Document stores using
CouchDB

ADVANCED DATABASE PROJECT
APARNA KHIRE, MINGRUI DONG

aparna.khire@vub.be, mingdong@ulb.ac.be

mailto:aparna.khire@vub.be
mailto:mingdong@ulb.ac.be

Table of Contents

I 1117 To L1 Tox {0 o IO OSSPSR 3
N = 7 ot 0| (o]] T RSSO 3
2.1 NOSQL Database.cccuerierieeieriienieeie ettt sttt sttt sreestesneesaeenaeeneas 3
3. DOCUMENT STOTES.......eeiiiieiteeete ettt ettt ettt e b e st et e e s bt e e be e s st e sbeesaeeebeenaee 4
3.1 What iS DOCUMENT-SIOTES?oveeiiiriieiieiieieie ettt st st e e sae e 4
3.2 Document Store vs. Relational Databasecccoeeereeieieiienenieneeeeecee e 5
321 SHOrage SIUCLUIE....coueiiieiieieitiet ettt s 5
322 SCREIMAS ...ttt sttt ettt b e 5
KB T o7 | - o1 1] SRS 6
324 RElAtIONSNIPS...ceeiiieieieee e e 6

3.3 Document Store vs Key-Value Databasesccceceeverierieeieseerieeieseese e 6
4. COUCNDB ...ttt sttt ettt e s be s b e s besbe e st e st et et e nbentenaas 7
4.1 Why should we use COUCNDB?..........cciiiririeriieeeee et 7
4.2 CouchDB VS MONQODB [5] ..cveeueeiiieieieniinierieeieeieetee ettt 8
4.3 CouchDB VS COUChBASE [B] ...vvevverreeireeiieieiiieiie sttt eie ettt st eae s st esae e 8
O 11151 | 11 o] SRR 9
4.5 INdexing iN COUCNDB......cc.coiiiiieiee et 12
451 MAPREUUCE ..ottt ettt ettt et e et a e sre e beeaae s e e sbeenaeennen 12

4.6 REPHCALION ...ttt ettt e et te e aesaeesaeebeenaesreeseennens 12
ST Y o] o] | o= 1 o o IO 13
70 A o] o o3RS 13
5.2 Schema for Relational Databaseccevereririnininieeeeec e 14
I8 R =1 o T o | o IS 14
5.2.2 Relation SChema DIagramcccocceevereereeiiereese e seesieeteseeee e saeeae e 14

5.3 Structure for DOCUMENT STOME:c.eovuiiiiiiierieeieee et s 14
5.4 IMPOIrtiNg DAtASEL.......cceerieiieiierieeieeiere et e et e e re e reete s e sseeseeneesneenns 15
5.4.1 Importing Dataset int0 MYSQLcccooieiieiiriee e 15
5.4.2 Importing Dataset into COUCNDBc..cocuieiieiiieiececeece e 17

55 Testing and COMPAIISON.......cccuiiiriieiieiieeieecte et e stteeteesteeereesseeereesreeebeesseesseessaeans 19
551 CRUD OPEIatiONS:cccereertieiesiesiesireseesteesseseessesssesseessesssessesssesssesseessesssessesnes 19
5.5.2 SEIECION QUETIES ..eeeitvieeieee et e eieeeeiteeeeteeeeteeestteeeetteeeeaaeeeesaeesseeesseeesaseeenseeenns 21

6. RESUILS @NU ANAIYSIS....c.uiiiiiiiiecieeee ettt e b esre e s aaeeaeessaeenneas 28

7.
8.

Conclusion

References

1. Introduction

With the onset of different kinds of applications working with different forms of data
introduced on the web, it is required to introduce different kind of database, as well, to store
and manage this data. With this, we also want databases that can be scalable and distributed
to handle large amount of such data.

In this project, we study one such database, the document stores database using CouchDB.
We compare this DB with the traditional DBMS like MySQL, in terms of the processing
time for each type of query and the complexity of creating such queries.

We will consider the dataset from the food delivery app — Zomato. In this dataset, reviews
for all registered restaurants are considered.

2. Background

If the data requirements are not clear at the inception of the project or if we are dealing with
massive amounts of unstructured data, it will be very difficult, if not impossible, to develop
a relational database with clearly defined schema. For this reason, the non-relational
databases came into picture. It offers greater flexibility than their traditional counterparts.
Non-relational databases are like file folders, assembling related information of all types.
In the below Fig. 1, we can see an example of an invoice and contact card. Both these
documents may have different structured data for each customer.

Real-world data is managed as real-world documents

Invoice 10/07/08
Joe the Plumber
Labor $200.00
Materials $ 75.00
$275.00

Due by: 12/01/08

Figure 1: Image Src - couchDB.org

2.1 NoSQL Database

Unstructured data from the web can include social media sharing, personal settings,
photos, location-based information, review metrics, usage metrics, and more. This type
of unstructured data is stored, processed, and analysed using schema-less alternatives as
NoSQL, meaning “Not only SQL.” While the term NoSQL encompasses a broad range
of alternatives to relational databases, what they have in common is that the data can be
maintained with more flexibility.

Instead of tables, NoSQL [1] databases are document-oriented. This way, non-structured
data (such as articles, photos, social media data, videos, or content within a blog post)
can be stored in a single document that can be easily found but is not necessarily
categorized into fields like a relational database does.

NoSQL databases are widely recognized for their ease of development, functionality, and
performance at scale. They use a variety of data models, such as:

o Key-value
e Column

e Document
e Graph

e In-memory
e Search

In this project, we will experiment with one such NoSQL database, the Document store
using CouchDB.

. Document Stores
3.1 What is Document-stores?

It is a database that uses a document-oriented model to store data.

Document [2] databases store each record and its associated data within a single
document. Each document contains semi-structured data that can be queried using
languages such as XQuery, XSLT, SPARQL, Java, JavaScript, Python, etc.

While each document-oriented database implementation differs, but in general, they all
assume documents encapsulate and encode data (or information) in some standard format
or encoding. Encodings mostly used are - XML, YAML, JSON, and BSON, as well as
binary forms like PDF and Microsoft Office documents (MS Word, Excel, and so on). In
our project, we are using the JSON format for data encoding.

