
Document stores using

CouchDB

2018

ADVANCED DATABASE PROJECT
APARNA KHIRE, MINGRUI DONG

aparna.khire@vub.be, mingdong@ulb.ac.be

mailto:aparna.khire@vub.be
mailto:mingdong@ulb.ac.be

1

Table of Contents
1. Introduction .. 3

2. Background ... 3

2.1 NoSQL Database ... 3

3. Document Stores... 4

3.1 What is Document-stores? .. 4

3.2 Document Store vs. Relational Database .. 5

3.2.1 Storage Structure .. 5

3.2.2 Schemas ... 5

3.2.3 Scalability .. 6

3.2.4 Relationships .. 6

3.3 Document Store vs Key-Value Databases .. 6

4. CouchDB .. 7

4.1 Why should we use CouchDB? ... 7

4.2 CouchDB vs MongoDB [5] .. 8

4.3 CouchDB vs CouchBase [6] ... 8

4.4 Installation ... 9

4.5 Indexing in CouchDB.. 12

4.5.1 MapReduce .. 12

4.6 Replication .. 12

5. Application ... 13

5.1 Topic.. 13

5.2 Schema for Relational Database ... 14

5.2.1 ER-Diagram ... 14

5.2.2 Relation Schema Diagram ... 14

5.3 Structure for Document Store: .. 14

5.4 Importing Dataset .. 15

5.4.1 Importing Dataset into MySQL ... 15

5.4.2 Importing Dataset into CouchDB .. 17

5.5 Testing and Comparison.. 19

5.5.1 CRUD Operations: ... 19

5.5.2 Selector Queries ... 21

6. Results and Analysis ... 28

2

7. Conclusion .. 30

8. References .. 31

3

1. Introduction

With the onset of different kinds of applications working with different forms of data

introduced on the web, it is required to introduce different kind of database, as well, to store

and manage this data. With this, we also want databases that can be scalable and distributed

to handle large amount of such data.

In this project, we study one such database, the document stores database using CouchDB.

We compare this DB with the traditional DBMS like MySQL, in terms of the processing

time for each type of query and the complexity of creating such queries.

We will consider the dataset from the food delivery app – Zomato. In this dataset, reviews

for all registered restaurants are considered.

2. Background

If the data requirements are not clear at the inception of the project or if we are dealing with

massive amounts of unstructured data, it will be very difficult, if not impossible, to develop

a relational database with clearly defined schema. For this reason, the non-relational

databases came into picture. It offers greater flexibility than their traditional counterparts.

Non-relational databases are like file folders, assembling related information of all types.

In the below Fig. 1, we can see an example of an invoice and contact card. Both these

documents may have different structured data for each customer.

Figure 1: Image Src - couchDB.org

2.1 NoSQL Database

Unstructured data from the web can include social media sharing, personal settings,

photos, location-based information, review metrics, usage metrics, and more. This type

of unstructured data is stored, processed, and analysed using schema-less alternatives as

NoSQL, meaning “Not only SQL.” While the term NoSQL encompasses a broad range

of alternatives to relational databases, what they have in common is that the data can be

maintained with more flexibility.

4

Instead of tables, NoSQL [1] databases are document-oriented. This way, non-structured

data (such as articles, photos, social media data, videos, or content within a blog post)

can be stored in a single document that can be easily found but is not necessarily

categorized into fields like a relational database does.

NoSQL databases are widely recognized for their ease of development, functionality, and

performance at scale. They use a variety of data models, such as:

• Key-value

• Column

• Document

• Graph

• In-memory

• Search

In this project, we will experiment with one such NoSQL database, the Document store

using CouchDB.

3. Document Stores

3.1 What is Document-stores?

It is a database that uses a document-oriented model to store data.

Document [2] databases store each record and its associated data within a single

document. Each document contains semi-structured data that can be queried using

languages such as XQuery, XSLT, SPARQL, Java, JavaScript, Python, etc.

