

INTRODUCTION TO

CLOUD DATABASE :

WINDOWS AZURE TABLE

Prepared By:

Oky Purwantiningsih

Poly Kinya Muriithi

2

Table of Contents
1. PREFACE .. 3

2. WHAT IS WINDOWS AZURE AND WINDOWS AZURE STORAGE ... 3

3. WINDOWS AZURE STORAGE ACCOUNT .. 5

4. WINDOWS AZURE TABLE OVERVIEW.. 10

5. WINDOWS AZURE TABLE EXPLORER ... 11

5.1. CREATE TABLE .. 13

5.2. EDIT ENTITY .. 13

5.3. ADD ENTITY .. 14

5.4. DELETE ENTITY ... 15

5.5. FILTER ENTITY / QUERY... 15

6. WINDOWS AZURE TABLE IMPLEMENTATION IN C# .. 18

6.1. Create a storage connection ... 18

6.2. Programmatically Access Table Storage .. 18

6.3. Create a table ... 19

6.4. Add an entity to a table .. 19

6.5. Insert a batch of entities ... 20

6.6. Retrieve all entities in a partition .. 21

6.7. Retrieve a range of entities in a partition .. 21

6.8. Retrieve a single entity ... 21

6.9. Replace an entity .. 22

6.10. Insert or Replace an entity .. 22

6.11. Merge an entity .. 23

6.12. Insert or Merge an entity ... 23

6.13. Query a subset of entity properties .. 24

6.14. Delete an Entity .. 24

6.15. Delete a table ... 24

7. WINDOWS AZURE TABLE VS OTHER DATABASE .. 25

8. CONCLUSION ... 27

9. REFERENCES .. 27

3

1. PREFACE
The‘cloud’ is one of the most ambiguous terms in the IT sector. The only agreeable aspect is that
you need the internet and without it the cloud concept does not exist. Some of the many
definitions include: “The definition of the term ‘cloud’ can be referred to as various services
where information and files are kept on servers connected to the internet”. Also, “anything that
can be offered as a service for which you don’t need to bother about how it’s implemented and
maintained”

One of the major reasons for using the cloud is the optimization on cost due to the offload of the
purchase of hardware and software on the vendors. Nowadays the trend of moving towards
cloud computing has raise the need to have database runs in the same architecture. Companies
that already have their application runs on the cloud would want their application to be more
integrated. In which case they will also need their data to be on the cloud. Databases that run on
a cloud computing platform are called Cloud Database. There are two deployment models to run
database on the cloud 1 :

 Virtual machine: user purchase virtual machine instances for a period of time and run a
database on these machines. Oracle uses this method for Oracle Database 11g Enterprise
Edition which runs on Amazon EC2 cloud computing platform.

 Database as a service: cloud computing platform offers database as a service. Database
service provider takes the responsibility of installing and managing the database. In this
case, users do not need to think about licenses, server requirement, maintenance, etc. They
only need to pay based on their usage.For example, Amazon Web Services provides three
cloud database services: SimpleDB, MySQL, and DynamoDB.

There are two types of cloud database, NoSQL based and SQL based. In this document, we will
discuss one of NoSQL based cloud database offered as a storage service on Windows Azure:
Windows Azure Table. We will discuss in details about its storage structure, how we can create,
insert and delete data and how we can use it within our application. An example of its
implementation in C# will be given in part 6. In part 7 we will compare Windows Azure Table
with other SQL-based and NoSQL-based cloud database. We will also discuss in what scenario
Azure Table will be the right database to use.

2. WHAT IS WINDOWS AZURE AND WINDOWS AZURE STORAGE
Windows Azure is a collection of virtual Microsoft operating systems that can run your web
applications and services in the cloud. It’s a cloud computing platform and infrastructure
released by Microsoft in 2010. It supports building, deploying and managing applications and
services through a global network of datacenters managed by Microsoft. It offers both platform
as a service and infrastructure as a service. With Windows Azure we can build applications in any
language, tool, or framework. We can also integrate non cloud application with cloud application
in Windows Azure.

One of the services offered by Windows Azure is Windows Azure Storage. Since it is stored on
the cloud, applications can easily access and store data from anywhere in the world via
authenticated HTTP or HTTPS call. Windows Azure provides three types of storage services:

4

 Queue: a service for storing large numbers of messages. Queue storage is usually used
to create a backlog of work to process asynchronously or passing messages from
Windows Azure Web role to Windows Azure Worker role.

 Blob (Binary Large Objects): a service for storing large amounts of unstructured data. It is
commonly used for streaming video and audio, storing files for distributed access,
performing secure backup and disaster recovery.