<authors>
<authorname>Sonja Yoerg</authorname>
<books>
<kook>
<bookname>True Places</bookname>
<datereleased>2018</datereleased>
<genre>Fiction</genre>
</ book>
<book>
<bookname>All the best People</bookname>
<datereleased>2017</datereleased>
<genre>Fiction</genre>
</ book>
<book>
<bookname>Honse Broken</bookname:
<datereleased>2015</datereleased>
<genre>Fiction</genre>
{fbookﬂ
</books>
</authors>

Figure 2: XML form of a Document

Figure 3: JSON form of the Document

Some of the leading document store databases are MongoDB, CouchBase, CouchDB,
MarkLogic, OrientDB, etc.

3.2 Document Store vs. Relational Database

3.2.1 Storage Structure
As mentioned in the above explanations, data is stored in a table, in relational
database systems, whereas the data is stored in documents in the document
stores.

3.2.2 Schemas
With relational databases, you must create a schema before you load any data.
With document store databases, you have no such requirement. The data can be
loaded without any predefined schema. Thus, with a document store, any two
documents can contain a different structure and data type.

For example, if a user is supposed to fill a contact information form and he
wishes to enter a Fax number along with a mobile number, then a document
with both the numbers can be created. On the other hand, if another user does
not have a Fax machine and he provides only the mobile number, the document
created in this case will not have field called Fax number at all. But if this was
a relational database, fax number would still be a field for both users — it would
just contain a value or null in the above scenario. In other words, even if only
one user has a value of fax number, this would be a field required in the table,
having a lot of null values.

3.2.3 Scalability
Document databases can scale very well, horizontally. Data can be stored over
a large distributed system and it will perform well.

Relational databases are not well suited to scale in this fashion. But are more
suited towards scaling vertically (i.e. adding more memory, storage, etc). But
this vertical scaling can reach up a certain limit.

3.2.4 Relationships
Document stores do not have foreign keys, like relational databases. Foreign
keys are used by relational databases to enforce relationships between tables. If
a relationship needs to be established with a document database, it would need
to be done at the application level. However, in the document model, there is no
need to establish this relationship, as any data associated with a record is stored
within the same document.

3.3 Document Store vs Key-Value Databases

Document databases are similar to key-value databases, as in, there is a key and a
value. Data is stored as a value. Its associated key is the unique identifier for that
value.

The difference is that, in a document database, the value contains structured or semi-
structured data. In key-value databases, these store all the data in multiple key-value
pairs without having any relation between them. But, document databases maintain
sets of key-value pairs within a document. That is, similar key-value pairs are stored
in a single document. This is helpful when we have complex queries. For example,
store all the orders having fields such as name, shipping address, order quantity,
price, etc. within the same document.

Document databases also support indexing, which can improve query performance
by using filter criteria. In the above example, a query like searching for all orders
placed in the last 10 days.

4. CouchDB

CouchDB is an open source NoSQL database based on common standards to facilitate
Web accessibility and compatibility with a variety of devices. CouchDB is written in
Erlang, a computer language highly optimized for concurrency, distribution and fault
tolerance.

Data in CouchDB is stored in the JavaScript object notification (JSON) format and
organized as key-value pairs. The key is a unique identifier of the data and the value is
the data itself or a pointer to the data’s location. Standard database functions are all
performed by JavaScript. OS-agnostic, device-independent Web standards allow
databases to perform well for the widest variety of users.

4.1 Why should we use CouchDB?

CouchDB [3] has several features that make it powerful such as:

e Easy cross server replication through instances

e Its internal architecture is fault-tolerant, and failures occur in a controlled
environment and are dealt with gracefully

e Single problems do not cascade through an entire server system but stay
isolated in single requests

e CouchDB is designed to handle varying traffic. For instance, if a website is
experiencing a sudden spike in traffic, CouchDB will generally absorb a lot
of concurrent requests without falling over. It may take a little more time for
each request, but they all get answered.

e Quick indexing and search and retrieval.

e RESTful Web interface.

e Documents are accessible through browsers and indices can be queried
through HTTP.

e Index, combine, and transform operations performed with JavaScript.

e Simple create, read, update, delete (CRUD) operations.

e Uses advance MapReduce.

e No Locking:
Regular RDBS like MySQL and as well NoSQL databases use locking to
make sure that a table or row is not modified in the same time by another
client. Instead CouchDB uses a concept called MVCC (Multi Version
Concurrency Control). In the below figure 4, you can see the difference
between locking and MVCC, basically reads do not wait for a table to be
unlocked when the table is edited. This means that under heavy load the
system will use the resources better.
Eventual consistency [4] offers the ability to provide partition tolerance and
availability.

.......

Locking
wiite ﬂ
...... "
Commit fo disk
N T
w0 read

Figure 4: MVCC (Image source: [4])

-t
F

(o]

CouchDB
read
................ €0y “old version”
read
_______) e S0 “0ld version”
write read ,
[[N » “new version”
560

Besides making databases and documents available to a wide audience of users, CouchDB also
facilitates Web app development and makes it possible to serve apps directly from the database.

4.2 CouchDB vs MongoDB [5]

CouchDB

Slower in comparison

Can run on iOS and Android
devices

Property
Speed
Mobile Support

Replication Master-master and master-
slave replication

Size CouchDB can grow with size
of database

Syntax Queries use MapReduce
functions

4.3 CouchDB vs CouchBase [6]
CouchBase is very similar to CouchDB

Property CouchDB

Data models Document

Storage Append-only B-Tree
Consistency Eventual

Topology Replicated
Replication Master-Master
Automatic failover No

Integrated cache No

Memcached compatible No

Locking Optimistic with MVVCC
MapReduce (Views) Yes

Query language No

Secondary indexes Yes

MongoDB
Faster in comparison
No mobile support provided

Master-slave replication

MongoDB better suited for
rapidly growing database
Query syntax closer to SQL

CouchBase

Document, Key-Value
Append-only B-Tree
Strong

Distributed
Master-Master

Yes

Yes

Yes

Optimistic & Pessimistic
Yes

Yes, N1QL (SQL for JSON)
Yes

4.4 Installation
1. Download the Windows |Installer from the CouchDB website,
http://couchdb.apache.org/#download

ﬁﬂpache CouchDB Setup - *

Welcome to the Apache CouchDB Setup
Wizard

The Setup Wizard allows you to change the way Apache
CouchDE features are installed on your computer or to
remove it from your computer. Clidk Mext to continue or

_ Cancel to exit the Setup Wizard.

