
Université libre de Bruxelles

Temporal Databases

Implementing a Multi-Version and a Multi-Temporal Database

Redioni Karakashi & Ahmet Anil Pala

Advanced Databases INFO-H-415

Mr. Esteban Zimányi

31 December 2013

2

TABLE OF CONTENTS

1Introductıon...5

1.1Background..5

1.1.1Temporality..5

1.1.2Temporal Database..5

1.1.3Multi-Version Databases..5

1.1.4Multi-Temporal Databases...5

1.1.5Multi-Temporal Databases with Schema Versioning..6

1.2Motivation...6

2Implementatıon...6

2.1Methodology...6

2.1.1General Structure..6

2.1.2Assumptions..8

2.1.3Technical details of the project Implementation...9

2.1.3.1Temporal Types of Data...9

2.1.3.1.1Transaction Time Table..10

2.1.3.1.2Valid Time Table...10

2.1.3.1.3Bi-Temporal Table..10

2.1.3.2Metadata Tables..10

2.1.3.3A 'dump' table: SystemArrayList..12

2.2Temporal API..12

2.2.1Operational Functions...13

2.2.2Maintenance Functions...16

2.2.3Triggers..18

2.3A Demonstratıve Example..19

3Conclusion...19

3.1Observatıons..19

4References...19

3

1 INTRODUCTION

1.1 BACKGROUND

1.1.1 Temporality

By using the term temporal we mean an abstract object which existed or exists over a specific time-

period. Temporality rules concerns are on how we will define an abstract object into a time-interval and

how we should handle that abstract object's changes over the time. A basic rule of temporality is that for

each abstract object, there cannot exist more than one of it in the time-line, simultaneously.

Additionally, we are assuming that we have only one time-line and that is linear.

1.1.2 Temporal Database

Continuing in the temporal logic, we will replace that abstract object with 2 specific objects, the

temporal data existing in a database table and the temporal schema of that database table. The

data(temporal or not) and the table schema's temporality have only one direct connection together, and

that is that the data we insert in a specific time must agree with schema of the table in that time.

1.1.3 Multi-Version Databases

A today's database management system is constructed in a way to allow the user to make changes on

the original schema of the database. The user in his convenience is allowed to rename objects, to add

new objects in a database or to drop objects in a database. In our case, we are concerned only for the

table object's such as the table attributes. Thus the user is allowed to change the table's schema over

time as he wants but there is an aspect which is not yet covered by the today's DBMS: the over time

aspect. Today a user may be able to change a table's schema but after this event, he has to continue

using the last modified schema of the table, with a consequence the old version of the schema to be

erased and not able to be retrieved for information purposes and/or to be used again. It is in this point in

our progress in the today's DBMS technology that we have to introduce a Multi-Version DBMS which will

keep a record of all the different schema versions a user has made over time. More specifcally, a Multi-

Version DBMS allow the user to review all of his changes on the database's schema evolution and to go

back in time and use the database from a previous schema state or version.

1.1.4 Multi-Temporal Databases

A common purpose of today's Database Management Systems is to provide space(or tables) where a

user can store his data and also tools by which he can handle his data. Such tools are for inserting,

deleting, updating and projecting data. The disadvantage of today's DBMS is that the specific tools which

handle the user's data do not take into consideration the Temporality of the data but presume them as

being constant over time despite multiple changes may happen on those data in the meanwhile. We call

this type of table, by temporal terms, a Snapshot table(SN). For the lack of this functionality by a today's

common DBMS, we need to introduce and/or implement a Multi-Temporal Database Management

4

System. In a Multi-Temporal Database, we are concerned for the Temporality of the actual data. In this

Database type, we need to keep track of the changes of the actual data over time. In order to achieve

this, we cannot delete any actual data from the table neither we can really update any existing data. For

this reason, whenever there is an update, we instead perform a new insertion of those data, still keeping

the old ones, and whenever there is a deletion of data, we instead just change the Temporal Ending Time

of those data(or tuples).

1.2 MOTIVATION

In this project, we focused on implementing a database management API that functionally supports

multi-temporal queries with multi-versioning support. Motivation for the idea of bringing two distinctly

different paradigms exist in database world together was to provide a flexible temporal database

environment that features both backward and forward compatibility. By means of such a platform that

we made an effort to keep historical data and historical metadata as well (data that describes the format

of the actual data, i.e a table schema) legacy applications can still be using the old data definitions with

old data and also new data at the very same time. Moreover, new applications can reach the old data

even though it is defined under an older version of schema.