 Table: a service for storing large amounts of structured data. As mentioned before, Table
storage is built with NoSQL approach which is efficient to store structured and non-
relational data. It is commonly used for storing data that doesn’t require complex joins,
foreign keys, or stored procedure.

Windows Azure Storage Architecture

As shown in the picture above, there are 3 layers representing Windows Azure Storage Architecture6

:

1. Front End (FE) Layer: takes the incoming requests, authenticates and authorizes the
requests, and then routes them to a partition server in the Partition Layer

2. Partition Layer: manages the partitioning of all data objects in the system. Each object has
partition key which defines what partition the object belongs to. Each partition is served by
one Partition Server. This layer also provides automatic load balancing of partitions across
the server.

3. Distributed and Replicated File System (DFS) layer: is where the data actually stored and in
charge of distributing and replicating the data across many servers to keep it durable (geo-
replication). All DFS server can be accessed from any partition server.

5

3. WINDOWS AZURE STORAGE ACCOUNT
Storage account enables one to manage the azure storage services. These accounts are different
from hosted services because Azure Storage is in a sense one big data store managed by
Microsoft. It is possible to have multiple accounts therefore various applications can be stored in
separate accounts.

To access the storage account you need a key, and each account has a unique key, thus ensuring
only applicants with the key can access the account. In case of security risk or compromise of the
account thee key can be regenerated.

To store files and data in the Blob, Table, and Queue services in Windows Azure, you must create
a storage account in the geographic region where you want to store the data. A storage account
can contain up to 100 TB of blob, table, and queue data. You can create up to five storage
accounts for each Windows Azure subscription.

Windows Azure provides storage as a cloud storage service as part of the Windows Azure
Platform, scalable, cost effective cloud storage.

The following table describes the scalability targets for storage accounts, based on when they
were created and the level of redundancy chosen:

Storage
Account
Creation Date

Total
Account
Capacity

Total
Transaction Rate
(assuming 1KB
object size)

Total Bandwidth
for a Geo-
Redundant Storage
Account

Total Bandwidth
for a Locally
Redundant Storage
Account

On or before
June 7, 2012

100 TB Up to 5,000
transactions per
second

*Ingress+Egress: Up
to 3 gigabits per
second

*Ingress+Egress: Up
to 3 gigabits per
second

June 8, 2012 or
later

200 TB Up to 20,000
transactions per
second

*Ingress: Up to 5
gigabits per second
*Egress: Up to 10
gigabits per second

*Ingress: Up to 10
gigabits per second
*Egress: Up to 15
gigabits per second

* Ingress refers to all data (requests) being sent to a storage account.
* Egress refers to all data (responses) being received from a storage account.

How to Create a Storage Account

Creating a storage account is easy, and it involves a series of steps including:

1. Firstly, subscribe Windows Azure by creating a Windows Azure Account.
2. Log in to the Windows Azure platform management portal account. This is where you

manage the Azure subscription.
3. On the open window click on storage in the menu. Click on the NEW command in the app

bar.

6

4. On the new window click on QUICK CREATE

5. Choose a name and fill it in the URL, to use in the URI for the storage account.
6. Choose a location/Region in which to locate the storage. If you will be using storage from

your Windows Azure application, select the same region where you will deploy your
application. Always choose the same location for your storage account and your hosted
services, which you can also do in the Developer Portal. This allows the computation to have
high bandwidth and low latency to storage, and the bandwidth is free between computation
and storage in the same location.

7

7. In Replication, select the level of replication that you desire for your storage account.
By default, replication is set to Geo-Redundant. With geo-redundant replication, your
storage account and all data in it is copied to a secondary location in the event of a major
disaster in the primary location. Windows Azure assigns a secondary location in the same
region, which cannot be changed. In case of a failure, the secondary location becomes the
primary location for the storage account, and your data is replicated to a new secondary
location.

8. Click on the CREATE STORAGE ACCOUNT command in the app bar. The account is created
and ready for use.

9. Once the account is created integration with an application is easy all you need to get is the
name of the storage account and the access keys and everything is ready to go. To get the
name and access key click on the MANAGE ACCESS KEYS command on the app bar at the
bottom of the screen.

8

Once the account is created you can use some features like:
DASHBOARD: Allow you to choose up to six metrics to plot on the metrics chart from nine
available metrics. For each service (Blob, Table, and Queue), the Availability, Success Percentage,
and Total Requests metrics are available. The metrics available on the dashboard are the same
for minimal or verbose monitoring.

9

CONFIGURE: To configure and monitor diagnostic logging for debugging and performance
tuning, with the flexibility to control granularity of the logs.

