly

get all the matching documents as illustrated below.

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

24

Figure 19 Adjusted documents list upon result of the query on Kibana discover

Overall, we believe that Kibana is a very powerful tool being capable of serving multiple use

cases, for analyzing visualizing data in the most insightful way.

2.5 Industry use cases
The elastic products family can be used for a wide variety of applications. We hereby present
some cases where elastic is a perfect fit and showcasing some real-world applications by big
companies.

Elasticsearch can be a perfect fit for applications that require fast full text search on any kind
of unstructured data, supporting also autocomplete suggestions. What is more, alerting
based on specific event is another interesting aspect of Elasticsearch. For example, alert a
user when the price of a specific product he has shown interest in falls below a specific
amount on some company provider of his area.

Another typical case would be to collect and analyze log or transaction data, looking for
trends, anomalies, aggregations, with any kind of data mining or machine learning techniques.
Lastly, with the introduction of Kibana, visualizing a lot of data in a wide variety of ways has
never been easier. Business intelligence is fully represented and heavily used within the
elastic products supporting complex data analysis queries and providing insightful
dashboards.

Worth mentioning is also the Elasticsearch capability on time series data like metrics and
application events. With powerful Beats handling the delivery of data from source and
Timelion user interface within Kibana handling the visualization, time series data has become
one of the famous use cases of elastic products family.

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

25

Elasticsearch is already used by many companies and for a very wide variety of
applications. Below there are a few sample use-cases of Elasticsearch18:

• Wikipedia: Full-text search to provide suggested text.

• The Guardian: Give editors current feedback about public opinion on published media

through social and visitor data.

• Stack Overflow: Complete full-text search, geolocation queries and source related

questions and/or answers.

• GitHub: Queries billions of lines of code with the search engine.

• Netflix: Monitoring and analysing customer service related operations and security
related logs.

• LinkedIn: Support their load in real time and monitor performance and security.

As the uses of Elasticsearch continue to grow and change over time, it expected that more
and more use cases will be supported in the future.

3 PRACTICAL EXAMPLE

In this chapter, we present a practical example of using elasticsearch with a specific dataset.

Firstly, we show the steps needed to perform the installation of elasticsearch. Then, we

present the NYPD Motor Vehicle Collision19 data that we will use for our example. After, we

present the steps needed to appropriately load the data into elasticsearch with Beats and

visualize them in Kibana, based on an example of elasticsearch usage20.

3.1 Installation Guide

In this section we will go through the installation of the four main products of elastic family:

Elasticsearch, Kibana, Logstash and Filebeat. As you will see on the guide, installations are

straight forward and you can get it all running within few minutes.

3.1.1 Installing Elasticsearch

Hereby the installation steps:

1. Download the appropriate (for your system) file from the download page:

https://www.elastic.co/downloads/elasticsearch

2. Unzip folder and open a command line there.

3. Run bin/elasticsearch (or bin\elasticsearch.bat on Windows)

4. Run curl http://localhost:9200/ (or Invoke-RestMethod http://localhost:9200 with

PowerShell on windows)

Elasticsearch is up and running on your localhost:9200. Point your browser there and you

should get something like this: (note the tagline: “You Know, for Search”)

18 https://www.quora.com/What-are-use-cases-of-Elasticsearch
19 https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95?
20 https://github.com/elastic/examples/tree/master/Exploring%20Public%20Datasets/nyc_traffic_accidents

https://www.elastic.co/downloads/elasticsearch

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

26

1. {"name" : "ukLIVGf",
2. "cluster_name" : "elasticsearch",
3. "cluster_uuid" : "Vdl55ZTJRbSlPC48ucvsVQ",
4. "version" : {
5. "number" : "6.5.2",
6. "build_flavor" : "default",
7. "build_type" : "zip",
8. "build_hash" : "9434bed",
9. "build_date" : "2018-11-29T23:58:20.891072Z",
10. "build_snapshot" : false,
11. "lucene_version" : "7.5.0",
12. "minimum_wire_compatibility_version" : "5.6.0",
13. "minimum_index_compatibility_version" : "5.0.0" },
14. "tagline" : "You Know, for Search" }

3.1.2 Installing Kibana

Hereby the installation steps:

1. Download the appropriate (for your system) file from the download page:

https://www.elastic.co/downloads/kibana

2. Unzip folder and open config/kibana.yml in an editor. Set to your Elasticsearch instance:

1. # The URL of the Elasticsearch instance to use for all your queries.
2. elasticsearch.url: "http://localhost:9200"

3. Run bin/kibana (or bin\kibana.bat on Windows)

4. Point your browser at "http://localhost:5601"

Kibana is up and running on your localhost:5601. Point your browser there and you should

see the Kibana interface.