While each document-oriented database implementation differs, but in general, they all

assume documents encapsulate and encode data (or information) in some standard format

or encoding. Encodings mostly used are - XML, YAML, JSON, and BSON, as well as

binary forms like PDF and Microsoft Office documents (MS Word, Excel, and so on). In

our project, we are using the JSON format for data encoding.

5

Figure 2: XML form of a Document

Figure 3: JSON form of the Document

Some of the leading document store databases are MongoDB, CouchBase, CouchDB,

MarkLogic, OrientDB, etc.

3.2 Document Store vs. Relational Database

3.2.1 Storage Structure

As mentioned in the above explanations, data is stored in a table, in relational

database systems, whereas the data is stored in documents in the document

stores.

3.2.2 Schemas

With relational databases, you must create a schema before you load any data.

With document store databases, you have no such requirement. The data can be

loaded without any predefined schema. Thus, with a document store, any two

documents can contain a different structure and data type.

6

For example, if a user is supposed to fill a contact information form and he

wishes to enter a Fax number along with a mobile number, then a document

with both the numbers can be created. On the other hand, if another user does

not have a Fax machine and he provides only the mobile number, the document

created in this case will not have field called Fax number at all. But if this was

a relational database, fax number would still be a field for both users – it would

just contain a value or null in the above scenario. In other words, even if only

one user has a value of fax number, this would be a field required in the table,

having a lot of null values.

3.2.3 Scalability

Document databases can scale very well, horizontally. Data can be stored over

a large distributed system and it will perform well.

Relational databases are not well suited to scale in this fashion. But are more

suited towards scaling vertically (i.e. adding more memory, storage, etc). But

this vertical scaling can reach up a certain limit.

3.2.4 Relationships

Document stores do not have foreign keys, like relational databases. Foreign

keys are used by relational databases to enforce relationships between tables. If

a relationship needs to be established with a document database, it would need

to be done at the application level. However, in the document model, there is no

need to establish this relationship, as any data associated with a record is stored

within the same document.

3.3 Document Store vs Key-Value Databases

Document databases are similar to key-value databases, as in, there is a key and a

value. Data is stored as a value. Its associated key is the unique identifier for that

value.

The difference is that, in a document database, the value contains structured or semi-

structured data. In key-value databases, these store all the data in multiple key-value

pairs without having any relation between them. But, document databases maintain

sets of key-value pairs within a document. That is, similar key-value pairs are stored

in a single document. This is helpful when we have complex queries. For example,

store all the orders having fields such as name, shipping address, order quantity,

price, etc. within the same document.

Document databases also support indexing, which can improve query performance

by using filter criteria. In the above example, a query like searching for all orders

placed in the last 10 days.

7

4. CouchDB

CouchDB is an open source NoSQL database based on common standards to facilitate

Web accessibility and compatibility with a variety of devices. CouchDB is written in

Erlang, a computer language highly optimized for concurrency, distribution and fault

tolerance.

Data in CouchDB is stored in the JavaScript object notification (JSON) format and

organized as key-value pairs. The key is a unique identifier of the data and the value is

the data itself or a pointer to the data’s location. Standard database functions are all

performed by JavaScript. OS-agnostic, device-independent Web standards allow

databases to perform well for the widest variety of users.

4.1 Why should we use CouchDB?

CouchDB [3] has several features that make it powerful such as:

• Easy cross server replication through instances

• Its internal architecture is fault-tolerant, and failures occur in a controlled

environment and are dealt with gracefully

• Single problems do not cascade through an entire server system but stay

isolated in single requests

• CouchDB is designed to handle varying traffic. For instance, if a website is

experiencing a sudden spike in traffic, CouchDB will generally absorb a lot

of concurrent requests without falling over. It may take a little more time for

each request, but they all get answered.

• Quick indexing and search and retrieval.

• RESTful Web interface.

• Documents are accessible through browsers and indices can be queried

through HTTP.

• Index, combine, and transform operations performed with JavaScript.

• Simple create, read, update, delete (CRUD) operations.

• Uses advance MapReduce.

