Université Libre de Bruxelles

INFO-H415 - Advanced Database :
Group Project

by Richard Bauwens,
and Marine Devers
17th December 2018

Professor : Esteban Zimanyi

Table of contents

Introduction

Scenario

2.1 Scenario e

2.2 Data structure e

2.3 ConstraintsS e e e e e e e e e

Database

3.1 What isadatabase?

3.2 What is XML ?
321 Example.

3.3 Relational databases vs Non Relational databases
3.3.1 Relational databases
3.3.2 Non Relational databases
3.3.3 Comparison e

3.4 XML databases
341 Example. e
3.4.2 Enabled XML Database
3.4.3 Native XML Database

3.5 Why an XML database? e

Choice of a native XML database

4.1 What is BaseX? e

4.2 Why BaseX? e

4.3 Small BaseX Tutorial

Implementation

Results

Conclusion

-

NN NN

0000~ ~1~1 O O U UL i

Abstract

This report reviews the database technology, XML databases, and illustrates the implementation of a
chosen scenario in the database management system, BaseX. First, there is an explanation of our scenario,
followed by the data structure and the constraints used. Then, there is a few explanations about what is
a database and what is XML followed by the choices made. There are also some information about BaseX
and why we use it. Finally, there is the process of our implementation with some examples to illustrate

our database.

1. Introduction

For this project, we were asked to study a database technology and illustrate it with an application
developed in a database management system. We decided to study the XML databases using BaseX.
Once our subject found, we were asked to find a scenario using, in our case, XML and BaseX. Then, we
will have to make some research about our topic and explain our choices. Finally, a database will have to

be implemented.

2. Scenario

2.1 Scenario

We are two students in a small university in the countryside, and our university recently got a small
government bonus to modernize their IT infrastructure. Their main idea was to develop a mobile ap-
plication, along with an API, to help students with their schedule. The app and API already taking a

lot of the bonus, we are tasked with the preliminary work before the professional developer team comes in.

Our university being really old-fashioned, and small, they still use Ezcel sheet to manage their stu-
dents, classes and personnel. Our task is to help them going from there to an easy to manage database,

allowing the development of an API (and ultimately a mobile app).

The old secretary also really likes her desktop Fzcel GUI, and would prefer if the new infrastructure

would let her have a simple GUI instead of some complicated desktop app.

2.2 Data structure

All the data used in our project were obtained from the old Fzcel files that the secretary used before
the update. The whole database of the university is separated into three main categories :
e Student which contains the name of its studies, its year of study, its name, its birthdate and its
id.
e Personnel which contains its job also called status (teacher, cleaning, restaurant...), its name,
its birthdate, its bank account and its id.
e Class which contains its name, the teacher’s name who teaches it, its mnemonic and the room

where the class is given with the name of the room, the time and the week the class is given.

2.3 Constraints

Our program must be accurate and work logically. This is why the system must have to set some
constraints. Here are the ones we defined for our scenario :
e The personnel/student id’s are unique.

e Two different classes can not be given at the same time in the same local.

2.3. Constraints Table of contents

Two different classes can not be given at the same time by the same teacher, and the teacher must

be registered in the database.

The status of every personnel should be in the list of accepted status.

Everything has to be named in the university (students, personnel and classes).
e Every student must be registered in one of the accepted study courses.

e Mnemonic are being used as id’s for classes, therefore they should be unique and never empty.

Project INFO-H415 3 Richard Bauwens and Marine Devers

3. Database

3.1 What is a database ?

In the most general sense, a database is an organized collection of data. It is more specifically an
electronic system that allows data to be easily accessed, manipulated and updated. It is usually used by

an organization as a method of storing, managing and retrieving information.[1]

"Data is organized into rows, columns and tables, and is indexed to make it easier to find relevant

information”.[2]

3.2 What is XML?

XML stands for eXtensible Markup Language and is used to describe data. The XML standard helps us,

in a flexible way, to create information formats and to electronically share structured data via internet.[3]

XML data is considered as self-describing (or self-defining) and informationally complete. In other
words, it means that the structure of the data is embedded with the data. Hence, there is no need to
pre-build the structure to store the data that just arrived. It is dynamically understood within the XML,
meaning that applications can use this feature to automatically build themselves with little or no pro-

gramming required

XML defines a set of rules for encoding documents in a format that is both human-readable and
machine-readable. XML documents consist entirely of characters from the Unicode repertoire. However,
there exists a small number of specifically excluded control characters that are not defined by Unicode.[4]

XML allows us to model information in a natural and intuitive way.

