
 Master of Applied Computer Science
 2015-2016

 XML DATABASES
 Advanced Databases

 Student : Angeliki – Ioanna Katsiampouri
 Professor : Esteban Zyimani

 Contents

 1.Introduction
1.1 Definition of XML...3
1.2 Definition of XSLT...3
1.3 Definition of Xpath..3
1.4 Definition of Xquery..4
1.5 Definition of XQL..4

 2.XML Database
2.1 Definition of XML Database..4
2.2 Different Types...5
 2.2.1 XML Enabled Databases...5
 2.2.1.1 XML Enabled Databases architecture..8
 2.2.2 XML Native Databases...8
 2.2.2.1 Definition of XML Native Databases..8
 2.2.2.2 Features of XML Native Databases...9

3. eXist NXB
3.1 Overview...10
3.2 Features...10
3.3 Architecture...10
3.4 eXist Demo..12

4. XML Database VS Other Databases
4.1 XML VS Relational ..15

5. Overview
5.1 Overview of XML Database...16

6. References..17

1.Introduction

1.1 Definition of XML

Extensible Markup Language (XML) [2] [3] is a meta-markup language that was
developed to handle the shortcomings of HTML. It is both human and machine readable. It
is a textual format data, supported by Unicode, so as can be widely used technology-
independent. The most common use of XML is for documents, though is also widely used
for data structure description, such as the web services.

Example:
 <note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>

</note>

1.2 Definition of XSLT

Extensible Stylesheet Language Transformation (XSLT) , is a stylesheet language
applied to XML documents to transform them into html or another XML (or other types).

1.3 Definition of Xpath

Xpath is a syntax for defining parts of XML documents, and it uses path expressions
to navigate within the document. It contains a library of standard functions that help on
navigation and manipulation of the elements. It is a tool used a lot in XSLT to parse the
XML document in order to transform it.

 3

1.4 Definition of Xquery

Xquery is for XML what sql is for database tables. It is designed to query XML
fragments out of XML documents. It is built on Xpath expressions, and is supported by all
major databases.

eg. for $x in doc("books.xml")/bookstore/book
where $x/price>30

order by $x/title
return $x/title

1.5 Definition of XQL

XQL (XML Query Language) [16], is the language that allows users to intelligently
query XML data sources. The basic construction of XQL correspond directly to the basic
construction of XML. XQL is closely related to Xpath. A very simple example follows with
the XML document and the XQL query:
 <invoice>
 <customer>
 Wile E. Coyote, Death Valley, CA
 </customer>
 </invoice>

Query: //customer

Result:

<xql:result>
 <customer> Wile E. Coyote, Death Valley, CA </customer>
</xql:result>

2.XML Database

2.1 Definition of XML Database

According to Wikipedia, XML Database is defined as a data persistence software
system that allows data to be specified, and sometimes stored, in XML format. Those data
can be manipulated in the same way as with relational database, which means they can be
added, deleted, updated, queried, transformed, exported and returned to the calling system.
They are document oriented, since they store whole XML documents.

4

https://en.wikipedia.org/wiki/Data_persistence
https://en.wikipedia.org/wiki/XML

2.2 Different Types

There are two different types of XML databases:
– XML enabled databases and
– XML native databases

2.2.1 XML Enabled Databases

XML Enabled Databases (which most commonly is the relational and the object-
oriented databases), are those that are extended to hold XML data. They can transfer data
between XML documents and their own data structures. The data must be modelled in both
structures, XML based and relational based, and that is not always handy.

Some products that support XML are: Access 2007, Cache, DB2, extremeDB,
FileMaker, FoxPro, MySql, Oracle, PostgreSQL,SQL server and many other databases.

In order to have a better understanding of the concept, we will go in more details to
one of those technologies combined with XML. For our instance, we take MySQL,a
relational database [5]. All code is written in Perl.