Once the configuration is complete you complete you can use the MONITORING to pick and
choose exactly which matrix you want to monitor or track.

10

4. WINDOWS AZURE TABLE OVERVIEW
The term ‘table’ used in Azure table is a bit misleading in a sense it makes people think of it as
‘table’ in traditional database. To have a better understanding on Windows Azure Table, the
following are some of terms related to Azure Table2:

 Table: A table is a container or collection of entities. A table has no fixed schema,
therefore two different entities in a table can have different properties which means a
single table can contain entities that have different sets of properties.

 Entity: An entity is a set of properties, similar to a database row. An entity can be up to
1MB in size.

 Properties: A property is a name-value pair. These properties are typed per entity, which
means that you can have the same property name in another entity , but with a different
data type. Each entity can include up to 252 properties to store data. Each entity also
has 3 system properties that specify a partition key, a row key, and a timestamp. Entities
with the same partition key can be queried more quickly, and inserted/updated in
atomic operations. An entity's row key is its unique identifier within a partition. Azure
Table properties can have the following data type: byte, bool, DateTime, double, Guid,
Int32 or Int, Int64 or long, String.

Every entity has 3 fixed system properties:

 PartitionKey: is the key which define where the system will distribute the entities over
different storage nodes, ie partition the entity belongs. Partition Key is a mandatory
property and is of String type. We have to define the partition key for each entity.

Storage
Account

Tables Entities

Name:
Address:

Name:
Email:

Customer

Product

Product Name:
Price:

Product Name:
Price:

Amazon

11

 RowKey: is a unique id of the entity within the same partition. Two entities can have the
same Row Key as long as it has different partition key. Partition Key combined with Row Key
is like composite key in traditional database and it identifies an entity in a table. Similar to
Partition Key, Row Key is also a mandatory property and is of String type. We have to define
the Row Key for each entity.

 Timestamp: is a property which is automatically filled in by the system every time we insert
an entity. It is a read only value maintained by the system for versioning, used to maintain
optimistic concurrency. By Default, every Update and Delete request send an ETag using If-
Match condition. The operation will fail if the Timestamp property value differs from the one
in If-Match header.

Accessing Azure Table

Azure Table Storage uses a REST APA consisting of table operations – to manage tables in the
store and entity operations – to manipulate data in the table. This means that it can access and
manipulate data using HTTP requests. The URL determines what data structure you work with
while the HTTP verb determines the operations you perform. Due to the use of this API any
platform that supports the HTTP protocol and understand XML can talk to Azure Table Storage

Indexing in Azure Table

Windows Azure Table provides one clustered index based on Partition Key and Row Key. Query
results are always sorted by these properties in ascending order. We cannot define our own
index based on the other properties. Since Partition Key and Row Key is the only index available,
both properties also define how fast a query can be executed. Query on the same Partition Key
will be faster than query on different Partition Key. When defining what data we will use as
Partition Key and Row Key, we have to consider what kind of data will be most often requested.
Key selection is the first most important aspects to consider when deciding to use table storage.

5. WINDOWS AZURE TABLE EXPLORER
Access to Azure Table Storage is accomplished either via REST API or Storage Client Library
provided with the Windows Azure SDK. Using the REST API allows client applications to
communicate and use data from Table Storage without having detailed and specific knowledge
of an Azure API, but it is more complex and difficult to work with. The Storage Client Library
(which leverages LINQ to Objects) provides a layer of convenience but requires the application
reference the Storage Client Library APIs,to do this, both of which hide the underlying HTTP
requests. REST and the Storage Client Library incur a learning curve that is typically not there
when using SQL Azure. .NET or otherwise, is also free to make these requests directly. O data
can also be used to query this tables. In this chapter we will look at querying using Visual Studio
(ADO.NET Data Services).

 You can view blob, queue, and table data from your storage accounts for Windows Azure using
the Windows Azure tool for Microsoft visual studio. By using the Windows Azure Storage node
in Server Explorer, you can display data from your local storage emulator account and also from
storage accounts that you've created for Windows Azure.

12

Server Explorer in Visual Studio is displayed by, choosing View, then Server Explorerfrom the
menu bar.

Any Windows Azure storage accounts to which you've connected appear below the Windows
Azure Storage node. If your storage account doesn't appear, you can add it.

Expand the Tables node to see a list of tables for the storage account. To display the data in a
table, open the shortcut menu for a table and then choose View Table. The table is organized by
entities (shown in rows) and properties (shown in columns).

13

5.1. CREATE TABLE
You can create tables by using Server Explorer. To create a table, open the shortcut menu
for the Tables node, and then choose CREATE TABLE.