Here are some powerful capabilities that XML brings to information modeling [5] :

e Heterogeneity : each "record” can contain different data fields. The real world is not neatly
organized into tables, columns and rows. There exists a great advantage in being able to express
information, as it exists, without restrictions.

e Extensibility : new types of data can be added at will and they do not need to be determined in
advance. This allows us to embrace, rather than avoid, change.

e Flexibility : data fields can vary in size and configuration from instance to instance. XML imposes

3.3. Relational databases vs Non Relational databases Table of contents

no restrictions on data. Each data element can ba as long or as short as necessary.

XML uses four basic components to express information. Each of these components serves a unique
purpose meaning that each represents a different "dimension” of information. Data elements represent
data which is meaningless unless we know what the data definitions are. XML adds context to data,
giving it meaning by adding tags that describe what data elements are. The attributes give us more
information about data elements or about how to interpret them. Finally, the hierarchy helps us to

determine how to string everything together and to understand how they are related to each other.

3.2.1 Example

xml version="1.0" encoding="UTF-8"
note
to>Chandler</to

from=Monica</from

heading>Reminder</heading

body=Don't forget to clean the house!</body
note

FIGURE 3.1 — Example - note.xml [6]

where <to>, <from>, <heading> and <body> have text content, and <note> has element contents

but no attributes.

3.3 Relational databases vs Non Relational databases

3.3.1 Relational databases

A relational database is a set of formally described tables from which data can be accessed or reas-
sembled in many different ways without having to reorganize the database tables.[7] These databases are

also known as relational database management systems (RDBMS) or SQL databases.

The relational model organizes data into one or more tables which are sometimes called relations.
Each table contains one or more columns representing the data categories, also called attributes, and one

or more rows representing a unique instance of date, or key, for the categories defined by the columns.

The main advantages are that they give to the user the possibility to easily categorize and store data
that can later be queried and filtered to extract specific information. These databases are also easy to
extend and they are not reliant on physical organization. Moreover, the data is stored just once, which
eliminates data deduplication. Relational databases are flexible (easy for users to carry out), collaborative
which means that multiple users can access the same database, trusted and secure, meaning that data in

tables within RDBMSes can be limited to allow access by only particular users.

The most popular of these are Microsoft SQL Server, Oracle Database, MySQL, and IBM DB2. [§]

Project INFO-H415 5 Richard Bauwens and Marine Devers

3.3. Relational databases vs Non Relational databases Table of contents

3.3.2 Non Relational databases

A non-relational database is any database that does not incorporate the table/key model that RDBMSes
promote.[9] In other words, they give a system to store and retrieve information that is modeled in another
way than the tabular relations. They are mostly used in big data, large sets of unstructured information,

and real-time web applications.

There exist many different motivations behind the use of a non-relational database instead of a rela-
tional one :

e Simplicity of design : we do not have to deal with the impedance mismatch between the data,
as well as about the tables and rows of a relational database. Doing so, we have less code to write,
debug, and maintain.

e Better horizontal scaling : using documents is much easier because all the data is at one place,
instead of being contained in various tables.

e Finer control over availability : we can add or remove servers without causing an application
downtime. Indeed, non-relational databases store multiple copies of data across the cluster to
ensure high availability and disaster recovery.

e Flexible : non-relational databases can easily and quickly accommodate to any new type of data
without being disrupted by content structure changes.That is because document database are
schemaless.

e Speed : many operations are faster in non-relational databases than in relational databases due
to not having to join tables.

e Cost : non-relational databases use clusters of cheaper commodity servers than the ones that

RDBMSes tend to rely on.
Usually, we call a non-relational database NoSQL, also called Not Only SQL to emphasize that they
may also support SQL-like query languages. The most popular non-relational databases are MongoDB,

DocumentDB, Neo4j and XML database.