Let's assume that we have a table named animal with two columns, name and
category.
 +-----------+---------------+
 | name | category |
 +--------+-----------+
snake	reptile
frog	amphibian
tuna	fish
racoon	mammal
 +--------+-----------+

One way to generate XML documents out of relational data, is to print manually all
the XML document, row by row, and have as values the retrieved values from the table.

my $sth = $dbh->prepare ("SELECT name, category FROM animal");

$sth->execute ();

print "<dataset>\n";

while (my ($name, $category) = $sth->fetchrow_array ()){

 print " <row>\n";
 print " <name>$name</name>\n";
 print " <category>$category</category>\n";
 print " </row>\n";
}
 $dbh->disconnect ();
 print "</dataset>\n";

5

This piece of code, generates the XML beneath:

 <dataset>
 <row>
 <name>snake</name>
 <category>reptile</category>
 </row>
 <row>
 <name>frog</name>
 <category>amphibian</category>
 </row>
 <row>
 <name>tuna</name>
 <category>fish</category>
 </row>
 <row>
 <name>racoon</name>
 <category>mammal</category>
 </row>
 </dataset>

This approach, however, could be used only for simple XML documents. To make it
more dynamic, and scalable for complex and big XML documents, we can use utility
classes.

Perl contains some utilities that support the flexible XML generation. For instance,
 XML::Generator::DBI helps to convert the contents of the animal table to XML. The SAX
handler is obtained from the XML::Hander::YAWriter (yet another writer) module.

use strict;use DBI;use XML::Generator::DBI;use XML::Handler::YAWriter;

 my $dbh = DBI->connect ("DBI:mysql:test",
 "testuser", "testpass",
 { RaiseError => 1, PrintError => 0});
 my $out = XML::Handler::YAWriter->new (AsFile => "-");
 my $gen = XML::Generator::DBI->new (
 Handler => $out,
 dbh => $dbh
);
 $gen->execute ("SELECT name, category FROM animal");
 $dbh->disconnect ();

The output of the code is more or less the same with the XML from the former
approach.

So far , we have seen how the relation table data can be transformed to XML data.
For the opposite, there are also utility classes. Perl provides a parser class that parses the
XML, retrieves the values of specific tags and stores it on database.

6

Assuming that we have as input the XML document generated above, we can have
the code beneath to retrieve data from the document.

use strict; use DBI;use XML::Parser;

 my %row = ("name" => undef, "category" => undef);

 my $dbh = DBI->connect ("DBI:mysql:test",
 "testuser", "testpass",
 { RaiseError => 1, PrintError => 0});
 my $parser = new XML::Parser (
 Handlers => {
 Start => \&handle_start,
 End => \&handle_end,
 Char => \&handle_text
 }
);
 $parser->parsefile ("animal.xml");
 $dbh->disconnect ();

Moreover, Xpath can be used to parse XML documents and get the values we want to
store on the database.

An XPath object contains an in-memory representation of the XML file, then gets a pointer
to a list of the elements we need within the document. For each of these, it extracts the text
and inserts them into the table.

The code below shows the retrieval of values in the XML code we provided before,
using Xpath.

 use strict;use DBI;use XML::XPath;use XML::XPath::XMLParser;

 my $dbh = DBI->connect ("DBI:mysql:test",
 "testuser", "testpass",
 { RaiseError => 1, PrintError => 0});
 my $xp = XML::XPath->new (filename => "animal.xml");
 my $nodelist = $xp->find ("//row");
 foreach my $row ($nodelist->get_nodelist ())
 {
 $dbh->do (
 "INSERT INTO animal (name, category) VALUES (?,?)",
 undef,
 $row->find ("name")->string_value (),
 $row->find ("category")->string_value ()
);
 }
 $dbh->disconnect ();

Most of database technologies that support XML, have these kinds of approaches for
reading and generating XML documents.

7

2.2.1.1 XML Enabled Databases Architecture

Let's take for example a relational database as underlying storage, to see the
architecture on high-level[17]. The Xml document schema must be translated to relational
schemas, before it accesses the corresponding files. XQL must be also translated to SQL
before the relational tables are accessed. XQL is implemented as add-on function to the
RDBMS. The relational engine parses then the XQL and translates it to SQL. Then SQL
executes the query in RDBMS.

 Figure 1 : XML Enabled Database Architecture

2.2.2 XML Native Databases

2.2.2.1 Definition of XML Native Databases

XML:DB initiative [6] offers its own definition for XML native databases.