CouchDB

relax

2. Once the installation [7] is complete, open CouchDB using Fauxton,
http://127.0.0.1:5984/ _utils/

3. Fauxton [8]: Fauxton is a native web-based interface built into CouchDB. It
provides a basic interface to the majority of the functionality, including the ability
to create, update, delete and view documents and design documents. It provides
access to the configuration parameters, and an interface for initiating replication.

4. Fauxton Setup: We have setup CouchDB as a single node

eo0e Project Fauxton x | michelle |

<« C | ® 127.0.0.1:5984/_utils/#setup Y| i

Setup Apache CouchDB % | A

Databases

Welcome to Apache CouchDB!

Setu
B The recommended way to run the wizard is directly on your node (e.g without a Loadbalancer) in front of it.

Active Tasks Do you want to setup a cluster with multiple nodes or just a single node CouchDB installation?
Replication

Documentation

tester

Verify

CouchDB

Faundton on v 100241c

http://couchdb.apache.org/#download
http://127.0.0.1:5984/_utils/

10

5. Setup credentials for login:

B8 inFO-H-415 4 x | [INFO-H-415: X | [} FrontPage-Cc X | i@ 22.Installastion X | 4@ 27.First-Time X @ ProjectFauxtc X ‘eF OM2Mfone- X | & OM2M/one- X | + - x
€« C ® 127.0.0.1:5984/_utils/#setup/singlenode w 8
kmdll Setup Apache CouchDB {}4soN A
g
/.‘ Create Admin credentials.

admin | ssss

- Bind address the node will listen on

~ 127001

Port that the node will use

5984

@ Configure Node

6. Create a new database: sample_db

P Databases - ® CreateDatabase | {}JSON A
- abe

= Name Size # of Docs Actions CnmaiE e

/‘ _global_changes his database failed to load

=] _replicator 23KB 1 oA W

& _users 23KB 1 oa W

7. Create a new document

&« C ® 127.0.0.1:5984/_utils/#database/sample_dk

€ sample_db i

% All Documents
/p Run A Query with MK
indll sample_db > New Document
— Permissions
- Changes @ Create Document o=l

"

© Mango Ind

Design Documents

' id":

o4
o

"name" :

i » @

"coursename™:

&
o

8. We can query the database using the Mango Query API in Fauxton

sample_db » Mango Query

Mango Query @ e

. manage indexes
Run Query Explain

9. But the applications can query the database using HTTP requests [9]

POST fmovies/_find HTTP/1.1
Accept: application/json
Content-Type: application/json
Content-Length: 168

Host: localhost:5984

"selector": {
"year": {"$gt": 2018}
s
"fields": ["_id", "_rewv", "year", "title"],

SO [{"year": “asc"}],
"limit": 2,
"skip": @,

"execution_stats™: true

Figure 5: HTTP POST request

HTTP/1.1 288 OK

Cache-Control: must-revalidate
Content-Type: application/json
Date: Thu, 81 Sep 20816 15:41:53 GMT
Server: CouchDB (Erlang OTF)
Transfer-Encoding: chunked

r

"docs"™: [

v qgn

"176694",
_rev™: "1-54{8e958cc338d2385d9b8cda2fd9l8e",
"year™: 2811,

"title": "The Tragedy of Man

Is
i
"78a5a4",
"_rev": "1-5fl4bablalefac3ebdf85905F47Fba84",
“year": 20811,
"title": "Drive"
¥

1,

"execution_stats": {
"total_keys_examined": @,
"total_docs_examined": 28@,
"total_guorum_docs_examined™: B8,
"results_returned": 2,
"execution_time_ms": 5.52

Figure 6: HTTP Response

12

4.5 Indexing in CouchDB

Views [10] in CouchDB are similar to indexes in SQL. Views in CouchDB can be
used for filtering documents, retrieving data in a specific order, and creating efficient
indexes so you can find documents using values within them. Once you have indexes,
they can represent relationships between the documents. These view results are
stored in a B-tree index structure.

45.1 MapReduce
CouchDB uses MapReduce, a two-step process that looks at all the documents
and creates a map result consisting of an ordered list of key/value pairs. The
mapping occurs once after a document is created. After that, it is not changed
unless the document is updated.

The map reduce [10] functions are written in Javascript. Map functions take a
document as argument and emit key/value pairs. CouchDB stores the emitted
rows by constructing a sorted B-tree index, so the row lookups by key require a
small memory and processing footprint, while writes avoid seeks. Generating a
view takes O(N), where N is the total number of rows in the view. However,
querying a view is very quick, as the B-tree remains shallow even when it
contains many keys.

Reduce functions operate on the sorted rows emitted by map view functions.
The reduce function is run on every node in the tree in order to calculate the
final reduce value. At the end, the reduce function can be incrementally updated
upon changes to the map function. The initial reduction is calculated once per
each node (inner and leaf) in the tree.

When the reduce function is run on inner nodes, the rereduce flag is true. This
allows the function to account for the fact that it will be receiving its own prior
output. When rereduce is true, the values passed to the function are intermediate
reduction values as cached from previous calculations. When the tree is more
than two levels deep, the rereduce phase is repeated, consuming chunks of the
previous level’s output until the final reduce value is calculated at the root node.

4.6 Replication

CouchDB supports both master-master and master-slave replication. This allows low
latency access to data regardless of location. Replication in CouchDB is as simple as
sending HTTP requests to the database with a source and target.

CouchDB will start sending any changes that occur in the source to the target
database. This is a unidirectional process. If you want a bidirectional process, you
will need to trigger the replication on the destination server with it being the source
and the remote server being the destination.

13
5. Application

5.1 Topic
In this project, we consider the dataset [11] from Zomato, which included a list of
restaurants located in different cities of different countries and their rating based on
the reviews given by the customers. We have a total of 9551 records for this data.
Consider the Zomato.csv file, we have the following fields:

e Restaurant ID

e Restaurant Name
e Country Code

o City

e Address

e Locality

e Locality Verbose
e Longitude

e Latitude

e Cuisines

e Average Cost for two
e Currency

e Has Table

e Has Online

e Is delivering now
e Switch to Order Menu
e Price range

e Aggregate rating
e Rating color

e Rating text

e \otes

Using this data, we compare the structure of data storage in both CouchDB and
MySQL. Also, we will compare the query performance between the two.