3.1.3 Installing Logstash

Hereby the installation steps:

1. Download the appropriate (for your system) file from the download page:

https://www.elastic.co/downloads/logstash

2. Prepare a proper logstash-simple.conf file:

1. input { stdin { } }
2. output {
3. elasticsearch { hosts => ["localhost:9200"] }
4. stdout { codec => rubydebug }
5. }

3. Run Logstash and specify the configuration file with the -f flag.

1. bin/logstash -f logstash-simple.conf

https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/logstash

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

27

Logstash is up and running. As stated on the configuration file “input{ stdin{ } }” you can type

a row of data on the command line and Logstash will process it and import to Elasticsearch.

Of course, usually configuration file is much more sophisticated. Another example is the one

below, where you can input data from a file.

1. input {
2. file {
3. path => "/tmp/access_log"
4. start_position => "beginning"
5. }
6. }
7.
8. filter {
9. if [path] =~ "access" {
10. mutate { replace => { "type" => "apache_access" } }
11. grok { match => { "message" => "%{COMBINEDAPACHELOG}" } }
12. }
13. date { match => ["timestamp" , "dd/MMM/yyyy:HH:mm:ss Z"] }
14.
15. }
16.
17. output {
18. elasticsearch { hosts => ["localhost:9200"] }
19. stdout { codec => rubydebug }
20. }

3.1.4 Installing Filebeat

Hereby the installation steps:

1. Download the appropriate (for your system) file from the download page:

https://www.elastic.co/downloads/beats/filebeat

2. Unzip folder and open Filebeat.yml in an editor. Set it so that it points at your data.

1. filebeat.prospectors:
2. - type: log
3. paths:
4. - C:/Users/sokpa/Desktop/use_case/nyc_collision/nyc_collision_data.csv
5.
6. output.elasticsearch:
7. hosts: ["localhost:9200"]
8. index: nyc_visionzero
9. pipeline: nyc_collision
10.
11. setup.template.enabled: false

3. Start the demon by running sudo ./Filebeat -e -c Filebeat.yml

Your data will start importing into Elasticsearch and you can immediately visualize them in

Kibana. As the import is processing, Kibana visualizations will be getting updated accordingly.

https://www.elastic.co/downloads/beats/filebeat

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

28

3.2 Importing the data

Once you have Elasticsearch, Kibana and Filebeat installed you are ready to go.

1. Run Elasticsearch and Kibana

<path_to_elasticsearch_root_dir>/bin/elasticsearch
<path_to_kibana_root_dir>/bin/kibana

2. Make sure that both are up and running (change the ports accordingly if you have not

used the defaults).

a. Point your browser at localhost:9200 – should return the details with the

tagline: “You Know, for Search”.

b. Point your browser at localhost:5601 – should display Kibana UI.

3. Download input data

a. Download the CSV version of the NYPD Motor Vehicle Collision dataset from
the NYC Open Data Portal21. In this example, we are renaming the

downloaded CSV file to nyc_collision_data.csv.

To perform this on linux you can simply run:
1. mkdir nyc_collision
2. cd nyc_collision
3. wget https://data.cityofnewyork.us/api/views/h9gi-

nx95/rows.csv?accessType=DOWNLOAD -O nyc_collision_data.csv

4. Put the downloaded input data into one folder along with the 4 files attached to this

project. You should now have a folder with:

a. nyc_collision_data.csv – raw input data file

b. nyc_collision_filebeat.yml – Filebeat config file for importing data

c. nyc_collision_kibana.json – Kibana config file to prebuild dashboard

d. nyc_collision_pipeline.json – pipeline config for processing CSV values

e. nyc_collision_template.json – template for the custom mapping of fields

Let us hereby explain each file and what its place is within our example.

nyc_collision_filebeat.yml

This file configures the run of Filebeat, which we need in order to import data into

Elasticsearch. We need to specify the input, passing the input file path of

nyc_collision_data.csv but also the output. In our case output is Elasticsearch, which

is defined on hosts: [“localhost:9200”]. Remember that 9200 is the default port of

Elasticsearch. However, note that it is possible to output our data from Filebeat into

Logstash and let Logstash handle the route to Elasticsearch. Lastly, we provide a

unique name for our index and pipeline.