5.2. EDIT ENTITY
The server explorer allows you to edit a table manually without the use of any code. You can
edit table data by opening the shortcut menu for an entity (a single row) or a property (a
single cell) and then choosing Edit.

14

Entities in a single table aren’t required to have the same set of properties (columns).The
following restrictions on viewing and editing table data need to be observed:

 Binary data (type byte []), can store it in a table but it is not possible to view or edit it.
 PartitionKey or RowKey values cannot be edited, as this operation is notsupport by

table storage in Windows Azure.
 Timestamp is not an eligible name for a property since, Windows Azure Storage services

use a property with that name.
 DateTime value, must follow a format that's appropriate to the region and language

settings of your computer

5.3. ADD ENTITY
Entities (rows) can also be added to the table by choosing the Add Entity button.

15

In the Add Entity dialog box, enter the values of the PartitionKey and RowKey properties.
Entering of these values must be done very carefully because once the values are entered
and the dialog box closed no changes can be made.

5.4. DELETE ENTITY
To delete a table permanently, open its shortcut menu, and then choose Delete.

5.5. FILTER ENTITY / QUERY
You can customize the set of entities that are shown from a table if you use the query
builder. To open the query builder, open a table for viewing, and then choose the rightmost
button on the table view’s toolbar.

16

The Query Builder dialog box opens.

Once the query build andthe dialog box is closed, the resulting text form of the query
appears in a text box as a WCF Data Services filter. To run the query, choose the green
triangle icon.

5.5.1. Comparison Operators
The following logical operators are supported for all property types:

Logical
operator

Description Example filter string

eq Equal City eq 'Denmark'
gt Greater than Price gt 20
ge Greater than or equal to Price ge 10
lt Less than Price lt 20
le Less than or equal Price le 100
ne Not equal City ne 'Paris'
and And Price le 200 and Price gt 3.5
or Or Price le 3.5 or Price gt 200
not Not not is Available

When constructing a filter string, the following rules are important:
 It is not possible to compare a property to a dynamic value; one side of the

expression must be a constant. Therefore the logical operators are used to compare
a property to a value

 All parts of the filter string are case-sensitive.
 The constant value must be of the same data type as the property in order for the

filter to return valid results.

17

5.5.2. Filtering on String Properties
In general, when you filter on string properties, enclose the string constant in single
quotation marks. Or enclose each filter expression in parentheses

However Table service does not support wildcard queries, and they are not supported in
the Table Designer either. However, you can perform prefix matching by using
comparison operators on the desired prefix.

5.5.3. Filtering on Numeric Properties
To filter on an integer or floating-point number, specify the number without quotation
marks, just use it in SQL numeric filtering.
This example returns all entities with a distance property whose value is greater than
100:

5.5.4. Filtering on Boolean Properties
To filter on a Boolean value, specify true or false without quotation marks. Returns all
entities where the IsActive property is set to true:

You can also write this filter expression without the logical operator. The Table service
will also return all entities where IsExpensive is true:

To return all entities where IsActive is false, you can use the not operator:

5.5.5. Filtering on DateTime Properties
To filter on a DateTime value, specify the datetime keyword, followed by the date/time
constant in single quotation marks. The date/time constant must be in combined UTC
format.

(PartitionKey eq 'Denmark') and (RowKey eq '1')

LastName ge 'A' and LastName lt 'B'

Distance gt 100

IsExpensive eq true

IsExpensive

Not IsExpensive

Denmark eq datetime'2013-12-07T00:00:00Z'

18

6. WINDOWS AZURE TABLE IMPLEMENTATION IN C#
We can access Windows Azure Table through application written in .NET, Node.js, PHP, Java,
Phyton or Ruby. In This document we will give examples on how to create, manipulate, and
delete Windows Azure Table Storage Service in C#.

6.1. Create a storage connection
The connection to Windows Azure Table can be maintained through the .NET configuration
system (web.config or app.config). Here we store the account name and account key of our
Windows Azure Storage account in <appsetting>element as the following:

Account name is the name of our Windows Azure Storage account and account key is the
access key provided in the portal.

6.2. Programmatically Access Table Storage
Obtaining the assembly
To obtain Windows Azure Storage assembly, right click on Solution Explorer and choose
Manage NuGet Packages. Search online for “WindowsAzure.storage” and click Install. This
will install Microsoft.WindowsAzure.Storage.dll assembly in our project. We will also need to
add reference to System.Configuration.dll in order to be able to retrieve the connection
information we stored in web.config or app.config.
Namespaces Declaration

<configuration>
<startup>
<supportedRuntimeversion="v4.0"sku=".NETFramework,Version=v4.5" />
</startup>
<appSettings>
<addkey="AccountName"value="infoh415"/>
<addkey="AccountKey" value="A1QyWiuQKRT3VlSrsKvnFaGGG15dA=="/>
</appSettings>
</configuration>

19

The following code are namespace declaration needed to access Windows Azure Storage:

Retrieving the Connection
To retrieve the connection within our application, we can use the following code:

All C# codes in this documents is built with Windows Form Application project and uses the
above code to retrieve windows azure storage connection stored in app.config.