14

5.2 Schema for Relational Database

The dataset is already in the form of documents store, that is, each record corresponds
to one document. But we had to create a schema corresponding to this dataset for
storing this data in MySQL.

5.2.1 ER-Diagram
The schema created is as follows:

- -

/ CuisinelD \
//~— —nm\ //(ﬁk\ . e Yy
Votes 'HasTableBooking
NS \eTeviemoomy — ﬁﬁ_\\ —
—_) RestauramlD RestauramName Cuisine

/AverageCon\\ / ‘///

NS -
AN

— = CuisineName
¢ RatingText N \xi ‘//
N4
S Restaurantinfo

- (comroons

AggregateRating CountryCode

A i) _/

<Pr\ceRange> < City) Country
. — — - “\-\7/
- e . s - - Ccumr}Name
/\s(DellvermgNDE @50”"”9%""9/ < Address > \
,a" e ToOrdetidy ~——— — —_—
N

—

Review

Figure 7: ER Diagram for Zomato Dataset

5.2.2 Relation Schema Diagram
The corresponding relational schema for the above ER diagram is as follows:

Restaurantinfo

RestaurantlD

Restaurantame RestaurantCuisine

Address RestaurantlD (Fx) .
Cuisine

City CuisinglD v ST
CountryCode (FK) - u!slne
CuisineName

RestaurantlD 7

AverageCost
HasTableBooking
HasOnlineDelivery
IsDeliveringMow
SwitchToOrderMenu
PriceRange
AgagregateRating
Rating Text
VotesNumber

Country
CountryCode
CountryName

Figure 8: Relational Schema for Zomato

5.3 Structure for Document Store:

Each record for a restaurant review is stored in a single document. Each document
has a unique _id as an identifier. In the below figure, we can see how a document
looks. Here _id and restaurantID can be the same, but we have kept it different as
more reviews can be added for the same restaurantID in future.

15

1
"id": "41d66ce53d885cddl344c7deS540877TE",
"key™: "41d66ce53dBa5cdd1344c7de540087770",
"value™: {
"rev": "1-c4b9642e8e7d8cbcbe5585db2c3n2f23"

. : "41d66ce53d805cdd1344c7des4007 770"

"_rev”: "1-c4b9642e@eldBcbcbc5585db2c3

"Restaurant ID": 6317637,

"Restaurant Name": “Le Petit Souffle”,

"Country Code": 162,

"City™: "Makati City",

"Address™: "Third Floor, Century City Mall, Kalayaan Avenue, Poblacion, Makati City",
“"Locality™: "Century City Mall, Poblacion, Makati City™,

"Locality Verbose™: "Century City Mall, Poblacion, Makati City, Makati City",
"Longitude™: 121.827535,

"Latitude™: 14.565443,

"Cuisines”™: "French, Jlapanese, Desserts”,

"Average Cost for two™: 1180,

"Currency”: “Botswana Pula(P)",

"Has Table booking™: “Yes",

"Has Online delivery™: "No™,

"Is delivering now": "N

"Switch to order menu™: "No™,

"Price range™: 3,

"Aggregate rating™: 4.8,
"Rating color”™: "Dark Green",
"Rating text™: "Excellent™,
“"Votes™: 314

Figure 9: Document Structure

5.4 Importing Dataset
As the dataset is in a CSV form, we import this dataset into both MySQL and
CouchDB.

5.4.1 Importing Dataset into MySQL
Importing data in MySQL is simple. Just specify the csv file from which you
want to import.

16

& Table Data Import - [m} >
Select File to Import
Table Data Import allows you to easily import C5V, 150N datafiles.
You can also create destination table on the fly.
File Path: |C:YJsers\Aparna'Desktop\WUBYYear 2YADB Project\data\zomato. csv | I Browse. ..
< Back Next > Cancel
& Table Data Import - [m] X
Select Destination
Select destination table and additional options.
(0) Use existing table: | i ‘
(®) Create new table: |zomato v| . |Restaurant{nf0
[] brop table if exists
< Back MNext = Cancel

Specify the columns we want to keep in our Restaurantinfo Table using the above
schema as below screenshot. Repeat the below procedure, to create five tables as in the

relational schema.

17

Table Data Import - [m] X

Configure Import Settings

Detected file format: csv g

Encoding: | utf-8 i
Columns:
[source Column Field Type A
Restaurant ID
Restaurant Mame text ~
Country Code
Address text w
[Locality text o "
Restauran... Restauran... Country C City Address Locality Locality Ve... Longitude Latitude Cuisines ™
6300002 Heat - Edsa... 162 Mandaluyo... EdsaShang.. EdsaShang.. EdsaShang.. 121.056831 14.581404 Seafoo
6318506 Ooma 162 Mandaluyo... ThirdFloor,.. 5M Megam.. S5M Megam.. 121.056475 14.585318 Japane
6314302 Sambo Kajin 162 Mandaluyo... ThirdFloor,.. 5M Megam.. SM Megam.. 121.057508 14.58445 Japane
v
< >

5.4.2 Importing Dataset into CouchDB
To import the dataset into CouchDB, we use a python code which reads a json
file as input and for each json object and creates a corresponding json document
in CouchDB. We create a database called sample_db, where we will import all
the data into.