21 https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95?

https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-Vehicle-Collisions/h9gi-nx95?

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

29

nyc_collision_pipeline

This is the ingest pipeline for processing csv lines. In other words, it is setting up a

template within Elasticsearch, which will later be mapped to the import data in order

to produce the defined fields along with their transformations. More specifically,

defines the fields structure and types and perform any transformations that are

needed (like trimming, converting types, remove unnecessary fields, combine or

create fields based on the input). Let us now present the transformations that occur

within that file:

• Firstly, the pattern of the whole row is defined under grok>patterns. In this

pattern we use some custom patterns that are defined exactly after this, on

“pattern_definitions”. As you can observe it is possible to use a custom pattern

inside another custom pattern if all are defined.
"CUSTOM_DATE": "%{MONTHNUM}/%{MONTHDAY}/%{YEAR},%{CUSTOM_TIME}",

"CUSTOM_TIME": "%{HOUR:hour_of_day}:%{MINUTE}",

"LOCATION": "%{BASE10NUM},%{SPACE}%{BASE10NUM}"

• Then, it trims several fields and performs the appropriate type conversions following

1. {
2. "convert": {
3. "field": "number_of_persons_injured",
4. "type": "integer",
5. "ignore_failure": true
6. }
7. },

• Plus, it includes some scripting, in order to calculate some fields values, again,

following below structure:

1. {
2. "script": {
3. "lang": "painless",
4. "inline":
5. "if (ctx.number_of_persons_killed == '') {
6. ctx.number_of_persons_killed = 0;
7. }
8. if (ctx.number_of_persons_injured == '') {
9. ctx.number_of_persons_injured 0;
10. }
11.
12. ctx.number_persons_impacted = ctx.number_of_persons_killed +

 ctx.number_of_persons_injured;",
13. "ignore_failure": true
14. }
15. },

• Again, some different calculations occur in order to define an arraylist of items, based

on the input data values.

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

30

1. {
2. "script": {
3. "lang": "painless",
4. "inline": "HashSet factors = new HashSet();
5. factors.add(ctx.contributing_factor_vehicle);
6. factors.add(ctx.contributing_factor_vehicle_2);
7. factors.add(ctx.contributing_factor_vehicle_3);
8. factors.add(ctx.contributing_factor_vehicle_4);
9. factors.add(ctx.contributing_factor_vehicle_5);
10. factors.remove('Unspecified');
11. factors.remove('');
12. ctx.contributing_factor_vehicle = new ArrayList(facto

rs);",
13. "ignore_failure": true
14. }
15. },

• Lastly, it ignores some values that are no longer of use:

1. {
2. "remove": {
3. "field": "contributing_factor_vehicle_2",
4. "ignore_failure": true
5. }
6. },

nyc_collision_template.json

The index’s settings and template, describing the fields of each document that will be

stored. In ElasticSearch’s terms this is called the Mapping, which is the process of

defining how a document, and the fields it contains, are stored and indexed. In this

specific case, the documents that will be stored, are as defined in the

nyc_collision_pipeline.yml and discussed above.

nyc_collision_kibana.json

This file holds the exported kibana visualizations as defined in the original repository.

5. Now it is time to run all the configurations on the mapping fields schema we created

above. Open a command line on the folder containing all our files. First, we install the

pipeline instance into Elasticsearch using the below curl command:

1. curl -XPUT -H 'Content-
Type: application/json' 'localhost:9200/_ingest/pipeline/nyc_collision' -
d @nyc_collision_pipeline.json

Then, we install the index template into Elasticsearch executing below command:

1. curl -XPUT -H 'Content-
Type: application/json' 'localhost:9200/_template/nyc_collision' -
d @nyc_collision_template.json

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

31

2. By now, Elasticsearch is ready to receive our input. We need to feed it using

Filebeat and the configuration file we created for this purpose. Move the config

file (nyc_collision_filebeat.yml) into the Filebeat installation folder and then

execute in the following command:

1. ./filebeat -e -c nyc_collision_filebeat.yml

Congratulations. You have successfully imported your data into Kibana.

3.3 Building Visualizations in Kibana

After the data have been imported, we can now directly view them in Kibana. Just follow the

below simple steps:

1. Point your browser to localhost:5601 to access Kibana (adapt port if you have not

used the default one).