6.3. Create a table
The CloudTableClient object is used to get reference object for tables and entities. The
following codes create a table named Customer if the table is not exists in our storage
account.

6.4. Add an entity to a table
To add an entity into a table, we need a class which defines the properties of our entity. In
the following example, we create a class called CustomerEntity which derived from
TableEntity class. We define country as Partition Key and customerNo as Row Key. We also
define other attributes. These attributes must be a public property of a supported type that
exposes both get and set. The class must also expose a parameter-less constructor.

usingMicrosoft.WindowsAzure.Storage;
usingMicrosoft.WindowsAzure.Storage.Auth;
usingMicrosoft.WindowsAzure.Storage.Table;
usingSystem.Configuration

CloudStorageAccountstorageAccount;
StorageCredentialscreds;

stringaccountName = ConfigurationManager.AppSettings.Get("AccountName");
stringaccountKey = ConfigurationManager.AppSettings.Get("AccountKey");

creds = newStorageCredentials(accountName, accountKey);
storageAccount = newCloudStorageAccount(creds, true);

CloudTableClienttableClient = storageAccount.CreateCloudTableClient();

CloudTable table = tableClient.GetTableReference("Customer");
table.CreateIfNotExists();

publicclassCustomerEntity : TableEntity
 { publicCustomerEntity(string country, stringcustomerNo)
 {
this.PartitionKey = country;
this.RowKey = customerNo;
 }

publicCustomerEntity() { }
publicstringfirstName { get; set; }
publicstringlastName { get; set; }
publicstring address { get; set; }
publicstring phone { get; set; }
publicinttotalPurchase { get; set; }
 }

20

Table operations are performed with CloudTable object and TableOperation. In the following
code, table variable refers to Customer table storagein which we want to insert the entity
and insert variable is the operation we want to execute.

6.5. Insert a batch of entities
We can insert a batch of entities in a single operation with the following constraint:

1. Update, Delete, and Insert can be done in the same single batch operation.
2. Maximum number of entities in one batch operation is 100 entities.
3. All the entities in one batch operation must have the same partition key.
4. We can perform query in batch operation, but it must be the only operation in the

batch.

The following code inserts two entities in one batch operation. For batch operation, we use
TableBatchOperation object instead of the regular TableOperation.

CloudTable table = tableClient.GetTableReference("Customer");
CustomerEntityemp = newCustomerEntity("Belgium","1111");

emp.firstName = "Bilbo";
emp.lastName = "Baggins";
emp.address = "Shire";
emp.phone = "555-555-555";
emp.totalPurchase = Convert.ToInt32(("100");

TableOperation insert = TableOperation.Insert(emp);
table.Execute(insert);

// Create the CloudTable object that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

//Create the batch operation.
TableBatchOperationbatchOperation = newTableBatchOperation();

//Create a customer entity
CustomerEntity emp1 = newCustomerEntity("Denmark","1111");
emp1.firstName = "Jennifer";
emp1.lastName = "Lawrence";
emp1.phone = "123456";
emp1.address = "Main Street 2010 Denmark";

//create another customer entity
CustomerEntity emp2 = newCustomerEntity("Denmark", "2222");
emp2.firstName = "Jennifer";
emp2.lastName = "Aniston";
emp2.phone = "555555";
emp2.address = "Second Street 2111 France";

// Add both customer entities to the batch insert operation.
batchOperation.Insert(emp1);
batchOperation.Insert(emp2);

// Execute the batch operation.
table.ExecuteBatch(batchOperation);

21

6.6. Retrieve all entities in a partition
To query entities in a table, we use TableQuery object. The following codes retrieve all
entities which Partition Key is equal to “Denmark” and show the result in a data grid view
component.

6.7. Retrieve a range of entities in a partition
We can also query for entities with a specific range of property. The following codes retrieve
entities which have Partition Key equal to “France” and have purchase more than 20 items
and show the result in a data grid view component.

6.8. Retrieve a single entity
To query for a single entity, we have to define a specific value for Partition Key and Row Key.
The following codes retrieve one entity of customer who live in Denmark and have customer
number 1111.