Pre-requisites to run the code:

1. Python and pip already installed
2. Install couchdb package using pip command: pip install couchdb
3. Convert the csv file into a single json file using online tools

In the figure below, the python code [12] to bulk import the dataset:

18

import
import
import
import

svs
couchdb
json

re

DBE_STRING="h

n{json _file, db name, couchdb address):

F 1. database.. No ch we Want to get exception if db exists
= couchdb.Server ()
couch [db_ name]
Json_str = []
2 Read trI json line by 1i and put 1to db
] with open(json_file, encoding="Lz n—-1") as jsonfile:
] for row in jsonfile:
1 for ch in row:
] if{ "}" not in row):
Json_str.append (row)
E continne
Json_str.append("}")
print(json_str)
strl = "".join(json_str)

di _entry = json.loads(strl)

diz. zave (db_entry)
[1

g Jjson_str =

Figure 10: Code snippet to import json file in couchdb

\Desktop
jsondb.json> <new_db

arna\Desktop

tional

DB\Proje
db strin

DE\Pro

/json.json sample db

ct Fauxton - database/sam: X W@

&« C @ 127.0.0.1:5984/_utils/#

€ sample_db ;
All Documents [+]

Run A Query with Mango

1.6. The Core APl — Apache Cou X

Metadata

key

value

€3 Options {}JSON

Permissions
Changes Lul
o Design Documents [+] b
o B
Hﬂ L
L]
e’ L]
8 o
L]
L]
Fausdon an L
v.220 [L]

41d66ce53d805cdd1344c7de54007770

41d66ce53d805cdd1344c7de54007916

41d66ce53d805cdd1344c7de54007d5a

41d66ce53d805cdd1344c7de5400713b

41d66ce53d805cdd1344c7de5400874b

41d56ce53d805cdd1344c7de54009343

41d66ce53d805cdd1344c7de540098c8

41d66ce53d805cdd1344c7de54009¢70

41d66ce53d805cdd1344c7de54009760

41d66ce53d805cdd1344cTdes400aba2

41d66ce53d805cdd1344c7de5400aces

41d66ce53d805cdd1344c7de54007770

41d66ce53d805cdd1344c7de540079%6

41d66ce53d805cdd1344c7de54007d5a

41d66ce53d805cdd1344c7de5400719b

41d66ce53d805cdd1344c7de5400814b

41d66ce53d805cdd1344c7de54009343

41d66ce53d805cdd1344c7de540098¢8

41d66ce53d805cdd1344c7de54009c70

41d66ce53d805cdd1344c7de54009f6h

41d66ce53d805cdd1344c7de5400aba2

41d66ce53d805cdd1344c7de5400aces

{"rev"
{"rev"
{"rev"
{"rev"

{"rev"

{ "rev’

{"rev"

Showing document 1 - 100.

1-c4b9642e0e7dBc6ebe5505.

"1-62a9f3cbb25cfb83c430f08. .

"1-b61f7c834967180455¢cb29c. ..

1-7f8dfb93d506659e7617395.

"1-304785978e4a9112c2b728

"1-92274ce20d4ba5131ad06.

"1-034c345r5ddd 1070027391

"1-d6bfcdcs47bbe6abic620d

", "1-4de724d6580218d5b1918d..

"1-465b336121810c69c82a10

"1-59341df64bd021600eeead.

Documents per page: | 100 v >

Figure 12: Imported Data view in CouchDB

5.5 Testing and Comparison

19

We are using Fauxton to perform the operations on the CouchDB as it provides a good Ul to
view queries. It can be used to perform basic and simple queries. But this can also be done

using cURL commands for HTTP requests.

5.5.1 CRUD Operations:

1. Insert a new record for a new restaurant with all details.

l "
i
CouchDB

relax

N

Mysol

In CouchDB, inserting a new document is easy.
Firstly, we just go into a certain
database where we want our

new document located.
And click the
Document” button.

“Create

Then, we can just write any new key-value pairs as a json
document. So, no query is required for this.

In case of bulk insert, we can use the python code above
or HTTP requests for the same.

"_id":

"_rev":

"RatingText":

"City":

"Votes": 591,
"RestaurantID":
"Locality":
"RestaurantName" :
"Longitude":
"Cuisines":
"HasOnlineDelivery":
"RatingColor":
"PriceRange":
"Latitude":
"IsDeliveringNow":
"CountryCode" :
"AggregateRating”: 4.5,
"LocalityVerbose":
"SwitchtoOrderMenu":
"Currency":
"AverageCostfortwo":
"Address":
"HasTablebooking" :

1200,

In MySQL, however, inserting a new data will be more
difficult considering the relational schema it has, where the
foreign key constraint could also be an obstacle.

For example, take the Restaurant Review schema we have.
If we want to insert a review of a new restaurant, we firstly
should insert the basic information into the Restaurantinfo
table since the RestaurantID is the foreign key for others.
Then we can insert the review information in the Review
table.

2. Delete/ Update record

B

CouchDB

20

N\

NMy

In CouchDB, deleting or updating a record in database is
easy, if we know the document that we want to update. To
delete or update a record we already have, we first just need
to find the record we want to change, then

update it or delete it directly.

In case of bulk delete or update, we have to just write
python code like above figure 11 or use HTTP requests
with the doc_ids and rev_ids for the same.

Again, due to the relation schema of MySQL, the operation
of deleting and updating is more complicated than
CouchDB. To delete one record of one restaurant, for
example, we need to delete all information about it in
several tables according to the key value. But, if we want
to add a new cuisine type which is not included in cuisine
table to a restaurant, we firstly need to add the cuisine
relation in certain table due to the foreign key constraint.
It takes two steps to update the record in this situation.

5.5.2 Selector Queries

1. Find all the restaurants which have Chinese cuisine.

AN

MySOoL

21

AggregateRat. » City Cuisines - RestaurantNa. »
B 44 Mandaluyong City Chinese Din Tai Fung
B 38 Albany Chinese House of China Restaura...
B 42 Cedar Rapids/lowa City Chinese Ting's Red Lantern
G4 Columbus Chinese Chef Lee's Peking Restau...
B4 Davenport Chinese China Cafe
0 41 Des Moines Chinese Tsing Tsao South
B 35 Pocatello Chinese Chang Garden
0 38 Sioux City Chinese Hunan Palace
B 38 Waterloo Chinese Hong Kong Chinese Rest...
B a7 Waterloo Chinese Golden China
B 42 Abu Dhabi Chinese PF. Chang's
B4 Bhopal Chinese Chi Kitchen
0 41 Bhubaneshwar Chinese Silver Streak
B4 Bhubaneshwar Chinese Taste Of China

Showing 4 columns. Show all columns,

Showing document 1 - 20.

a

Documents perpage: 20 %

SELECT I.RestaurantName, I.City, C.CuisineName, R.AggRating

FROM Review R, RestaurantInfo I, RestaurantCuisine RC, Cuisine C
WHERE I.RestaurantID = R.RestaurantID AND