Situations where this kind of a flexible database is useful such as correction of schema deficits in early

version schemas, new user requirements, occur frequently in real-life. For example, keeping the

historical data regardless of the schema evolution is an important issue (i.e auditing) or a database that

number of legacy and modern applications both make transactions to and modify is needed where the

importance of the backward/forward compatibility kicks in.

All that said, we were motivated enough to take on this project which by we can investigate the features

and the implementation methods of these features of the multi-temporal databases with schema

versioning.

2 IMPLEMENTATION

2.1 METHODOLOGY

2.1.1 General Structure

General application structure of our project implementation is composed of a programming application

interface (API) which is specifically designed to manage multi-temporal and multi-version databases

along with some SQL Server triggers that enforces some of the program logic to be implemented. We call

the API we developed Temporal API. Temporal API will provide users with a number of functions that are

specifically developed and designed to deal with temporal queries. This API sits on the top of the SQL

Server and the catalogue tables (attribute and relation tables responsible for bookkeeping)

5

Behind the scenes, what is being used to store all the historical and current data of a table (regardless of

how many times its schema is changed) is in fact only one table just as how a relation is stored in a

classical database environment. In other words, for one relation, only one table exists. However, in order

to deliver an illusion that makes user think there are separate tables exist for every schema version of

each table, there are two additional so-called ‘metadata’ tables which are responsible for bookkeeping

of different schema versions of every relation defined in the database. These are named as relation

catalogue and attribute catalogue respectively. Relation catalogue keeps track of version number of the

schemas for the tables and also the time interval in which the schema was valid (note that, only

transactional time temporality is used, in other words different schema versions for a table cannot

overlap) As for the other ‘metatable’ namely the attribute catalogue, as its name suggests, it records the

attribute information of every attribute for each schema version appears in the relation catalogue.

The abovementioned illusion perceived from a higher level, the user or application that drives our API

have the abstract view where there are different tables for different versions of a schema which is

important for both legacy and modern applications sharing the old and new tuples without any

problems, is in fact delivered by some complex interplay of catalogue tables, triggers defined to avoid

illegal operations (see: Triggers defined, Assumptions) and program logic of temporal API functions.

Firstly, in order to accommodate all the data inserted under different schemas in a same table, how the

schema change functions update the table and how the new data is inserted to the table should be

handled with care. For the purpose of storing the historical data of historical attributes that are dropped

in new versions of the schema, the table where the actual data is stored retains every attribute of the

old version after addition or removal of some columns (except for the case of a schema update where

the temporal dimension is upgraded or downgraded, in some cases, some temporal columns can be

renamed. Conversion from Transaction time to the valid time causes this. However, this is an exceptional

case along with the column renaming operator and should require elevated permissions from the upper

level) with the presence of such a table and a specially designed insertion function which implements

some insertion logic, it is possible to keep the data defined under different versions in the same table.

The function responsible for insertion in the API (see: INSERT_INTO) should manipulate the formatted

data coming from the upper layer (since upper layer will want to add the tuple in the schema it is using,

a naïve insertion operation will result in an error) the way it manipulates the row to be inserted is by

injecting ‘NULL’ values for the missing attributes in the current schema after consulting the relation and

attribute catalogues in order to identify which attributes are missing) Once, where the fields which

‘NULL’ value should be inserted is identified, rest is as straightforward as calling a SQL insert function.

This way, the relation table is ready to answer queries that are intended to fetch data defined under

different schema.

2.1.2 Assumptions

• Schema versioning keeps track of different schema versions defined over time. However, the way

of reaching the historical data (older versions of the data) has more to do with how the most

recent schema of the table is defined. If it has at least one temporal dimension, then our API

provides ways to reach and process the historical data.

6

• Only Transaction Time schema versioning is allowed. In other words, our implementation does

not support adding a schema proactively or retroactively. Instead application times of new

schema is always defined between the end of the previous schema to the time when the schema

is changed again.

• Some temporal conversions (generally, temporal downgrading operations) are not possible due

to potentially previously defined primary keys of the otherwise affected table. More specifically,

The reason for such a restriction is the possible illegal tuples with same keys these conversions

might result in. These conversions are listed as follows: Conversion from BT to VT, BT to SN, VT to

SN and TT to SN.