2. On the menu items, go to Management tab > Index Patterns > Create index pattern

3. Specify nyc_visionzero as index pattern name and click on Next step.

4. Select @Timestamp as Time field and finish the wizard.

5. As we have provided the exported Kibana json file you can simply import it and directly

view all visualizations. To do that simple go to Management > Select Saved Objects

tab from the above menu bar L> Import, and select nyc_collision_kibana.json

6. On the menu go to Dashboard, open NYC Motor Vehicles Collision dashboard and

happy data hunting!

3.3.1 Accidents map

As an example, we hereby explain the creation of one visualization which is added to the

dashboard. To build the accidents map where geolocation of each accident is plotted, we

need to go on Visualize tab, click on add visualization (+) and select “Coordinate Map” type.

Then we select our index: nyx_visionzero. On Metrics we let “Count” as we are interested in

the number of accidents for a region. On buckets we select Geohash and we select location

as the field to target and our accident maps is ready. It is worth noting that it is an interactive

map, meaning that as we zoom out or zoom in, the data are adjusted accordingly.

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

32

3.3.2 Other Visualizations

Similarly, we can create other useful visualizations that can give us a good intuition over our

data. Note that all visualizations in the dashboard adjust their data on the given query.

3.4 Querying Elasticsearch

It is time to see how some basic search engine queries look like in Elasticsearch. Queries are

done via HTTP requests at the Elasticsearch server, which runs a CRUD HTTP API.

There are two main ways to query Elasticsearch:

1. URI Search, which we explore in 3.4.1

2. Request Body Search, which we explore in 3.4.2

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

33

3.4.1 URI Search

The easiest way to search an Elasticsearch cluster is through URI search. You can pass a simple

query to Elasticsearch using the q query parameter. The following query will search the

nyc_visionzero index for documents with a borough field equal to “MANHATTAN”

(q=borough:MANHATTAN) and return 1 of them(size=1):

1. curl “http://localhost:9200/nyc_visionzero/_search?size=1;q=borough:MANHATTAN”

This returns the following results in JSON format:

1. {
2. "took" : 16,
3. "timed_out" : false,
4. "_shards" : {
5. "total" : 5,
6. "successful" : 5,
7. "skipped" : 0,
8. "failed" : 0
9. },
10. "hits" : {
11. "total" : 240736,
12. "max_score" : 1.7550646,
13. "hits" : [
14. {
15. "_index" : "nyc_visionzero",
16. "_type" : "doc",
17. "_id" : "5d_KlGcB7iJGd2DqSMju",
18. "_score" : 1.7550646,
19. "_source" : {
20. "number_of_motorist_injured" : 0,
21. "latitude" : "40.785183",
22. "number_of_cyclist_killed" : 0,
23. "on_street_name" : "",
24. "source" : "/home/jp/Projects/adb_elasticsearch/nyc_collision_example/dat

a/nyc_collision_data.csv",
25. "borough" : "MANHATTAN",
26. "number_of_persons_killed" : 0,
27. "zip_code" : "10024",
28. "contributing_factor_vehicle" : [
29. "Passing Too Closely"
30.],
31. "number_persons_impacted" : 0,
32. "intersection" : "--",
33. "host" : {
34. "name" : "jp-laptop"
35. },
36. "beat" : {
37. "hostname" : "jp-laptop",
38. "name" : "jp-laptop",
39. "version" : "6.5.2"
40. },
41. "number_of_pedestrians_killed" : 0,
42. "off_street_name" : "155 WEST 83 STREET",
43. "hour_of_day" : 14,
44. "longitude" : "-73.97512",
45. "number_of_motorist_killed" : 0,
46. "offset" : 5443859,
47. "unique_key" : "3995295",
48. "prospector" : {
49. "type" : "log"
50. },

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

34

51. "vehicle_type" : [
52. "Station Wagon/Sport Utility Vehicle"
53.],
54. "message" : "10/06/2018,14:45,MANHATTAN,10024,40.785183,-

73.97512,\"(40.785183, -
73.97512)\",,,155 WEST 83 STREET ,0,0,0,0,0,0,0,0,Passing Too
Closely,Unspecified,,,,3995295,Station Wagon/Sport Utility Vehicle,,,,",

55. "number_of_cyclist_injured" : 0,
56. "input" : {
57. "type" : "log"
58. },
59. "@timestamp" : "2018-10-06T14:45:00.000-05:00",
60. "cross_street_name" : "",
61. "number_of_pedestrians_injured" : 0,
62. "number_of_persons_injured" : 0,
63. "location" : "40.785183, -73.97512"
64. }
65. }
66.]
67. }
68. }

For the readability of the rest of the document, we will not present the results of the search

queries from now on.