RC.CuisineID = C.CuisineID AND
RC.RestaurantID = I.RestaurantID AND

C.CuisineName = 'Chinese’

RestaurantName City

The Forresta Kitchen & Bar Jaipur
Replay Jaipur
Mainland China New Delhi
Mamu's Infusion Jaipur

Monarch Restaurant - Holiday Inn Jaipur City Centre Jaipur
Chao Chinese Bistro - Holiday Inn Jaipur City Centre Jaipur

Apni Rasoi Gurgaon
Calzone- Dine & Rooftop Lounge Jaipur
Mini's Royal Cafe Gurgaon
Moti Restaurant New Delhi
The Delhi Heights New Delhi
Woks - The Lalit New Delhi New Delhi
Hot Pot New Delhi
Embassy New Delhi
Flaming Chilli Pepper New Delhi
Haldiram's Gurgaon
Kabir Restaurant Ahmedabad
Patang - The Revolving Restaurant Ahmedabad
The Golden Dragon New Delhi
Yanki Sizzlers Ahmedabad
650 - The Global Kitchen Ahmedabad
Lotus Pond New Delhi
Castle 9 New Delhi
The Plaza Solitaire Gurgaon
Ridhi Sidhi Gurgaon
Gola Northend New Delhi
Shaaun New Delhi

CuisineName AggRating

Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese
Chinese

Chinese

4.3
37

4.5
43

3.7
3.3
24
28
36
31

38
36
38
37
35
4.1
4.2
4.2
31
3.3

31
39

2 3 Average

CouchDB Execution 158 153 151 154
Time (ms)

MySQL Execution 41 11 13 21.67
Time (ms)

22

2. Find all the restaurants whose aggregate rating is greater than 4 and country code is

CouchDB

relax

e

Mysao

AggregateRat. » City Cuisines - RestaurantNa.~
B a2 Agra North Indian, Chinese, M... Pinch Of Spice
B 43 Agra North Indian, Mughlai Peshawri - ITC Mughal
B 41 Agra South Indian, Desserts Dasaprakash Restaurant
E 49 Agra Cafe, North Indian, Chinese ~ Sheroes Hangout
B 44 Agra Htalian, Pizza Pizza Hut
0 42 Agra Chinese, Italian, Continen... Tea'se Me - Rooftop Tea ...
| SR Agra North Indian, Fast Food Thaaliwala
0 42 Ahmedabad Chinese, Italian, North Ind... 850 - The Global Kitchen
B 45 Ahmedabad Ice Cream, Desserts, Con... Huber & Holly
B 41 Ahmedabad North Indian, Continental,... ~@Mango
B 43 Ahmedabad Pizza, Italian, Beverages, ... Fozzie's Pizzaiolo
B a4 Anhmedabad Pizza, Italian La Pino'z Pizza
E 44 Ahmedabad Cafe, Continental, Desserts Mocha
B 46 Ahmedabad Desserts, Ice Cream Cryo Lab

Showing 4 columns. ' Show all columns.

Showing document 1 - 20.

Documents per page: 20 ¥

SELECT RestaurantInfo.RestaurantName, Review.AggRating, Cuisine.CuisineName, RestaurantInfo.City
FROM Cuisine, RestaurantCuisine, RestaurantInfo, Review

WHERE

RestaurantInfo.RestaurantID = Review.RestaurantID AND

RestaurantCuisine.RestaurantID = Review.RestaurantID AND

Cuisine,CuisineID = RestaurantCuisine,CuisineID AND

Review.AggRating >= 4 AND

RestaurantInfo.CountryCode = '1'

RestaurantName AggRating CuisineName City

Chokhi Dhani 4.3 Rajasthani Jaipur
The Forresta Kitchen & Bar 4 North Indian Jaipur
The Forresta Kitchen & Bar 4 Desserts Jaipur
The Forresta Kitchen & Bar 4 Chinese Jaipur
The Forresta Kitchen & Bar 4 Rajasthani Jaipur
The Forresta Kitchen & Bar 4 Beverages Jaipur
The Forresta Kitchen & Bar 4 Mexican Jaipur
The Forresta Kitchen & Bar 4 Continental Jaipur
Replay 4.3 North Indian Jaipur
Replay 4.3 Chinese Jaipur
Replay 4.3 Mexican Jaipur
Replay 4.3 Italian Jaipur
Replay 4.3 Continental Jaipur
Tapri Central 4.7 Fast Food Jaipur
Tapri Central 4.7 Street Food Jaipur
Tapri Central 4.7 Cafe Jaipur
On The House 4.4 Cafe Jaipur
On The House 4.4 Mexican Jaipur
On The House 4.4 Bakery Jaipur
On The House 4.4 Italian Jaipur
On The House 4.4 Continental Jaipur
Taruveda Bistro 4.2 Cafe Jaipur
Taruveda Bistro 4.2 Italian Jaipur
Taruveda Bistro 4.2 Continental Jaipur
Taruveda Bistro 4.2 Japanese Jaipur
Mamu's Infusion 4 North Indian Jaipur
Mamu's Infusion 4 Chinese Jaiour

23

1 2 3 Average
CouchDB Execution 63 91 115 90
Time (ms)
MySQL Execution 18 14 11 14.33
Time (ms)

3. List Top 20 restaurants having max votes in United States.

A N

CouchDB Mysaol
SELECT I.RestaurantName, R.VotesNumber
FROM RestaurantInfo I, Review R
WHERE I.RestaurantID = R.RestaurantID AND
I.CountryCode = "162'
ORDER BY R.VotesNumber DESC
LIMIT 20
RestaurantNa. = Votes - RestaurantName VotesNumber
B Silantro Fil-Mex 1070 Silantro Fil-Mex 1070
B Vikings 677 Vikings 677
Spiral - Sofitel Philippine Plaza Manila 621
Iy Spiral - Sofitel Philippine Plaza Manila 621
The Food Hall by Todd English 618
I The Food Hall by Todd English 618 Izakaya Kikufuji 591
I Izakaya Kikufuji 591 NIU by Vikings 535
i Locavore 532
By NIU by Vikings 535
Buffet 101 520
(o (o= o3z Mad Mark's Creamery & Good Eats 488
0 Buffet 101 520 Guevarra's 458
B\ Mad Mari's Greamery & Good Eats e Wildflour Cafe + Bakery 392
Ooma 365
© Guevera's 8 Din Tai Fung 336
I Wildflour Cafe + Bakery 392 Le Petit Souffle 314
B Ooma 385 Silantro Fil-Mex 294
Heat - Edsa Shangri-La 270
By Din Tai Fung 336
Sambo Kojin 229
B LePetit Souffle ek Sodam Korean Restaurant 223
Balay Dako 211
i . Show all columns. ;20 % .
Showing 2 columns. ow all columns. Documents per page: Hobing Korean Dessert Cafe 118