3.3.3 Comparison

Features Relational Non-Relational
Data Type Hard to store rich data type Able to store any type of data
Cost Expensive to build and to maintain Around 10% cost to relational database
Representation Data in tables and rows Data as collections of JSON documents
Query SQL Object querying
Multi-originated JOIN operation Multi-dimensional data type
Schema Require to define tables and columns before storing No schema

TABLE 3.1 — Comparison between relational and non-relational databases [10]

Project INFO-H415 6 Richard Bauwens and Marine Devers

3.4. XML databases Table of contents

3.4 XML databases

An XML database is a database that stores data in XML format. Its data can be queried, transformed,
exported and returned to a calling system. Usually, this kind of databases is not a relational database

which stores data according to their relation to other pieces of data. [11]

An XML database offers some advantages such as :

e It is self-describing, meaning that it contains not only the data but also the meta data.

It describes data in a tree or graph structure.
It uses Unicode.

It supports XQuery, XSLT, XUpdate, XInclude.

e It can be used for multiple interfaces.

On the other side, it has also a big disadvantage ; the access to the XML data is slowed down because

of the parsing and the text conversion.

3.4.1 Example

xml version = "1.0"
contact-info
contactl
name=Bill Gates</name
company>=Windows</company
phone>(@11) 123-4567</phone
contactl

contact2

name=Steve Jobs</name
company=>Apple</company
phone>(@11) 789-4567</phone
contact2
contact-info

FIGURE 3.2 — Example - XML database [12]

Here is a table of contacts that holds records of contacts (Bill Gates and Steve Jobs), which in turn

consists of three entities : name, company, and phone.

3.4.2 Enabled XML Database

The first major type of XML databases is called the enabled XML database. It is a relational data-
base constituted of tables consisting of rows and columns, where data is stored. Thus, an XML enabled

database usually refers to the extension provided for the conversion of XML document. [12]

This kind of database will usually map all XML to a traditional database that will accept XML as
input and give XML as output. It uses a mapping layer which is given by the database itself or by a third
party. The role played by this mapping layer is to manage the storage and retrieval of XML data. [13]

Project INFO-H415 7 Richard Bauwens and Marine Devers

3.5. Why an XML database ? Table of contents

3.4.3 Native XML Database

The second major type of XML databases is called the native XML database, or commonly called
the NXD. It is a database that is based on the container rather than table format. Each container can

contain a large amount of XML documents or XML data.[12]

In comparison to the enabled XML database, the native XML database has more advantages to offer.
Indeed, they are much better capable of storing, maintaining and quering large amounts of XML docu-
ments than relational databases. Moreover, no complicated designs have to be built before setting up the

database. [14]

There are several reasons to prefer using the native XML database rather than enabled XML data-
base. First of all, if the data is semi-structured, it means that the data has a regular structure. If mapping
its structure leads to having either a large number of columns with null values, which wastes space, or
a large number of tables, which is inefficient, it would mostly signify that the structure of the data va-

ries a lot. Then, it is surely better to store it in an native XML database in the form of an XML document.

The second reason is the retrieval speed. Indeed, a native XML database is able to retrieve data much
faster than a relational database. The explanation for this stands in the strategies used by the native
XML databases which store entire documents physically together or use physical (rather than logical)
pointers between the parts of the document. Because it does not have logical joins, it is faster to obtain

information than a relational database.

Another reason to use a native XML database instead of an enabled XML database is that it allows

us to actually adopt XML-specific capabilities. [15]

3.5 Why an XML database ?

In the case of our scenario, the choice for the new database is heavily guided towards XML because

it allows us to easily convert old Fzcel files (since Ezxcel offers an option to save a spreadsheet as XML).

But it is not all, XML is (almost) human readable and easy to write, meaning that the secretary will
have no difficulty understand the database, even raw. Indeed, there is no need for a long SQL query to
insert or modify anything. Moreover, XML is supported by (almost) any web technology in a native way.
In other words, almost every web technology accepts the XML language without requiring external par-
sers or libraries. Hence, it is easy to parse and to use. It is also easy to display on a web page or on a web

application. In our case, it also implies that the API will almost certainly be compatible with our database.

