
INFO-H-415 Advanced Databases

ColumnStore Indexes Vs Indexes in Relational

Databases

Student: Yasmine Daoud
Ecole polytechnique ULB

Master Civil in Computer Science Engineering

December 2018

1 Introduction

A database index is an optional data structure that can be created for a column
or list of columns to speed data access.

In this paper, we can understand what is an Index, what are types of indexes
and what is the performance, comparing with two different methods of indexing
(Row Index and Column Index) ? , independently of any tool

2 What is an Index ?

A database index is a data structure that improves the speed of data retrieval
operations on a database table at the cost of additional writes and storage space
to maintain the index data structure. Indexes are used to quickly locate data
without having to search every row in a database table every time a database ta-
ble is accessed. Indexes can be created using one or more columns of a database
table, providing the basis for both rapid random lookups and efficient access of
ordered records.

3 Quick Example

An application frequently looks up customers by their mobile phone number. To
improve performance, developers configure an index for the field MOBILEPHONENUMBER
on the CUSTOMER table. The database sets up a data structure that stores
all MOBILEPHONENUMBER sorted numerically with pointers to the rows
associated with each field. As the index is sorted, it can be searched quickly
resulting in faster retrieval of CUSTOMER records.

1

4 Performance Tradeoffs

Indexes consume resources such as memory and disk space. They potentially
reduce data access times and disk I/O. It is common to index primary keys. It
is also common to index any fields or set of fields that are often queried. Indexes
need to be maintained so indexing transactional tables that are updated more
than queried can negatively impact performance.

5 Types of indexes in general

• Clustered:
Clustered index sorts and stores the rows data of a table / view based on
the order of clustered index key. Clustered index key is implemented in
B-tree index structure.

• Non-Clustered:
A non clustered index is created using clustered index. Each index row
in the non clustered index has non clustered key value and a row locator.
Locator positions to the data row in the clustered index that has key value.

• Unique:
Unique index ensures the availability of only non-duplicate values and
therefore, every row is unique.

• Full-text:
It supports is efficient in searching words in string data. This type of
indexes is used in certain database managers.

• Spatial:
It facilitates the ability for performing operations in efficient manner on
spatial objects. To perform this, the column should be of geometry type.

Filtered:
A non clustered index. Completely optimized for query data from a well
defined subset of data. A filter is utilized to predicate a portion of rows
in the table to be indexed.

6 What is a ColumnStore Index ?

A columnstore index is a type of data structure that’s used to store, manage
and retrieve data that is stored in a columnar-style database.

Columnstore indexes work well with read-only queries and large-scale anal-
ysis. One of their primary uses is queries for data warehousing. Columnstore
indexes come with certain benefits over their row store counterparts; they can
achieve higher compression rates and reduce I/O from physical media.

2

Columnstore indexes come in two varieties – clustered and non-clustered.
Clustered columnstore indexes are updateable and are always the primary stor-
age method for their entire table. They cannot be combined with other indexes
and they do not physically store columns in a particular order. Non-clustered
columnstore indexes can index subsets of columns. They require extra storage to
store a copy of a column in the index and are updated by rebuilding or partition-
ing the index. Non-clustered columnstores can be combined with other tables
and physically store columns in a particular order to optimize compression.

7 Columnar Database

A columnar database is a database management system (DBMS) that stores
data in columns instead of rows.

The goal of a columnar database is to efficiently write and read data to and
from hard disk storage in order to speed up the time it takes to return a query.

In a columnar database, all the column 1 values are physically together,
followed by all the column 2 values, etc. The data is stored in record order,
so the 100th entry for column 1 and the 100th entry for column 2 belong to
the same input record. This allows individual data elements, such as customer
name for instance, to be accessed in columns as a group, rather than individually
row-by-row.

Here is an example of a simple database table with 4 columns and 3 rows.

In a row-oriented database management system, the data would be stored
like this:
1,Doe,John,8000;2,Smith,Jane,4000;3,Beck,Sam,1000;

In a column-oriented database management system, the data would be stored
like this:
1,2,3;Doe,Smith,Beck;John,Jane,Sam;8000,4000,1000;

One of the main benefits of a columnar database is that data can be highly
compressed. The compression permits columnar operations — like MIN, MAX,

3

SUM, COUNT and AVG— to be performed very rapidly. Another benefit is
that because a column-based DBMSs is self-indexing, it uses less disk space than
a relational database management system (RDBMS) containing the same data.