• No Locking:

Regular RDBS like MySQL and as well NoSQL databases use locking to

make sure that a table or row is not modified in the same time by another

client. Instead CouchDB uses a concept called MVCC (Multi Version

Concurrency Control). In the below figure 4, you can see the difference

between locking and MVCC, basically reads do not wait for a table to be

unlocked when the table is edited. This means that under heavy load the

system will use the resources better.

Eventual consistency [4] offers the ability to provide partition tolerance and

availability.

8

Figure 4: MVCC (Image source: [4])

Besides making databases and documents available to a wide audience of users, CouchDB also

facilitates Web app development and makes it possible to serve apps directly from the database.

4.2 CouchDB vs MongoDB [5]

Property CouchDB MongoDB

Speed Slower in comparison Faster in comparison

Mobile Support Can run on iOS and Android

devices

No mobile support provided

Replication Master-master and master-

slave replication

Master-slave replication

Size CouchDB can grow with size

of database

MongoDB better suited for

rapidly growing database

Syntax Queries use MapReduce

functions

Query syntax closer to SQL

4.3 CouchDB vs CouchBase [6]

CouchBase is very similar to CouchDB

Property CouchDB CouchBase

Data models Document Document, Key-Value

Storage Append-only B-Tree Append-only B-Tree

Consistency Eventual Strong

Topology Replicated Distributed

Replication Master-Master Master-Master

Automatic failover No Yes

Integrated cache No Yes

Memcached compatible No Yes

Locking Optimistic with MVCC Optimistic & Pessimistic

MapReduce (Views) Yes Yes

Query language No Yes, N1QL (SQL for JSON)

Secondary indexes Yes Yes

9

4.4 Installation

1. Download the Windows Installer from the CouchDB website,

http://couchdb.apache.org/#download

2. Once the installation [7] is complete, open CouchDB using Fauxton,

http://127.0.0.1:5984/_utils/

3. Fauxton [8]: Fauxton is a native web-based interface built into CouchDB. It

provides a basic interface to the majority of the functionality, including the ability

to create, update, delete and view documents and design documents. It provides

access to the configuration parameters, and an interface for initiating replication.

4. Fauxton Setup: We have setup CouchDB as a single node

http://couchdb.apache.org/#download
http://127.0.0.1:5984/_utils/

10

5. Setup credentials for login:

6. Create a new database: sample_db

7. Create a new document

11

8. We can query the database using the Mango Query API in Fauxton

9. But the applications can query the database using HTTP requests [9]

Figure 5: HTTP POST request

Figure 6: HTTP Response

12

4.5 Indexing in CouchDB

Views [10] in CouchDB are similar to indexes in SQL. Views in CouchDB can be

used for filtering documents, retrieving data in a specific order, and creating efficient

indexes so you can find documents using values within them. Once you have indexes,

they can represent relationships between the documents. These view results are

stored in a B-tree index structure.

4.5.1 MapReduce

CouchDB uses MapReduce, a two-step process that looks at all the documents

and creates a map result consisting of an ordered list of key/value pairs. The

mapping occurs once after a document is created. After that, it is not changed

unless the document is updated.

The map reduce [10] functions are written in Javascript. Map functions take a

document as argument and emit key/value pairs. CouchDB stores the emitted

rows by constructing a sorted B-tree index, so the row lookups by key require a

small memory and processing footprint, while writes avoid seeks. Generating a

view takes O(N), where N is the total number of rows in the view. However,

querying a view is very quick, as the B-tree remains shallow even when it

contains many keys.

Reduce functions operate on the sorted rows emitted by map view functions.

The reduce function is run on every node in the tree in order to calculate the

final reduce value. At the end, the reduce function can be incrementally updated

upon changes to the map function. The initial reduction is calculated once per

each node (inner and leaf) in the tree.

When the reduce function is run on inner nodes, the rereduce flag is true. This

allows the function to account for the fact that it will be receiving its own prior

output. When rereduce is true, the values passed to the function are intermediate

reduction values as cached from previous calculations. When the tree is more

than two levels deep, the rereduce phase is repeated, consuming chunks of the

previous level’s output until the final reduce value is calculated at the root node.