Note: Ranking Documents

You can notice in line 18 there is a score field returned. Scoring is a feature much needed
in search engine databases to rank documents by their significance. This score is calculated
against the documents in Elasticsearch based on the provided queries. Factors such as the
length of a field, how often the specified term appears in the field, and (in the case of
wildcard and fuzzy searches) how closely the term matches the specified value all influence
the score. The calculated score is then used to order documents, usually from the highest
score to lowest, and the highest scoring documents are then returned to the client. One
can influence the scores of different queries in various ways, for example by using the boost
parameter for specific word in the search query. This is especially useful if you want certain
queries in a complex query to carry more weight than others and you are looking for the
most significant documents.

By leveraging the Lucene syntax, we can build some impressive searches, such as a fuzzy

search alternative of the previous search (note that now we are searching MAHNATTAN,

which doesn’t exist in the database, instead of MANHATTAN), but specify that a distance of 1

from the searched word is allowed (MAHNATTAN~1).

1. curl “http://localhost:9200/nyc_visionzero/_search?size=1;q=borough:MAHNATTAN~1”

Several options are available that allow you to customize the URI search by adding and/or

clauses to constrain your searches, using regex expressions, wildcards or range queries.

Moreover you can specify which analyzer to use (analyzer), whether the query should be

fault-tolerant (lenient), and whether an explanation of the scoring should be provided

(explain).

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

35

Although the URI search is a simple and efficient way to query your cluster, you’ll quickly find

that it doesn’t support the full capacity of Elasticsearch. To profit from it, you must use

Request Body Search. Using Request Body Search allows you to build a complex search

request using various elements and query clauses that will match, filter, and order as well as

manipulate documents based on multiple criteria.

3.4.2 Request Body Search

Request Body Search uses a JSON document that contains various elements to create a

search. Not only can you specify search criteria, you can also specify the range and number

of documents that you expect back, the fields that you want, and various other options. This

is done using the Query DSL language.

Let’s see a complex example, that will use some of the most used capabilities of Query DSL.

1. curl -XGET "http://localhost:9200/nyc_visionzero/_search" -H 'Content-
Type: application/json' -d'

1. {
2. "size": 500,
3. "query": {
4. "bool": {
5. "must": [
6. {
7. "range": {
8. "@timestamp": {
9. "gte": "15/09/2018",
10. "lte": "20/12/2018",
11. "format": "dd/MM/yyyy"
12. }
13. }
14. },
15. {
16. "fuzzy": {
17. "borough": "MAHNATTAN"
18. }
19. }
20.],
21. "should": [
22. {
23. "match": {
24. "message": {
25. "query": "PLACE"
26. }
27. }
28. }
29.],
30. "must_not": [
31. {
32. "match": {
33. "message": {
34. "query": "west avenue"
35. }
36. }
37. }
38.]
39. }
40. }
41. }'

Ioannis Prapas Search engines and Elasticsearch Sokratis Papadopoulos

36

The above query returns the 500 most relevant accident documents that:

• Must have: (The clause must appear in matching documents and will contribute to the

score)

o A timestamp ranging from 15/09/2018 to 20/12/2018

o A field borough that can be fuzzily matched to the word “MAHNATTAN”

• Should have (The clause should appear in matching documents and will contribute to

the score. If must doesn’t return anything, this can match documents, otherwise it just

contributes to the scores)

o Matching for the word “PLACE” in the field message (this fields contains the

csv row input as text)

• Must not have (The clause must not appear in matching documents)

o Matching in the field message for the string “west avenue”

4 CONCLUSION

With the size of unstructured text data in the modern world, searching engine databases have

become quite relevant. Smart data structures based on inverted indexes allow them to quickly

perform full text analytics, document ranking based on relevance and a whole range of

features needed to search text.

Elasticsearch is a powerful full-fledged search engine tool that offers a wide range of features

that constantly get expanded within the Elastic Stack ecosystem. It is easy to you started, as

it is very straightforward to add data with Logstash and create interactive visualizations of

them with Kibana. With updated versions it gets even more features related to data analytics

such as machine learning, time series analysis, rollup queries and geographical queries to

name a few. Elastic products family is certainly a very promising engine that develops rapidly

over the years, having already created a big enthusiastic open source community.