XML uses a text file kind of format. Even though this format forces a slower parsing and thus a slower

access or query which represents a disadvantage, the XML format by itself allows a tree representation

Project INFO-H415 8 Richard Bauwens and Marine Devers

3.5. Why an XML database ? Table of contents

of the data. It is then easy to organize data in a hierarchic kind of way. XML can also contain a lot of
different kinds of data without having any sparse format, even if there are a lot of missing data, either
because a lot of the arguments are non-mandatory or because the database is not complete. Since the old

Excel files most certainly contain errors, this will ensure that the database will still be usable.

Project INFO-H415 9 Richard Bauwens and Marine Devers

4. Choice of a native XML database

We decided to use a native XML database because of all the reasons diclosed in the previous chapter.
Then, we determined that BaseX was the most suitable database management system for our scenario.

This chapter will explain all the reasons why.

4.1 What is BaseX ?

%
2

BaseX is a native and light-weight XML database management system and XQuery processor. It is

o/
T\

N

specialized in storing, querying and visualizing large XML documents. [16] BaseX is distributed under
a permissive free software license. The included GUI enables users to interactively search, explore and

analyze data, but also to evaluate XPath/XQuery expressions in realtime.

BaseX is written in Java and is NoSQL. More precisely, NoSQL or Not Only SQL is a class of database
management systems that do not follow all the rules of a relational DBMS and that cannot use traditional

SQL to query data. [17]

The main uses fo BaseX are visualizing, querying and storing large XML documents and JSON do-
cuments. Moreover, the management system is an in-memory database meaning that the data is stored
in compressed from in Random-access memory (RAM) and not in the disk storage. Hence, it improves
the performance since the data access is faster. However, it makes it difficult to modify the data. That is

why memory databases like BaseX are mostly used to store and analyze data.

10

4.2. Why BaseX ? Table of contents

BaseX can be downloaded from its official website : http://basex.org/ [18].

4.2 Why BaseX ?

First of all, we decided to choose BaseX because it is a free platform and thus it will not add to the
fees, letting what is left of the bonus for other updates on the infrastructure. The code is totally open

source that we can find on GitHub [19].

BaseX is also a single-model database meaning that the database management system is organized
around a sole data model, which is the XML format. It helps us to focus on handling a single format of

documents and to avoid some confusions about how to organize, store, and manipulate our data.

Then, it offers a GUI (Graphical User Interface) that allows interactive searches, explorations, and
studies of the data. It has a simple enough Desktop GUI for the secretary, before the university actually
comes up with a full desktop app. Moreover, it supports XML Querying in the latest XQuery version.

Finally, it is easily usable meaning that it is easy to navigate in the database. BaseX is the perfect
candidate for handling distributed XML data. Furthermore, it is cross platform, meaning that it can be

used on all the different operating systems such as Windows, Linux or MacOS.

4.3 Small BaseX Tutorial

BaseX is not very difficult to use and is very well documented [20].
There exist two different ways to create a database. We can either use the command line "CREATE

DATABASE <name>"or select Database — New in the menu bar and browse to a chosen XML document.

There is a drop-down menu right next to the input bar. This menu provides three modes : Find,

XQuery, and Command.

In the Find mode, the user can type single symbols or texts in the input bar to find them in the

ongoing database. Here are some examples of find queries :

Query Description

city Find elements named city, and texts containing this token
=India Find texts matching the exact string India

Cing Find texts equal or similar to the token Cingdom

id Find attributes named id and attribute values containing this token
@=f0_119 Find attribute values matching the exact string f0_119
"European Chinese” Find texts containing the phrase "European Chinese”

//city Leading slash : Interpret the input as XPath expression

TABLE 4.1 — Find queries’ examples [21]

Project INFO-H415 11 Richard Bauwens and Marine Devers

http://basex.org/

4.3. Small BaseX Tutorial Table of contents

In the XQuery mode, the user can enter XPath and XQuery expressions in the input bar. Here are

some examples of XPath and XQuery expressions :

Query Description
//country Return all country elements
//country[name = ”Switzerland”] | Return the country element of "Switzerland”
for $city in //city Return the names of all cities with a
where $city/population > 1 000 000 population larger than one million
order by $city ascending and order the results by the
return $city /name name of the city

TABLE 4.2 — XPath and XQuery expressions’ examples [21]

In the Command mode, the user can enter BaseX Commands and they will be executed.