24

CouchDB Execution 1580 1811 1917 1769.33
Time (ms)

MySQL Execution 28 1 0 9.67
Time (ms)

4. List all restaurants whose name stat with “L”.

W\

MySOoL

PriceRange ~

RestaurantNa. »

AggregateRat. » City
B 48 Makati City
0 48 Pasig City
B 42 Rio de Janeiro
0 46 Sifo Paulo
B 35 Albany
B 35 Albany
B 45 Athens
B a1 Athens
0 44 Boise
B 44 Boise
B 38 Dalton
B 41 Dalton
B o Davenport
0 41 Davenport

Showing 4 columns.

Show all columns.

Le Petit Souffle

Locavore

Leme Light

Les 3 Brasseurs

Locos Grill & Pub

Longhorn Steakhouse

Last Resort Grill

La Dolce Vita Ristor...

Los Beto's

Lucianos ltalian Re...

Las Palmas

Los Pablos

Los Agaves

Los Agaves

Documents per page:

20

n
v

SELECT I.RestaurantName, I.City, R.AverCost, R.AggRating

FROM RestaurantInfo I, Review R

WHERE I.RestaurantID = R.RestaurantID AND

I.RestaurantName LIKE "L%"
RestaurantName City AverCost AggRating
Lotus Pond New Delhi 1800 4.2
Lodi - The Garden Restaurant New Delhi 2600 4.2
LPK Waterfront Goa 1500 eh/
Le Plaisir Pune 1000 4.8
Le Chef Restro Bar Faridabad 1000 2.7
Lazeez Food Gurgaon 800 3.5
Little Italy Nashik 800 3
Lanterns Kitchen & Bar New Delhi 1200 3.8
La Plage Goa 800 4.6
La Trattoria of Lavandula Hepburn Springs 7 3.8
Lake House Restaurant Vineland Station 70 4.3
Leonard's Bakery Rest of Hawaii 10 4.7
Lulu's Waikiki Rest of Hawaii 25 3.9
Locos Grill & Pub Albany 25 3.5
Longhorn Steakhouse Albany 25 3.6
La Dolce Vita Ristorante Athens 40 4.1
Last Resort Grill Athens 40 4.5
Los Beto's Boise 10 4.4
Lucianos Italian Restaurant Boise 25 4.4
Los Pablos Dalton 10 4.1
Las Palmas Dalton 10 3.8
Los Agaves Davenport 25 41
Los Aztecas Dubuque 10 3.5
L. May Eatery Dubuque 40 3.8
Longstreet Cafe Gainesville 10 4.3
Leopold's Ice Cream Savannah 10 4.6
I ulii's Choeonlate Rar Savannah 10 4.3

25

1 2 3 Average
CouchDB Execution 61 75 111 82.33
Time (ms)
MySQL Execution 61 13 9 27.67
Time (ms)

5. Show all information of the restaurants in Canada.

l"

O

Couch

rela

x

Myso

Address « AggregateRat.» AverageCostf.» City

« CountryCode

150 Richmond... 3.7

4931 50th Stre... 3

3100 N Servic... 4.3

2 2 8 3

14 Second Av... 3.3

Showing 5 of 23 columns. Show all columns.

25

25

70

25

Chatham-Kent 37

Consort 37

Vineland Station 37

Yorkton 37

Documents per page: 20

a
v

SELECT R.*, I.Address, I.City, I.CountryCode,

I.RestaurantName, RC.CuisineID, Cu.CuisineName, C.CountryName

FROM RestaurantInfo I, Review R, RestaurantCuisine RC, Cuisine Cu, Country C
WHERE I.RestaurantID = R.RestaurantID AND

I.RestaurantID = RC.RestaurantID AND

RC.CuisineID = Cu.CuisineID AND

I.CountryCode = C.CountryCode AND

C.CountryName = 'Canada’

RestaurantlD ~ AverCost HasTableBooking HasOnlineDelivery IsDeliveringNow SwitchToOrderMenu PriceRange AggRating Rafi

16643459 25 No No No No 2 3 Avel
16643459 25 No No No No 2 3 Ave
16654702 70 No No No No 4 43 Ven
16654702 70 No No No No 4 43 Ven
16654702 70 No No No No 4 43 Ven
16659169 25 No No No No 2 37 Goo
16659169 25 No No No No 2 37 Goo
16668008 25 No No No No 2 33 Aver

1
CouchDB Execution 900
Time (ms)
MySQL Execution 1
Time (ms)

26

2 3 Average
1679 1602 1393.67
0 1 0.67

6. Calculate the average rating for restaurants having Indian cuisine.

pL "

CouchDB

N\

NMysol

In CouchDB, it is not possible to conduct selector function
with query in Mongo like listed above. To fulfil the request,
we need to use map and reduce function with JavaScript.
First, we create a view of the data we want to calculate.

function (doc) {
(doc.Cuisines. C D 1){

emit(,doc.AggregateRating);

Then, we run a reduce function to calculate the result.

function (keys, values) {
sum(values)/values.

}

We can then get both view of data and result we want but
without any time being consumed.

This map-reduce functionality will be an advantage when
our database is in a distributed structure.