// Create the CloudTable object that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

// Construct the query operation for all customer entities where
PartitionKey="Denmark".
TableQuery<CustomerEntity> query =
newTableQuery<CustomerEntity>().Where(TableQuery.GenerateFilterCondition("P
artitionKey", QueryComparisons.Equal, "Denmark"));

// Show the query result in data grid view
IEnumerable<CustomerEntity> list = table.ExecuteQuery(query);
grdEntities.DataSource = list.ToList();

// Create the CloudTable object that represents the "Customer" table
CloudTable table = tableClient.GetTableReference("Customer");

// Construct the query
TableQuery<CustomerEntity>rangeQuery =
newTableQuery<CustomerEntity>().Where(
TableQuery.CombineFilters(
TableQuery.GenerateFilterCondition("PartitionKey", QueryComparisons.Equal,
"France"),TableOperators.And,
TableQuery.GenerateFilterConditionForInt("totalPurchase",
QueryComparisons.GreaterThan, 20)));

// Show the query result in data grid view
IEnumerable<CustomerEntity> list = table.ExecuteQuery(rangeQuery);
grdEntities.DataSource = list.ToList();

// Create the CloudTable object that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

// Create a query to retrieve specific record
TableQuery<CustomerEntity> query = newTableQuery<CustomerEntity>().Where(
TableQuery.CombineFilters(
TableQuery.GenerateFilterCondition("PartitionKey", QueryComparisons.Equal,
"Denmark"),TableOperators.And,
TableQuery.GenerateFilterCondition("RowKey", QueryComparisons.Equal,
"1111")));

// Show the query result in data grid view
IEnumerable<CustomerEntity> list = table.ExecuteQuery(query);
grdEntities.DataSource = list.ToList();

22

6.9. Replace an entity
Replace an entity is basically an update operation. The difference is that this operation
replaces the entity in the server. In the case when the entity in the server has changed since
it was retrieved then the operation will fail. This mechanism prevents an application to make
changes between retrieval and update by other component or application. To override this
behavior, we can use insert or replace operation which will be explained in the next section.

The following code replace customer who live in Denmark and has Customer Number 2222
and set his phone number and total purchase information.

6.10. Insert or Replace an entity
This operation replaces an entity if it exists in the server and insert if it doesn’t. This
operation is useful when we’re not sure whether the entity exists in the server or whether
the current values stored is still relevant. Any updates that occur between retrieval and
replace operation will be overwritten. The following code will insert a new entity in the table
if customer 3333 who live in Belgium is not exist and will replace the entity if it already exist
in the server.

// Create the CloudTable object that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

// Create a retrieve operation that takes a customer entity.
TableOperation retrieve = TableOperation.Retrieve<CustomerEntity>("Denmark",
"2222");
TableResult Result = table.Execute(retrieve);
CustomerEntityent = (CustomerEntity)Result.Result;

if (ent != null)
{ // Change the phone number.

ent.phone = "555-555-2222";
ent.totalPurchase = 99;

// Create the InsertOrReplaceTableOperation
TableOperationreplaceOp = TableOperation.Replace(ent);

// Execute the operation.
table.Execute(replaceOp);
MessageBox.Show("Entity updated.");

}
else

MessageBox.Show("Entity could not be retrieved.");

// Create the CloudTable object that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

CustomerEntityemp = newCustomerEntity("Belgium", "3333");

emp.firstName = "Gandalf";
emp.lastName = "The Grey";
emp.address = "Rivendell 1080";
emp.phone = "534-343-3434";
emp.totalPurchase = Convert.ToInt32("600");

TableOperation insert = TableOperation.InsertOrReplace(emp);
table.Execute(insert);

23

6.11. Merge an entity
Merge operation is similar with update operation. If the entity already exists in server, this
operation will update the properties. For example, if there exists a customer who live in
France (Partition Key) with customer number 1111 (Row Key) whose name is Samwise
Gamgee and no other information is stored, the merge operation of customer entity with
the same partition key and row key and has phone number information will result in
updating the phone number of the already exist customer in the server. The first name and
last name information will remain unchanged. This behavior is different with Replace
operation in which it will replace the whole entity with the new entity. If we use Replace
operation, we will lose the first name and last name information.

6.12. Insert or Merge an entity
Similar to Insert or Replace operation, this operation will insert a new entity if it does not
exist in the server and will update the entity if it already does. The following code will insert
customer who live in Belgium with customer number 1234. If the same customer already
exists, it will update the entity.