They define a logical model for the XML documents, on which they are based to
store and retrieve the documents. This model, must contain at least elements, attributes,
document order and PCDATA. Xpath and XML Infoset are examples of this type of models.
Furthermore, they have an XML document unit as the (logical) storage point, exactly like
the relational databases have a row in a table as the logical unit to store the data. Those
databases require no specific underlying physical storage model, but they can be built on top
of other databases(eg relational).

8

 2.2.2.2 Features of XML Native Databases

Since the XNB are not really independent models, they cannot replace the existing
databases, but they can offer some different and interesting features that can help developers
on their projects, according to their requirements. The following list provides the general
features of XNB, but that does not mean that all the databases have the same or not more
features [6] [7].

XML storage - The data are stored as a unit on the XML document. The levels of
complexity can be arbitrary. With the appropriate mapping, the data are stored on the
underlying storage model as well. That is to ensure that the data will be maintained. To
retrieve the data from the underlying model, should be done also with NXB tools, such as
XSLT or DOM. Otherwise, the data that will be retrieved , will not be very representative of
an XML document.

Collections - Documents can be stored as a set on the database. That is similar to the
concept of the table on the relational databases. A collection does not need to associated
with a schema, so the documents can be stored regardless the schema. The databases that
support this functionality , are called schema-independent.

Queries - A good tool that is expanded so as to allow queries on documents or
collections, is the Xpath. Though, it was not built as query language, and so it still misses
some basic functionalities, such as grouping, sorting, or join of two documents. XSLT can
be used to fill those gaps on functionalities, but yet the complexity remains. Because of
those lacks, another tool is now under development, in order to support more functionalities
for NXB and make it more competitive to other types of databases. This tool is Xquery, and
several prototypes have been already released to work on databases. NXDs support also
indexing, in order to improve the performance of quering.

Updates and Deletes - NXBs can update or delete the whole documents, mainly
through DOM tree to languages that specify how to handle pieces of a document. XML:DB
initiative has developed the Xupdate language , that is used from the most technologies on
the NXB domain.

Transaction, Locking and Concurrency - All NXB support transaction and rollback.
Locking , however remains mostly on the level of a whole document and not on parts of it,
so multi-users concurrency is lowered down. Node level is also possible, but the
implementation is not easy, as it would require validating and enforced schemas. So , the
bigger the XML document is, the less multi-user capacity we have.

Those are some general features of the Native XML Databases. Different
technologies might use all or some of those features, but they might also provide some
more. To make the concept of NXB more comprehensible, there will be an extended
information / explanation-illustrated with examples on a technology of this domain. This
example, will be the technology named eXist, that is open source and can be used by
everyone.

3. eXist

3.1 Overview

eXist is an open source database management system, built on XML technology.
It stores the XML data according to the logical model and it has an index-based Xquery
processing. eXist is mainly written in Java. It supports many web technologies, and that is
why it is a very good tool to work with when developing web applications.:

– Xpath, Xquery, XSLT web tools
– SOAP, REST, ATOM protocol, WebDav, XMLRPC interfaces
– XMLDB, Xupdate, Xquery update extensions for database specific

3.2 Features

Some of the provided features by eXist are already mentioned in the general features
of the NXB. Exist offers more :

– Authorization mechanism : Unix-like access permissions for users/groups at
collection- and document-level.

– Security : it uses the Extensible Access Control Markup Language for Xquery
access control.

– Deployment : eXist can be deployed as a standalone database server, as an
embedded Java library or as part of a web application.

– Backup /restore : this functionality is provided either through Ant scripts or
through Java admin client. Backup contains resources in XML form to be
readable. It allows a full restore of database, including the user permissions.

3.3 Architecture

Let's take a closer look at the architecture of eXist, to have a better understanding of
how the XML documents are processed and stored [10].