4.6 Replication

CouchDB supports both master-master and master-slave replication. This allows low

latency access to data regardless of location. Replication in CouchDB is as simple as

sending HTTP requests to the database with a source and target.

CouchDB will start sending any changes that occur in the source to the target

database. This is a unidirectional process. If you want a bidirectional process, you

will need to trigger the replication on the destination server with it being the source

and the remote server being the destination.

13

5. Application

5.1 Topic

In this project, we consider the dataset [11] from Zomato, which included a list of

restaurants located in different cities of different countries and their rating based on

the reviews given by the customers. We have a total of 9551 records for this data.

Consider the Zomato.csv file, we have the following fields:

• Restaurant ID

• Restaurant Name

• Country Code

• City

• Address

• Locality

• Locality Verbose

• Longitude

• Latitude

• Cuisines

• Average Cost for two

• Currency

• Has Table

• Has Online

• Is delivering now

• Switch to Order Menu

• Price range

• Aggregate rating

• Rating color

• Rating text

• Votes

Using this data, we compare the structure of data storage in both CouchDB and

MySQL. Also, we will compare the query performance between the two.

14

5.2 Schema for Relational Database

The dataset is already in the form of documents store, that is, each record corresponds

to one document. But we had to create a schema corresponding to this dataset for

storing this data in MySQL.

5.2.1 ER-Diagram

The schema created is as follows:

Figure 7: ER Diagram for Zomato Dataset

5.2.2 Relation Schema Diagram

The corresponding relational schema for the above ER diagram is as follows:

Figure 8: Relational Schema for Zomato

5.3 Structure for Document Store:

Each record for a restaurant review is stored in a single document. Each document

has a unique _id as an identifier. In the below figure, we can see how a document

looks. Here _id and restaurantID can be the same, but we have kept it different as

more reviews can be added for the same restaurantID in future.

15

Figure 9: Document Structure

5.4 Importing Dataset

As the dataset is in a CSV form, we import this dataset into both MySQL and

CouchDB.

5.4.1 Importing Dataset into MySQL

Importing data in MySQL is simple. Just specify the csv file from which you

want to import.

16

Specify the columns we want to keep in our RestaurantInfo Table using the above

schema as below screenshot. Repeat the below procedure, to create five tables as in the

relational schema.

17

5.4.2 Importing Dataset into CouchDB

To import the dataset into CouchDB, we use a python code which reads a json

file as input and for each json object and creates a corresponding json document

in CouchDB. We create a database called sample_db, where we will import all

the data into.

 Pre-requisites to run the code:

1. Python and pip already installed

2. Install couchdb package using pip command: pip install couchdb

3. Convert the csv file into a single json file using online tools

In the figure below, the python code [12] to bulk import the dataset:

18

Figure 10: Code snippet to import json file in couchdb

Figure 11: Execute python code

Figure 12: Imported Data view in CouchDB

19

5.5 Testing and Comparison

We are using Fauxton to perform the operations on the CouchDB as it provides a good UI to

view queries. It can be used to perform basic and simple queries. But this can also be done

using cURL commands for HTTP requests.

5.5.1 CRUD Operations:

1. Insert a new record for a new restaurant with all details.

In CouchDB, inserting a new document is easy.

Firstly, we just go into a certain

database where we want our

new document located.

And click the “Create

Document” button.

Then, we can just write any new key-value pairs as a json

document. So, no query is required for this.

In case of bulk insert, we can use the python code above

or HTTP requests for the same.

In MySQL, however, inserting a new data will be more

difficult considering the relational schema it has, where the

foreign key constraint could also be an obstacle.

For example, take the Restaurant Review schema we have.

If we want to insert a review of a new restaurant, we firstly

should insert the basic information into the RestaurantInfo

table since the RestaurantID is the foreign key for others.

Then we can insert the review information in the Review

table.

20

2. Delete/ Update record

In CouchDB, deleting or updating a record in database is

easy, if we know the document that we want to update. To

delete or update a record we already have, we first just need

to find the record we want to change, then

update it or delete it directly.