As the use of in-memory analytics increases, however, the relative benefits
of row-oriented vs. column oriented databases may become less important. In-
memory analytics is not concerned with efficiently reading and writing data to
a hard disk. Instead, it allows data to be queried in random access memory
(RAM).

8 Column Store VS Row Store - Example

9 Why Column Stores ?

• Row oriented databases are optimized for writes
Single disk write succes to push all fields of a record onto disk

• Systems for ad-hoc querying should be read optimized

• Common example from data warehousing
Load new data in bulk periodically
Long period of ad-hoc querying

• For such read intensive workloads, column store architecture is more suit-
able
Fetch only required columns for query

4

Better cache effects
Better compression due to similar attributes within a column

10 Column Stores - Data Model

We present the C-Store data model as a representative data model for column
stores.

• Standard relational logical data model

• EMP(name, salary, age, dept), DEPT(dname, floor)

• Table - Collection of projections

• Projection - set of columns, sorted

• Horizontally partitioned into segments with segment identifier(sId)

• Column-to-row correspondence identified by position in the segemnt (stor-
age key or sKey)

• How to put together various colums into a tuple ?
Well, we can use storage keys, what is data sorted on a different attribute
? Sorting again and merging is inefficient

• Solution: Use Join Indexes

• Let T1 and T2 be two projections on table T

• M segments in T1, N segments in T2

• Join index from T1 to T2 contains M tables

• Each row is of the form (s: SID in T2, k: Storage Key in Segment s)

• In other words, for each sKey in a particular partition of T1, it specifies
where(which partition, which sKey) the corresponding row is located in
T2

Join indexes Example - Join Index from EMP3 to EMP1

5

11 Compression

• Column-organized data can be compressed well due to good locality

• Trades IO for CPU

• Compression Schemes:Run Length encoding, Dictionary encoding, Bit-
vector encoding, Null suppression, Heavy-weight schemes

• Choice of compression depends on: Characteristics of data, Decompression
trade-off(more compressed necessarily not the better)

12 Compression Examples

13 Query Execution Operators

• Decompress: Converts compressed columns into uncompressed represen-
tation

• Select : Same as relational select but produces bit-string

• Mask : Takes a bit-string B and a projection Cs, emits only those values
from Cs whose corresponding bit in B is 1

• Project : Equivalent to relational project

• Sort a projection on some columns

• SQL-like aggregates

• Combines two projections which are sorted in same order

6

• Re-order the projection according to a join index

• Join two projections on a predicate

• BAnd (bitwise-AND), BOr (bitwise-OR), BNot (bitwise-NOT)

14 Row vs Column - Summary of Differences

7

15 Row Store VS Column Store

Now the simplistic view about the difference in storage layout leads to that
one can obtain the performance benets of a column-store using a row-store by
making some changes to the physical structure of the row store.
This changes can be

• Vertically partitioning

• Using index-only plans

• Using materialized views

16 Vertical Partitioning

Process: Full Vertical partitioning of each relation, each column =1 Physical
table. This can be achieved by adding integer position column to every table,
Adding integer position is better than adding primary key and Join on Position
for multi column fetch

• Partition each relation on all its columns

• How to match columns corresponding to the same row?

• Store primary key - can be expensive

• Use a ’position’ attribute

• Rewrite queries to join on position attribute to get multiple columns from
same table

Problems:

• “Position” - Space and disk bandwidth

• Header for every tuple – further space wastage

• e.g. 24 byte overhead in PostgreSQL

8

17 Index-Only Plans

• Disadvantages of Vertical Partitioning

• Need to store position with every column

• large header for each tuple

• Leads to space wastage

• Alternative- Use indexes

• Base relation stores using standard relational design

• B+ tree index on every column of table

• Tuple header not stored - so overhead is less

• No need to access actual tuples on disk

• Based on the query predicate, index is consulted and (recordid; column-
value) pairs are returned

• These are then merged in memory

• Disadvantages

• If there is no predicate on the column, requires full scan of the index to
read all tuples

• Example: SELECT AVG(salary) FROM EMP WHERE age ¿ 40

• With separate indexes, First Find record id’s satisfying predicate on age

• Then join this with full column set for salary

• Can answer directly if there is an index on (age; salary)

9

18 Materialized Views

Process:

• Create ‘optimal’ set of MVs for given query workload
Objective:

• Provide just the required data

• Avoid overheads

• Performs better

• Expected to perform better than other two approach

Problems:

• Practical only in limited situation

• Require knowledge of query workloads in advance

19 Experimental Setup

System X: a traditional row store. C-Store: a column store
Goals:

• Compare performance of C-Store vs column store emulation on System X

• Identify which optimizations in C-store are most significant

• Infer from results if it is possible to successfully emulate a column store
using a row store

10

• What guidelines should one follow?