// Create the CloudTable object that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

// Create a retrieve operation that takes a customer entity.
TableOperation retrieve = TableOperation.Retrieve<CustomerEntity>("France",
"1111");
TableResult Result = table.Execute(retrieve);
CustomerEntityent = (CustomerEntity)Result.Result;

if (ent != null)
{ // Change the phone number.

ent.phone = "99-999-9999";

// Create the InsertOrReplaceTableOperation
TableOperationmergeOp = TableOperation.Merge(ent);

// Execute the operation.
table.Execute(mergeOp);
MessageBox.Show("Entity Merge.");

}
else

MessageBox.Show("Entity could not be retrieved.");

// Create the CloudTable object that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

CustomerEntityemp = newCustomerEntity("Belgium", "1234");

emp.firstName = "Harry";
emp.lastName = "Potter";
emp.address = "Hogwart 43";
emp.phone = "666-666-666";
emp.totalPurchase = Convert.ToInt32("234");

TableOperation insert = TableOperation.InsertOrMerge(emp);
table.Execute(insert);
MessageBox.Show("Entity Inserted or Merged");

24

6.13. Query a subset of entity properties
We can retrieve just few properties from an entity instead of all properties. This is called
projection and can improve query performance since it reduces bandwidth, especially for
large entities. The following code retrieves only the first name property of each entity and
show the result in a data grid view.

6.14. Delete an Entity
To delete an entity, we need to retrieve it first and then perform a delete operation on it.
The following code will delete a customer who lives in Denmark and has customer number
1111.

6.15. Delete a table
The following code will delete table Customer in the storage account if the table exists.

// Create the CloudTable object that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

// Construct the query, select first name
TableQuery<DynamicTableEntity>projectionQuery =
newTableQuery<DynamicTableEntity>().Select(newstring[] { "firstName" });

// Define an entity resolver to work with the entity after retrieval.
EntityResolver<string> resolver = (pk, rk, ts, props, etag)
=>props["firstName"].StringValue;

// Show the query result in data grid view
IEnumerable<string>listName = table.ExecuteQuery(projectionQuery, resolver,
null, null);
grdEntities.DataSource = listName.Select(x =>new{ Name = x }).ToList();

CloudTable table = tableClient.GetTableReference("Customer");

// Create a retrieve operation that takes a customer entity.
TableOperation retrieve =
TableOperation.Retrieve<CustomerEntity>("Denmark", "1111");
TableResult Result = table.Execute(retrieve);
CustomerEntityent = (CustomerEntity)Result.Result;

if (ent != null)
{ TableOperation delete = TableOperation.Delete(ent);

table.Execute(delete);
MessageBox.Show("Customer Deleted!");

}

//Create the CloudTable that represents the "Customer" table.
CloudTable table = tableClient.GetTableReference("Customer");

// Delete the table it if exists.
table.DeleteIfExists();
MessageBox.Show("Table Deleted");

25

7. WINDOWS AZURE TABLE VS OTHER DATABASE
This section compares Windows Azure Table with other database. The following table compares
the noSQL based Windows Azure Table with SQL Server Database:

Comparison
Criteria

Windows Azure Table Storage SQL Server

Data
relationships

No. Windows Azure Table Storage does
not provide a way to represent
relationships between data.

Yes. Similar to SQL Server,
relationship between tables
are maintained with foreign
key.

Server-side
processing

No. It does not support joins, foreign
keys, stored procedures, triggers, or any
processing on the storage engine side.

Yes. It supports stored
procedures, views, multiple
indices, joins, and
aggregation.

Transaction
support

Limited. Supports up to 100 operations in
one transaction for entities which is in the
same table and the same partition.

Yes. Supports typical ACID
transactions within the
same database.

Geo-replication Yes. By default, a table is replicated to
other subregions.

No. Since SQL Server is not
cloud based, it doesn’t
support geo-replication.

Table schema Relaxed. Each entity (row) can have
different properties.

Managed. Fixed schema for
the entire table once
defined but can be altered
at any time.

Data types Simple. Supports only 8 data types: byte,
bool, DateTime, double, Guid, Int32,
Int64, String

Complex. Supports more
complex data types such as
xml in addition to other
data types

The table below compares Windows Azure Table Storage with Amazon DynamoDB, a NoSQL
based cloud database hosted by Amazon7.

Comparison Criteria Windows Azure Table
Storage

Amazon
DynamoDB

Consumption based pricing Yes Yes
Only pay for the data stored Yes Yes
Pay for transactions Yes No
Indexing support Partial Partial
Ability to fetch list of tables Yes Yes
Maximum number of tables returnedper 1000 All

26

call to the service
Maximum number of tables N/A 256
Maximum size of a table N/A N/A
Ability to have user defined Primary Key
for a table

No Yes

Returns continuation token in case more
tables are available

Yes Yes

Ability to delete tables Yes Yes
Ability to get metadata about a table like
number of entities/items, size of table
etc.