More details about BaseX GUI can be found on this website : http://docs.basex.org/wiki/

Graphical_User_Interface [21].

Project INFO-H415 12 Richard Bauwens and Marine Devers

http://docs.basex.org/wiki/Graphical_User_Interface
http://docs.basex.org/wiki/Graphical_User_Interface

5. Implementation

The first step for us is to convert the Fzcel spreadsheets into XML files. This step is easily completed
with a couple of mouse clicks, giving us three files : class.xml, student.zml and personnel.xzml. Each of

those files containing several instances of the following data structures :

FIGURE 5.1 — Personnel struc-
ture FIGURE 5.2 — Class structure FIGURE 5.3 — Student structure

The next step is to create a new database and add the files to it. It is done easily enough in the
BaseX desktop GUI by clicking on New. It is a good idea to merge the different files under a single data

structure <uni>.

The final step will be for us to determine the integrity constraints related to this database so that the
secretary can not make any mistakes when adding a new entry to the database. Those constraints (cf.

2.3 Constraints can be implemented as follow (in the case of an insertion or update on the data) :

Before each new insertion or update we should check if the relevant functions return true so that we
know that the data is correct and does not corrupt the integrity of the database. Here are our functions,

for each of the constraints :

1. declare function constraint:checkID($id)
as xs:boolean
{
not (doc ("project_final/final .xml”)//id=$id
or empty($id)
or $id="")
}s

13

5 Implementation Table of contents

2. declare function constraint:checkClassLocal($classname, $name, $week, $time)
as xs:boolean
{
not (doc (”project_final/final .xml”)//class [name!=8§classname]

/room [name=$name and week=$week and time=S$time|)

}s

3. declare function constraint:checkClassTeacher ($classname, $teacher
$week , $time)
as xs:boolean
{
not (doc (”project_final/final .xml”)// class [name!=8§classname
and teacher=$teacher
and room/week=$week
and room/time=3$time])

and exists(doc(”project_final/final.xml”)//personnel [status="Teacher’

and name=$teacher])

}s

4. declare function constraint:checkStatus($status)

as xs:boolean

{

let $all_status := (”Teacher”, ”Administration”,
”Cleaning”, ”Restaurant”)
return($status = $all_status)

}s

5. declare function constraint:checkStudy ($study)
as xs:boolean
{
let $all_studies := (”Computer Science”, ”Cybersecurity”,
”Biology”, ”Philosophy”, "Law”)
return ($study = $all_studies)

}s

6. declare function constraint:checkName ($name)
as xs:boolean
{
not (empty ($name)

or $namel!="")

}s

Project INFO-H415 14 Richard Bauwens and Marine Devers

5 Implementation Table of contents

7. declare function constraint:checkMnemonic ($mnemo)

as xs:boolean

{

not (doc ("project_final/final .xml”)//mnemonic=$mnemo
or empty ($mnemo)

or $mnemo="")

}s

To sum up those functions we can regroup them under bigger ones that will be called when adding

an element in the database :

declare function constraint:addPersonnel($id, $status, $name,

$birthdate , $bank_account)
as xs:boolean
{
constraint : checkName ($name)
and constraint:checkID ($id)

and constraint:checkStatus($status)

}s

declare function constraint:addStudent($id, $study, $name, $birthdate)

as xs:boolean
{
constraint : checkName ($name)
and constraint:checkID ($id)
and constraint:checkStudy ($study)

}s

declare function constraint:addClass($name, $teacher, $mnemonic,
$room_name, $time, $week as xs:int)
as xs:boolean
{
constraint : checkName ($name)
and constraint:checkMnemonic ($mnemonic)
and constraint:checkClassLocal ($name, $room_name, $week, $time)

and constraint:checkClassTeacher ($name, $teacher, $week, $time)