SELECT AVG(R.AggRating)

FROM RestaurantInfo I, Review R, Cuisine C, RestaurantCuisine RC
WHERE I.RestaurantID = R.RestaurantID AND

I.RestaurantID = RC.RestaurantID AND

RC.CuisineID = C.CuisineID AND

C.CuisineName LIKE 'SsIndian%'

AVG(R.AggRating)
2.5423673291111553

27

7. Count the number of restaurants which have table booking and online delivery.

o AN

Like mentioned above, we need map and reduce function
to fulfill the set function. First, we create a view to select | SELECT COUNT ()

the restaurants matching our standard. FROM Review R

WHERE R.HasOnlineDelivery = 'Yes' AND
Then, we use the default COUNT function to count the | R.HasTableBooking = 'Yes'

number.

function (doc) {
(doc.HasTablebooking doc.HasOnlineDelivery

emit(, null);
}
}

COUNT(*)
Reduce (optional) @
435

_count =

28
6. Results and Analysis

We did the operation in a laptop (Apple MacBook Pro 2017) with the features as:
Processor: 2.9 GHz Intel Core i5

RAM: 8GB 2133 MHz LPDDR3

We started from finding an appropriate dataset for our document store. After which we created
the relational schema for MySQL. To insert the records into different tables from a single csv
file, we split the original data into several tables according to our schema. We then imported
the data into MySQL and created primary and foreign key constraint for MySQL. Importing
the data into CouchDB was faster once we wrote our code for bulk importing the data.

The next step was to create queries to search data in two different type of database in order to
compare them.

Based on the process and results listed above, our conclusion is that:

CRUD operations: 1 and 2, are inserting, updating and deleting, these operations can be
conducted directly in graphical interface. Updating and deleting the documents can be done
with this Ul when we know the document that we want to update or delete. In case we want to
bulk update or delete we can do the same with HTTP POST requests. But, of course, an
additional knowledge of python, in our case, is required to write this program. To do the same
in MySQL, there are various foreign key constraints to be considered. Thus, to bulk insert,
update or delete, it is very important to have the complete knowledge of the relational schema.
On the contrary, CouchDB does not require any pre-defined schema which provides more
flexibility in performing CRUD operations. In other words, every data in CouchDB can have
different schema, making it possible to have various details for different types of records.

Selector Query: 1 to 5, which are queries using certain criteria to find the results, show that
MySQL performs better than CouchDB in searching. We tried different queries including many
methods, like sorting, and joining in MySQL. According to the knowledge we had for
CouchDB and MySQL, we thought searching a single document might be an advantage for
CouchDB compared to the joining in MySQL where multiple tables need to be joined. But
contrary to what we expected, MySQL performed better and ran faster in both queries we
tested. Although we were testing on 10K records for both the databases, this size is not enough
to illustrate the actual power of document stores. Maybe if we had billions of records, only then
would the difference be visible. Also, when we require these records multiple times, it will be
faster with CouchDB with the help of views.

Aggregate Query: 6 and 7 perform aggregate functionality in the two databases. In MySQL,
we can conduct them as easy as queries like selecting and sorting. Whereas, Mango, the query
language interface for CouchDB in Fauxton, does not directly support such a function. To

29

achieve this in CouchDB, we need to use map and reduce function with JavaScript to calculate
data. In the map function, we first create a view to filter the data we need for calculation. Then,
we use a reduce function, either default one or customized one, to do the aggregate calculation
based on the data provided by the map function. In simple words, a view can contain both the
result set and the total number of results. The former is generated by the map function and the
latter by the reduce function. The results of both are stored and indexed. The contents of the
view can be retrieved in batches using a limit constraint but it will also include the total count,
which does not have to be computed on each request (or even on the first request), like in
MySQL.

Thus, we do require to take efforts to gain knowledge of Map-Reduce functionality and
JavaScript to perform this operation in CouchDB. Since we have been working on relational
databases from a long time, it does seem easier to perform aggregate functions in MySQL. But
as mentioned earlier, in real world applications on the internet, data is usually very large and
distributed. Thus, in such a scenario, MySQL will not be helpful, as it would take extremely
long time to retrieve results, which will also require a lot of computational resources to just
retrieve some basic information. Also, the use of Map-reduce functionality is an advantage
when our data is distributed over a network, as this will give us faster results in that case.

30

7. Conclusion

Thus, in this project, we compare the use and applications of document store like CouchDB to
relational database like MySQL in terms of performance and complexity of queries. This
project builds a greater horizon of knowledge for us as students who usually study relational
databases in academics. This project helped us to understand the need and use of NoSQL
databases.

Thus, a NoSQL document store will be suitable when our schema is subjected to frequent
changes or we frequently need data in a computed or aggregated form. Hence it is very
important to choose a right database as per our application.

The applications most suitable for implementing document stores are:

e Content management systems

e eCommerce applications

e Blogging platforms

e User generated content like tweets, comments, reviews, rating etc.

e Data from loT applications, like various sensor data from 10T devices

As in the future we are leading towards more of user generated content, these databases will be
form a very important part of application development.

31

8. References

1 NoSQL, AWS, Available:https://aws.amazon.com/nosgl/
2 Document, AWS, Available:https://aws.amazon.com/nosqgl/document/
3 CouchDB, Apache, Available:http://docs.couchdb.org/en/stable/intro/why.html

4 CouchDB, Consistency, Apache, Available:
http://docs.couchdb.org/en/stable/intro/consistency.htmi

5 CouchDB vs MongoDB, Available:https://blog.panoply.io/couchdb-vs-mongodb
6 CouchBase vs CouchDB, Available:https://www.couchbase.com/couchbase-vs-couchdb

7 Installation on Windows, CouchDB,
Available:http://docs.couchdb.org/en/2.2.0/install/windows.html

8 Fauxton Visual Guide, Apache, Available:http://couchdb.apache.org/fauxton-visual-
guide/#using-fauxton

9 Find, Apache,
Available:http://docs.couchdb.org/en/stable/api/database/find.html#selector-syntax

10 Views, Available:http://docs.couchdb.org/en/2.2.0/ddocs/views/intro.html

11 Zomato Restaurants data, kaggle,
Available:https://www.kaggle.com/shrutimehta/zomato-restaurants-data

12 Bulk import CouchDB, Available:http://bitbucket.org/tdatta/tools/src/
13 CouchDB Import, GitHub, Available:https://github.com/glynnbird/couchimport

14 CouchDB Selector Syntax, Apache,
Available:http://docs.couchdb.org/en/stable/api/database/find.html#selector-syntax