No Yes

Ability to create an entity/item in a table Yes Yes
Maximum number of attributes per
entity/item

256 N/A

Maximum number of custom attributes
per entity/item

253 N/A

Attribute data type

One of eight data types
(Binary, Boolean,
DateTime, Decimal, Int32,
Int64, Guid, and String)

String, Number,
String/Number Sets
(Arrays)

Maximum size of an entity/item 1 MB 64 KB
Ability to update an entity/item in a
table

Yes Yes

Supports conditional updates Yes Yes
Ability to delete an entity/item from a
table

Yes Yes

Ability to get all attributes of an
entity/item

Yes Yes

Ability to get selected attributes of an
entity/item

Yes Yes

Ability to perform batch operations on
multiple entities/items

Yes Yes

Maximum number of entities/items
returned per call

1000 N/A

Default number of entities/items
returned per call

1000 N/A

Maximum size of response payload N/A 1 MB
System can time out queries Yes Yes
Maximum execution time after which a
query will be timed out by the system

5 Seconds 5 Seconds

27

8. CONCLUSION
Eventhough the concept of Windows Azure Table looks simple and more to the point compared
to traditional database, querying and manipulating data from an application requires more
complicated code. Evenmore, there are some restriction such as limited data type option or
inavailability of user defined index which limited the type of application can be built using Azure
Table. Therefore, as a solution architect or developer, we can consider using Windows Azure
Table Storage when5:

 The application requires storing large data volumes (in terabytes) and we want to minimize
the cost.

 The application stores and retrieves large data sets and does not have complex
relationships between tables that requires joins, secondary indexes, or complex server-side
operation such as triggers or stored procedure.

 The application requires flexible data schema to store non-uniform objects.
 From business perspective, the application requires disaster recovery capabilities across

geographical locations.
 The application need to store more than 150 GB of data without implementing sharding or

partitioning logic.
 The application need to achieve high level scaling without having to manually shard the

dataset.
 The application will serve pages on high traffic websites.

One of the scenario where Windows Azure Table will be suitable is when we want to create a
consumer application that needs to store customer profile information for each user. We
assume that when the application gets to be very popular, the data it has collected will be very
large but the operation we’re going to do will only include storing and retrieving it in simple
ways without any complicated query or operation.

9. REFERENCES
1. Cloud Database.(2013).Retrieved 2013-12-06, from

http://en.wikipedia.org/wiki/Cloud_database
2. How to use the Table Storage Service.(2012).Retrieved 2013-12-06, from

http://www.windowsazure.com/en-us/develop/net/how-to-guides/table-services/
3. Windows Azure Storage Client Library 2.0 Tables Deep Dive.(2012).Retrieved 2013-12-07,

from http://blogs.msdn.com/b/windowsazurestorage/archive/2012/11/06/windows-azure-
storage-client-library-2-0-tables-deep-dive.aspx

4. Windows Azure Tables: Introducing Upsert and Query Projection.(2011).Retrieved 2013-12-
07, from http://blogs.msdn.com/b/windowsazurestorage/archive/2011/09/15/windows-
azure-tables-introducing-upsert-and-query-projection.aspx

5. Windows Azure Table Storage and Windows Azure SQL Database – Compared and
Contrasted.(2013).Retrieved 2013-12-08, from http://msdn.microsoft.com/en-
us/library/windowsazure/jj553018.aspx

28

6. Windows Azure Storage Architecture Overview.(2010).Retrieved 2013-12-08, from
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/12/30/windows-azure-
storage-architecture-overview.aspx

7. Comparing Windows Azure Table Storage and Amazon DynamoDB – a
Summary.(2012).Retrieved 2013-12-08, from
http://architects.dzone.com/articles/comparing-windows-azure-table

8. Constructing Filter String for the Table Designer.(2013).Retrieved 2013-12-10, from
http://msdn.microsoft.com/en-us/library/windowsazure/ff683669.aspx

9. Windows Azure Storage Abstractions and their Scalability Targets.(2010). Retrieved 2013-12-
06, from http://blogs.msdn.com/b/windowsazurestorage/archive/2010/05/10/windows-
azure-storage-abstractions-and-their-scalability-targets.aspx

10. Rizzo, T.(2012). Programming Microsoft’s clouds Azure and office 365. Indianapolis: Wiley
Publishing, Inc.

11. Klein, S., Roggero, H.(2012). Pro SQL Database for Windows Azure, 2nd Edition. New York
City: Appress.