}s

With that in mind, we can write a short exemple of adding a new element in the database :

declare variable $id := ”"nbaudoux”;
declare variable $status := ”Teacher”;
Project INFO-H415 15 Richard Bauwens and Marine Devers

5 Implementation Table of contents

declare variable $name := ”Nicolas Baudoux”;
declare variable $birthdate := 706 06 1966";
declare variable $bank_account := "BE61310145731457";

if (const:addPersonnel($id, $status, $name, $birthdate, $bank_account)) then (
insert node
<personnel >
<id>{$id}</id>
<status>{$status}</status>
<name>{$name}</name>
<birthdate >{$birthdate}</birthdate>
<bank_account >{$bank_account}</bank_account>
</personnel>
into /uni)

else ()

And a short exemple of an update, where we will call the relevant function directly. We also need to

check if the old value exists in the database :

declare variable $mnemonic := ”INFO F 4057;
declare variable $old_mnemonic := ”INFO F 406”;

if (//mnemonic=$old_mnemonic
and const:checkMnemonic ($mnemonic)) then (
let $old_node := //class [mnemonic=$0ld_mnemonic |

return (replace value of node $old_node/mnemonic with $mnemonic)
) else ()

And an exemple of a deletion in the database. Exactly as for the update, we need to verify that the

value exists before deleting it :

declare variable $id := "ribauwen”;

if (//student[id=$id]/study) then (
delete node //student[id=8$id]/study
) else ()

And finally, to search the database, the secretary can use the FIND input bar on the GUI.

|

FIGURE 5.4 — Find Bar

with keywords directly, or with queries like : //student[name="Richard Bauwens”] to find evert student

Project INFO-H415 16 Richard Bauwens and Marine Devers

5 Implementation Table of contents

named Richard Bauwens, as explicated in the small tutorial earlier.

For more complicated queries it could be easier for her to write them down once, in the BaseX editor

and save it as a .zq file for future usage.

Project INFO-H415 17 Richard Bauwens and Marine Devers

6. Results

After creating our database and implementing all those functions, we have a database structured as

followed :

FIGURE 6.3 — Example of the class structure

18

6 Results Table of contents

=T
=Paul

>pdupond</

FIGURE 6.4 — Overview of a filled database

Project INFO-H415 19 Richard Bauwens and Marine Devers

7. Conclusion

To conclude, a small university needing to change its way of storing a huge amount of information was
presented. Because the old files were from Ezcel and because the secretary still wanted an easy desktop
GUI, an XML database with the management tool BaseX was the ideal choice. The two only difficulties
were to find a practical data structure for the university and to learn the XQuery language used by BaseX.

But once we overcame both of them, the implementation was pretty smooth.

20

[10]

[11]

[12]

Bibliography

Technopedia, “Definition of database.” https://www.techopedia.com/definition/1185/
database-db. Accessed on 2018-10-20.

Techtarget, “Definition of database.” https://searchsqlserver.techtarget.com/definition/
database. Accessed on 2018-10-20.

Techtarget, “Definition of xml.” https://searchmicroservices.techtarget.com/definition/
XML-Extensible-Markup-Language. Accessed on 2018-10-20.

Wikipedia, “Xml.” https://en.wikipedia.org/wiki/XML. Accessed on 2018-11-24.

Etutorials, “Xml.” http://etutorials.org/XML/xml+data+management. Accessed on 2018-11-24.

W3schools, “Xml example.” https://www.w3schools.com/xml/xml_server.asp. Accessed on 2018-
11-24.

”

TechTarget, “Definition of relational database.” https://searchdatamanagement.techtarget.

com/definition/relational-database. Accessed on 2018-11-24.

J. S. Blog, “Examples of relational databases.” https://www.jamesserra.com/archive/2015/08/

relational-databases-vs-non-relational-databases/. Accessed on 2018-11-24.

Technopedia, “Definition of non-relational databases.” https://www.techopedia.com/definition/

25218/non-relational-database. Accessed on 2018-11-26.

Hackermoon, “Comparison between relational and non-relational databases.” https://hackernoon.

com/relational-versus-non-relational-database-d5d1c439fb86. Accessed on 2018-11-26.