• Which performance optimizations will be most fruitful?

Machine

• 2.8 GHz single processor, dual core Pentium(R) D workstation

• 3 GB RAM

• Red Hat Enterprise Linux 5

• 4-disk array, managed as a single logical volume

• Reported numbers are average of several runs

• Also, a ”warm” buffer pool - 30 per cent improvement for both systems

Data

• Star Schema Benchmark (SSBM) - derived from TPCH

• Fact table: 17 columns, 60,000,000 rows

• Table : LineOrder

• 4 dimension tables: largest - 80,000 rows

• Tables: Customer, Supplier, Part, Date

Workload

• 13 queries divided into four categories or ights”

• Data warehousing queries

• Flight 1 : Restriction on 1 dimension attribute + columns on the fact
table

• Flight 2: Restriction on 2 dimension attributes

• Flight 3, 4: Restriction on 3 dimensions

20 Baseline and Materialized View

• C-store outperforms System X

• Factor of 6 in base case (tCS vs RS)

• Factor of 3 with MV on system X (CS vs RS(MV)) Expected on warehouse
workloads

11

• CS(Row-MV) vs RS(MV), Expected to be comparable

• System X outperforms by a factor of 2

• System X more

ne tuned with advanced performance features

• Not a level ground for comparison

21 Need for a fair comparison

• Hidden factors might affect results when comparing two different systems

• Solution: Take one system at a time, and modify it Simulate column store
inside System X
Remove performance optimizations from C-Store until row store perfor-
mance is achieved

12

• Inferences will be more reliable

• Example CS vs CS(Row-MV) - factor of 6 difference
Although both read minimal set of columns
Thus, less IO not the only factor

22 Column Store Simulation in System X used

Configurations of system X used

• Traditional (T)

• Traditional (bitmap): biased to use bitmaps; might be inferior sometimes
(T(B))

• Vertical Partitioning: Each column is a relation (VP)

• Index-Only: B+Tree on each column (AI)

13

• Materialized Views: Optimal set of views for every query (MV)

23 ColumnStore Simulation in System X - Anal-
ysis

• Materialized views performed the best -only plans the worst
Expensive hash joins on fact table before it is

ltered (to join columns)
System X cannot retain fact table record id’s after joining with another
table

• Vertical Partitioning Comparable to MV when only a few columns were
used
Tuple overheads affected performance significantly when more than 1/4th
of the columns used
Scanning four columns in vertical partitioning approach took as long as
scanning the entire table in traditional approach
960 MB per column (vertical partitioning) vs 240 MB per column (C-store)

24 Column Store Performance

Approach

• Start with column store

14

• Remove each optimization

Configuration

• T=tuple-at-a-time processing, t=block processing;

• I=invisible join enabled, i=disabled;

• C=compression enabled, c=disabled;

• L=late materialization enabled, l=disabled

25 Column Store Performance - By Flight

26 Column Store Performance Analysis

Analysis

• Late materialization - factor of 3 (most important)

• Block processing - 5 per cent to 50 per cent depending on whether com-
pression has been removed

• Invisible joins - 50 per cent to 75 per cent (largely due to between-predicate
rewriting)

15

• Compression - factor of 2

• Tuple construction is costly - adds a factor of almost 2

27 Conclusion

• Column stores perform better than row stores for warehouse workloads
Various optimizations in column stores contribute to improved perfor-
mance

• Columns stores and row stores employ different design decisions
No fundamental hindrances for row stores to adopt some of the techniques
from column stores
Example: Store tuple headers separately, use virtual record id’s to join
data etc.

• Emulating a column store inside row stores performs poorly
Tuple reconstruction costs
Per tuple overheads

• Some important system improvements necessary for row stores to success-
fully emulate column stores

• Can we build a complete row store that can transform into column store
for warehouse workloads?
SAP HANA has a solution for this

16