The high-level architecture of eXist technology is shown at the image that follows:

10

http://cdi.uvm.edu/exist/security.xml

Figure 2 : eXist Architecture

 Each API is connected with eXist through a broker pool, that by default contains 20
brokers, but this is configurable by the user. Each broker represents a request from API to
database, so there can be maximum requests the amount of brokers that are configured on
database. If there are more requests, they have to go to a queue and wait until the
thread(broker) can execute them. A request might be an update operation (CRUD), or a
query operation (Xpath, Xquery, XSLT). In the second case, there must be

Exist provides several APIs for different situations. In case that eXist DBMS is
embedded to the application, then two APIs are offered for communication : the XML:DB
Local API and the Fluent API . When there is a server-client architecture, then APIs like
WebDAV API , XML:DB Remote API or XML-RPC are used. The first one allows users
to manipulate documents from database, like they were stored in their local machine.

11

The second one, allows users to connect to DBMS through Java admin client, but then first
the third API needs to have been enabled.

Independently the type of architecture that exists between the application and eXist,
the DBMS internally has some specific functionality.

When the XML document reaches eXist, then it is parsed and all information is
extracted and stored by indexing its features. Every part that is extracted, is then stored on
disk as binary file. Indexing helps on efficient and quick response when the XML document
will be asked by the user. Collections of documents are handled in eXist like folders in
filesystems. Each collection is identified by a URI. It stores all the metadata of itself and of
all the documents that are contained in the collection.

Exist manipulates XML files with dynamic labeling numbering (DLN). DLN helps
eXist to identify a node and its connection with other nodes, by giving a unique label to
each node. This is done in hierarchy, starting from the root node to the children. For each
node, DLN includes the ID of all the previous elements. That makes it easy to connect the
nodes hierarchically, when the XML document needs to be reconstructed and retrieved.

Paging and caching is one more feature of eXist technology. Size of page in eXist is
configurable. DOM and Collection files are splitted into two parts, the data and the index
section. Data section contains the node,document or collection metadata, while the index
section ensures the quick lookup of them. Cache is also used for keeping the most used
documents on memory, so they are not needed to be requested from disk.eXist uses LRU)
Least Recently Used) caches, so pages are retrieved from caches, based on the time they
were last accessed.

3.4 eXist Demo

Official site of eXist provides some demos of small applications built with eXist-db
[11]. There are several examples, based on different concepts, such as unit testing, Xforms
and content extraction.

In the following session, we are going to analyse one simple application example that
can be found on internet , together with its source code. The example that will be used is
part of the Web examples section, and is named Shakespear. The concept of this small
application is to query as user anything that could be connected to famous writer
Shaksepear. Then , this query is passed to the database that contains XML files with a lot of
Shakespear's creations and their contents. Every match that is found is returned to the
screen.

The image beneath, is the html representation of the application. In the field Query
we can type anything, and we can filter it through the Mode field, which have three filters:
near, anything, and phrase.

12

 Figure 3 : Shakespear html output

To view the html code, we can click on the source code link, and we will be
redirected to the exIDE[12]. In the IDE, we can view the source code of all the example
applications, as well as the XML documents that are stored for each of those applications.
The html, ajax and xql page that are used for querying, as well as the XML documents
stored on the db for this application are stored in those paths:

 Figure 4 : Paths to database files

13

The xql takes as input the parameters passed from html page and sends the request to
db that parses all XML documents attached to this application , and returns the result.

 <div id="results" class="shakespeare:query">
 <p>Found: matches.</p>
 <div class="shakespeare:show-hits?howmany=20"/>
 </div>

This piece of html code calls functions of the xql page, and it displayes then the
output of these functions.

The main function, takes input parameters from the query , executes the query by
searching on the db, and then it returns a map. The templating module recognizes this map
and will merge it into the current model, then continue processing any children of $node.

declare
 %templates:wrap
function shakes:query($node as node()*, $model as map(*), $query as xs:string?, $mode as
xs:string?) {
 session:create(),
 let $hits := shakes:do-query($query, $mode)
 let $store := session:set-attribute($shakes:SESSION, $hits)
 return
 map:entry("hits", $hits)
};

The do-query function does the call the db, and eXist searches on the collection of XML
documents for hits matching on that query.

declare function shakes:do-query($queryStr as xs:string?, $mode as xs:string?) {
 let $query := shakes:create-query($queryStr, $mode)
 for $hit in collection($config:app-root)//SCENE[ft:query(., $query)]
 order by ft:score($hit) descending
 return $hit
};

In high level, the design of the simple application is as follows:

 Figure 5 : High-level construction of Shakespear

14

4. XML Database VS other databases

4.1 XML VS Relational

XML database is a good solution, but not for all the applications. Every DBMS has a
different purpose and can function better under specific circumstances. In the section below,
there will be some tips provided on when XML database should be chosen as the solution
for the application we build or not [13] [14] [15].