Technopedia, “Definition of xml database.” https://www.techopedia.com/definition/30558/

xml-database. Accessed on 2018-11-26.

TutorialsPoint, “Example of xml database.” https://www.tutorialspoint.com/xml/xml_

databases.htm. Accessed on 2018-11-26.

SlideShare, “Types of xml databases.” https://fr.slideshare.net/hawlery1989/xml-databases.
Accessed on 2018-11-30.

XML4Pharma, “Native xml database.” http://www.xml4pharma.com/XMLDB/. Accessed on 2018-
11-30.

XML and Databases, “Native xml database.” http://cecas.clemson.edu/~juan/CPSC862/

XML-Databases.htm#datainnative. Accessed on 2018-11-30.

21

https://www.techopedia.com/definition/1185/database-db
https://www.techopedia.com/definition/1185/database-db
https://searchsqlserver.techtarget.com/definition/database
https://searchsqlserver.techtarget.com/definition/database
https://searchmicroservices.techtarget.com/definition/XML-Extensible-Markup-Language
https://searchmicroservices.techtarget.com/definition/XML-Extensible-Markup-Language
https://en.wikipedia.org/wiki/XML
http://etutorials.org/XML/xml+data+management
https://www.w3schools.com/xml/xml_server.asp
https://searchdatamanagement.techtarget.com/definition/relational-database
https://searchdatamanagement.techtarget.com/definition/relational-database
https://www.jamesserra.com/archive/2015/08/relational-databases-vs-non-relational-databases/
https://www.jamesserra.com/archive/2015/08/relational-databases-vs-non-relational-databases/
https://www.techopedia.com/definition/25218/non-relational-database
https://www.techopedia.com/definition/25218/non-relational-database
https://hackernoon.com/relational-versus-non-relational-database-d5d1c439fb86
https://hackernoon.com/relational-versus-non-relational-database-d5d1c439fb86
https://www.techopedia.com/definition/30558/xml-database
https://www.techopedia.com/definition/30558/xml-database
https://www.tutorialspoint.com/xml/xml_databases.htm
https://www.tutorialspoint.com/xml/xml_databases.htm
https://fr.slideshare.net/hawlery1989/xml-databases
http://www.xml4pharma.com/XMLDB/
http://cecas.clemson.edu/~juan/CPSC862/XML-Databases.htm#datainnative
http://cecas.clemson.edu/~juan/CPSC862/XML-Databases.htm#datainnative

Bibliography Bibliography

[16] Wikipedia, “Basex.” https://en.wikipedia.org/wiki/BaseX. Accessed on 2018-10-22.

[17] Techopedia, “Nosql.” https://www.techopedia.com/definition/27689/nosql-database. Ac-
cessed on 2018-10-22.

[18] BaseX, “Download basex.” http://basex.org. Accessed on 2018-12-05.
[19] GitHub, “Github basex.” https://github.com/BaseXdb. Accessed on 2018-12-05.

[20] BaseX, “Documentation on basex.” http://docs.basex.org/wiki/Main_Page. Accessed on 2018-
12-05.

[21] BaseX, “Documentation on basex graphical user interface.” http://docs.basex.org/wiki/

Graphical_User_Interface. Accessed on 2018-12-05.

Project INFO-H415 22 Richard Bauwens and Marine Devers

https://en.wikipedia.org/wiki/BaseX
https://www.techopedia.com/definition/27689/nosql-database
http://basex.org
https://github.com/BaseXdb
http://docs.basex.org/wiki/Main_Page
http://docs.basex.org/wiki/Graphical_User_Interface
http://docs.basex.org/wiki/Graphical_User_Interface

	Introduction
	Scenario
	Scenario
	Data structure
	Constraints

	Database
	What is a database?
	What is XML?
	Example

	Relational databases vs Non Relational databases
	Relational databases
	Non Relational databases
	Comparison

	XML databases
	Example
	Enabled XML Database
	Native XML Database

	Why an XML database?

	Choice of a native XML database
	What is BaseX?
	Why BaseX?
	Small BaseX Tutorial

	Implementation
	Results
	Conclusion