In case of bulk delete or update, we have to just write

python code like above figure 11 or use HTTP requests

with the doc_ids and rev_ids for the same.

Again, due to the relation schema of MySQL, the operation

of deleting and updating is more complicated than

CouchDB. To delete one record of one restaurant, for

example, we need to delete all information about it in

several tables according to the key value. But, if we want

to add a new cuisine type which is not included in cuisine

table to a restaurant, we firstly need to add the cuisine

relation in certain table due to the foreign key constraint.

It takes two steps to update the record in this situation.

21

5.5.2 Selector Queries

1. Find all the restaurants which have Chinese cuisine.

 1 2 3 Average

CouchDB Execution

Time (ms)

158 153 151 154

MySQL Execution

Time (ms)

41 11 13 21.67

22

2. Find all the restaurants whose aggregate rating is greater than 4 and country code is

1.

23

 1 2 3 Average

CouchDB Execution

Time (ms)

63 91 115 90

MySQL Execution

Time (ms)

18 14 11 14.33

3. List Top 20 restaurants having max votes in United States.

24

 1 2 3 Average

CouchDB Execution

Time (ms)

1580 1811 1917 1769.33

MySQL Execution

Time (ms)

28 1 0 9.67

4. List all restaurants whose name stat with “L”.

25

 1 2 3 Average

CouchDB Execution

Time (ms)

61 75 111 82.33

MySQL Execution

Time (ms)

61 13 9 27.67

5. Show all information of the restaurants in Canada.

26

 1 2 3 Average

CouchDB Execution

Time (ms)

900 1679 1602 1393.67

MySQL Execution

Time (ms)

1 0 1 0.67

6. Calculate the average rating for restaurants having Indian cuisine.

In CouchDB, it is not possible to conduct selector function

with query in Mongo like listed above. To fulfil the request,

we need to use map and reduce function with JavaScript.

First, we create a view of the data we want to calculate.

Then, we run a reduce function to calculate the result.

We can then get both view of data and result we want but

without any time being consumed.

This map-reduce functionality will be an advantage when

our database is in a distributed structure.

27

7. Count the number of restaurants which have table booking and online delivery.

Like mentioned above, we need map and reduce function

to fulfill the set function. First, we create a view to select

the restaurants matching our standard.

Then, we use the default COUNT function to count the

number.

28

6. Results and Analysis

We did the operation in a laptop (Apple MacBook Pro 2017) with the features as:

Processor: 2.9 GHz Intel Core i5

RAM: 8GB 2133 MHz LPDDR3

We started from finding an appropriate dataset for our document store. After which we created

the relational schema for MySQL. To insert the records into different tables from a single csv

file, we split the original data into several tables according to our schema. We then imported

the data into MySQL and created primary and foreign key constraint for MySQL. Importing

the data into CouchDB was faster once we wrote our code for bulk importing the data.

The next step was to create queries to search data in two different type of database in order to

compare them.

Based on the process and results listed above, our conclusion is that:

CRUD operations: 1 and 2, are inserting, updating and deleting, these operations can be

conducted directly in graphical interface. Updating and deleting the documents can be done

with this UI when we know the document that we want to update or delete. In case we want to

bulk update or delete we can do the same with HTTP POST requests. But, of course, an

additional knowledge of python, in our case, is required to write this program. To do the same

in MySQL, there are various foreign key constraints to be considered. Thus, to bulk insert,

update or delete, it is very important to have the complete knowledge of the relational schema.

On the contrary, CouchDB does not require any pre-defined schema which provides more

flexibility in performing CRUD operations. In other words, every data in CouchDB can have

different schema, making it possible to have various details for different types of records.