XML documents contain the data and the information on how this data is structured
in a way that both machines and people can read. An XML document can be digitally
transferred to other parties and all the information is carried with it, and that makes it self
describing. Because of this self-describing data feature, XML db has become a key standard
in Service Oriented Architectures (SOA) and Web Services. XML is also hierarchical. A
document expresses the relationship between data items in the form of the hierarchy.
Furthermore, sequence and order on elements in doecuments is important.

A relational database, on the other hand, is a storage technology that uses tables and
rows in the tables. Data are related with each other with keys. Data is readable by executing
SQL in a DBMS tool, but the extraction of the data requires that we have understanding of
the database structure, and the foreign key relationships. That knowledge requires
significant training and experience. Order and sequence play no role in relational databases.

In general, there are a couple of situations that relation db is better solution than
XML, even if the data is already in XML form. Some of these situations are described in
this section:

– When process of the data is done on relational form.When data are going to be stored
on a relational database as underlying database, then is better to do not include the
XML database at all in the application.

– When performance plays an important role. Parsing and interpreting in XML
database remains a time-expensive feature. Applications that cannot afford to have
even a small loss in performance, should better implement a relational database
instead of an XML.

– When the values that should be provided do not really need an hierarchy in the
database. If the values that the children nodes provide, have no actual relationship
with the parent nodes, then there is no reason to implement an XML db.

– When the data should be represented as table either way when they will be retrieved
from database.

On the other hand, XML db can be a better solution than relational db:

– When the schema of the data changes often, then modifying the relational database is
time cost and relatively difficult.

15

– When the nature of data contains hierarchy. Some data are naturally tree
structured.Then having a database that keeps the same form and relationship between
elements, is more elegant solution.

– When some attributes contain multivalued data. For instance, if we consider that an
employee can have multiple phone numbers in his possesion, then creating a table
only to store those values is not a good idea.

– When structure of small quantities of data can lead to very big relational schemas.
For example, an application that has different levels of data and for every level a
different table is needed. Many levels can be represented better in a single XML
document.

Despite their differences, since the XML database can be implemented on top of a
relation database (XML Enabled Database), is always a good solution for users. They
can select the most effective data model for storing the data.

5. Overview

5.1 Overview of XML Database

XML Database have gained a significant part in database fields over the past decades.
The tools mostly used for the implementation of an XML database to an application is
Xpath, Xquery, XQL and XSLT. There are two types of XML database: the Native XML
Databases and the Enabled XML Databases. That means that either we can use an XML
database as a standalone application, or we can integrate the XML database on top of other
types (eg relationals). That helps users significantly to implement more efficient
applications, since combination of different types of databases can be used on a single
application.

Like every other database, XML has also some advantages and disadvantages. We
need to have a good understanding of what an XML database can offer to the application we
are building, in order to choose it as a solution. Furthermore, we need to know the nature of
data we want to store, and what are the demandings of the application , such as
performance.

In any case, XML database is worth taking it into consideration, because it will keep
evolving on the next years, more tools are coming out, that are more efficient and easy to
use, and of course XML technologies play important role nowadays on many applications.