Selector Query: 1 to 5, which are queries using certain criteria to find the results, show that

MySQL performs better than CouchDB in searching. We tried different queries including many

methods, like sorting, and joining in MySQL. According to the knowledge we had for

CouchDB and MySQL, we thought searching a single document might be an advantage for

CouchDB compared to the joining in MySQL where multiple tables need to be joined. But

contrary to what we expected, MySQL performed better and ran faster in both queries we

tested. Although we were testing on 10K records for both the databases, this size is not enough

to illustrate the actual power of document stores. Maybe if we had billions of records, only then

would the difference be visible. Also, when we require these records multiple times, it will be

faster with CouchDB with the help of views.

Aggregate Query: 6 and 7 perform aggregate functionality in the two databases. In MySQL,

we can conduct them as easy as queries like selecting and sorting. Whereas, Mango, the query

language interface for CouchDB in Fauxton, does not directly support such a function. To

29

achieve this in CouchDB, we need to use map and reduce function with JavaScript to calculate

data. In the map function, we first create a view to filter the data we need for calculation. Then,

we use a reduce function, either default one or customized one, to do the aggregate calculation

based on the data provided by the map function. In simple words, a view can contain both the

result set and the total number of results. The former is generated by the map function and the

latter by the reduce function. The results of both are stored and indexed. The contents of the

view can be retrieved in batches using a limit constraint but it will also include the total count,

which does not have to be computed on each request (or even on the first request), like in

MySQL.

Thus, we do require to take efforts to gain knowledge of Map-Reduce functionality and

JavaScript to perform this operation in CouchDB. Since we have been working on relational

databases from a long time, it does seem easier to perform aggregate functions in MySQL. But

as mentioned earlier, in real world applications on the internet, data is usually very large and

distributed. Thus, in such a scenario, MySQL will not be helpful, as it would take extremely

long time to retrieve results, which will also require a lot of computational resources to just

retrieve some basic information. Also, the use of Map-reduce functionality is an advantage

when our data is distributed over a network, as this will give us faster results in that case.

30

7. Conclusion

Thus, in this project, we compare the use and applications of document store like CouchDB to

relational database like MySQL in terms of performance and complexity of queries. This

project builds a greater horizon of knowledge for us as students who usually study relational

databases in academics. This project helped us to understand the need and use of NoSQL

databases.

Thus, a NoSQL document store will be suitable when our schema is subjected to frequent

changes or we frequently need data in a computed or aggregated form. Hence it is very

important to choose a right database as per our application.

The applications most suitable for implementing document stores are:

• Content management systems

• eCommerce applications

• Blogging platforms

• User generated content like tweets, comments, reviews, rating etc.

• Data from IoT applications, like various sensor data from IoT devices

As in the future we are leading towards more of user generated content, these databases will be

form a very important part of application development.

31

8. References

1 NoSQL, AWS, Available:https://aws.amazon.com/nosql/

2 Document, AWS, Available:https://aws.amazon.com/nosql/document/

3 CouchDB, Apache, Available:http://docs.couchdb.org/en/stable/intro/why.html

4 CouchDB, Consistency, Apache, Available:

http://docs.couchdb.org/en/stable/intro/consistency.html

5 CouchDB vs MongoDB, Available:https://blog.panoply.io/couchdb-vs-mongodb

6 CouchBase vs CouchDB, Available:https://www.couchbase.com/couchbase-vs-couchdb

7 Installation on Windows, CouchDB,

Available:http://docs.couchdb.org/en/2.2.0/install/windows.html

8 Fauxton Visual Guide, Apache, Available:http://couchdb.apache.org/fauxton-visual-

guide/#using-fauxton

9 Find, Apache,

Available:http://docs.couchdb.org/en/stable/api/database/find.html#selector-syntax

10 Views, Available:http://docs.couchdb.org/en/2.2.0/ddocs/views/intro.html

11 Zomato Restaurants data, kaggle,

Available:https://www.kaggle.com/shrutimehta/zomato-restaurants-data

12 Bulk import CouchDB, Available:http://bitbucket.org/tdatta/tools/src/

13 CouchDB Import, GitHub, Available:https://github.com/glynnbird/couchimport

14 CouchDB Selector Syntax, Apache,

Available:http://docs.couchdb.org/en/stable/api/database/find.html#selector-syntax