6. References

[1] Wikipedia – XML Database
 https://en.wikipedia.org/wiki/XML_database

[2] Wikipedia – XML
 https://en.wikipedia.org/wiki/XML

[3] D.Obasanjo : An exploration of XML in database Management Systems
 http://www.25hoursaday.com/storingandqueryingxml.html

[4] R.Bourret : XML Database Products
 http://www.rpbourret.com/xml/ProdsXMLEnabled.htm

[5] P.Dubois : Using XML with MySQL
 http://www.kitebird.com/articles/mysql-xml.html

[6] <XML:DB>
http://xmldb-org.sourceforge.net/

[7] G. Powell : Beginning XML Databases

[8] Xquery
 http://www.w3schools.com/xsl/xquery_intro.asp

[9] eXist
http://cdi.uvm.edu/exist/facts.xml

[10] eXist Architecture
https://www.safaribooksonline.com/library/view/exist/9781449337094/ch04.html

[11] eXist Demo
http://exist-db.org/exist/apps/demo/index.html

[12] eXIDE
http://exist-db.org/exist/apps/eXide/index.html

[13] Rich Rollman: XML Tips & Tricks
 https://technet.microsoft.com/en-us/library/aa224799(v=sql.80).aspx

[14] F.Font :When to use XML instead of relation database
 http://www.room4me.com/index.php?
option=com_content&view=article&id=8:xmlvsdb&catid=2:technology&Itemid=5

[15] Comparing XML and relational storage: A best practices guide
 http://xml.coverpages.org/IBM-XML-GC34-2497.pdf

http://xml.coverpages.org/IBM-XML-GC34-2497.pdf
http://www.room4me.com/index.php?option=com_content&view=article&id=8:xmlvsdb&catid=2:technology&Itemid=5
http://www.room4me.com/index.php?option=com_content&view=article&id=8:xmlvsdb&catid=2:technology&Itemid=5
https://technet.microsoft.com/en-us/library/aa224799(v=sql.80).aspx
http://exist-db.org/exist/apps/eXide/index.html
http://exist-db.org/exist/apps/demo/index.html
https://www.safaribooksonline.com/library/view/exist/9781449337094/ch04.html
http://cdi.uvm.edu/exist/facts.xml
http://www.w3schools.com/xsl/xquery_intro.asp
http://xmldb-org.sourceforge.net/
http://www.kitebird.com/articles/mysql-xml.html
http://www.rpbourret.com/xml/ProdsXMLEnabled.htm
http://www.25hoursaday.com/storingandqueryingxml.html
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XML_database

[16] J.Robbie :XQL: XML Query Language
 http://www.ibiblio.org/xql/xql-proposal.html

[17] A.Chaudhri, A. Rashid, R. Zicari : XML Data Management: Native XML and XML
Enabled Database Systems
 https://books.google.gr/books?
id=7LNhdOeQulQC&pg=PA548&lpg=PA548&dq=xml+enabled+database+architecture&s
ource=bl&ots=jZ2RkXaKSw&sig=HgGULxNOcISiVlb9wMLMvKH10j4&hl=en&sa=X&
ved=0ahUKEwiX6Lyu59jJAhVH7g4KHT80B78Q6AEILzAD#v=onepage&q=xml
%20enabled%20database%20architecture&f=false

https://books.google.gr/books?id=7LNhdOeQulQC&pg=PA548&lpg=PA548&dq=xml+enabled+database+architecture&source=bl&ots=jZ2RkXaKSw&sig=HgGULxNOcISiVlb9wMLMvKH10j4&hl=en&sa=X&ved=0ahUKEwiX6Lyu59jJAhVH7g4KHT80B78Q6AEILzAD#v=onepage&q=xml%20enabled%20database%20architecture&f=false
https://books.google.gr/books?id=7LNhdOeQulQC&pg=PA548&lpg=PA548&dq=xml+enabled+database+architecture&source=bl&ots=jZ2RkXaKSw&sig=HgGULxNOcISiVlb9wMLMvKH10j4&hl=en&sa=X&ved=0ahUKEwiX6Lyu59jJAhVH7g4KHT80B78Q6AEILzAD#v=onepage&q=xml%20enabled%20database%20architecture&f=false
https://books.google.gr/books?id=7LNhdOeQulQC&pg=PA548&lpg=PA548&dq=xml+enabled+database+architecture&source=bl&ots=jZ2RkXaKSw&sig=HgGULxNOcISiVlb9wMLMvKH10j4&hl=en&sa=X&ved=0ahUKEwiX6Lyu59jJAhVH7g4KHT80B78Q6AEILzAD#v=onepage&q=xml%20enabled%20database%20architecture&f=false
http://www.ibiblio.org/xql/xql-proposal.html