• Some temporal analysis operators such as PROACT, RETROACT, TJOIN, SEQDIFF and SEQDIV are

not multi-versioning-compliant. This is because, the nature of these operators allow only some

specific type(s) of temporality or only the temporality that only the kind of temporality which

the current version of the table is. As an example for the former case, PROACT and RETROACT

queries strictly requires bi-temporal time relations in order to detect proactive or retroactive

changes that involves comparison of the validity time and transactional time of the tuples. For

the latter case, SEQDIV is a good example. SEQDIV can be called with any kind of temporality

unlike the PROACT or RETROACT. However, it only allows the operation if the current version of

the relation is the same as the one specified in the parameter set of the procedure.

• Any table without a key cannot be defined. This is solely because, in the case of future temporal

upgrade operation the relation will have only the key for temporal dimension(s), this gives space

for illegal tuples with the same keys especially in the presence of multiple tuples are inserted

before the conversion.

• Any attribute which is a key or a part of the composite key of a table cannot be removed.

• Added attributes are always non-key attributes.

2.1.3 Technical details of the project Implementation

The purpose of our project is to record changes that happen in our temporal data over the time-line.

Because as we said the time-line is linear therefore we imply that whenever a change happens, we will

have two separate states of our data, the old state of our data and the new state of our data. As

someone might wonder, we need somehow to define which is the old data and which is the new data.

For this purpose, each temporal data in our table will have a starting time attribute which keeps the

datetime of when the data became to this state and an ending time attribute of datetime type which

defines when the data stopped being in that state.

7

2.1.3.1 Temporal Types of Data

For the purpose of our real world, we will define two different types of temporality for the actual data.

The one will be the Transaction Time Temporality and the other one will the Valid Time Temporality. We

can also have a combination of those two, too. We have two different types because in practice an event

often occurs in a different time than when an event is recorded in the database. Let's consider the

example below:

Who? What? When? What our DB knows?

John Is born In 20/08/1993 No John is born

John's Father Registers John in the

commune

In 26/08/1993 Now DB knows that John

was born(in Brussels)

John John continues living in

Brussels

In 01/01/2013 John is in Brussels

John Moves in Antwerp In 05/11/2013 John is still in Brussels

John Continues living in

Antwerp

In 01/02/2014 John is still in Brussels

John Register's in the

commune

In 05/02/2014 John is in Antwerp

Taking into consideration the above table, we see that events happen independently from when is being

recorded in the commune's database. For example John in 05/11/2013 moved in Antwerp but according

to our database he was still living in Brussels until 5/02/2014, therefore we need to keep track of two

different dates. For that, we have the Transaction Time which defines when an event is recorded in the

database and the Valid Time which defines when the event actually happened and the combination of

both of them as the above table. In occasions that we need to know only the Transaction Time, we

create a Transaction Time table. In other occasions we want to know the Valid Time, we create a Valid

Time table. In some occasions we need to keep track of both of them, we create a Bi-Temporal table.

Also in order to be able to differentiate different tuples from each other, we should apply a primary key

to each tuple. In the above example, a primary key could be the identification number of John or John by

himself if we assume no other person with the name John exists.

2.1.3.1.1 Transaction Time Table

In this kind of table, every time we have a new tuple in our table, we assign to it the current time of the

transaction and for its ending time, we define the keyword “U/C” which means Until Change. Practically

this mean that the specific tuple, with this primary key, is the last modified tuple in our table. Whenever

an update comes to change this tuple, the ending time of it, from “U/C” becomes the current

transaction time and the new arrived updated tuple takes the current transaction time as its starting

time and again “U/C” for its ending time. We also know that there cannot be any tuple with a future

time because practically a database transaction can happen only in the present. Finally it is obvious that

8

the TT temporal columns (TST and TET) are being updated automatically from the system, without

requiring the user to insert any datetime.

2.1.3.1.2 Valid Time Table

In a Valid Time table, we can have a time from the past, from the present or from the future, thus there

is no restriction as in a TT dimension. In a VT dimension, only the user can insert the date interval of a

tuple and additionally a tuple cannot be inserted in the VT table if there is not given at least the Starting

Valid Time of the tuple. In a case that the Ending Valid Time of a tuple is missing then the system assigns

to it the keyword “NOW” because theoretically the tuple's VET is infinite and every time the user access

the particular tuple, he sees its current state in the present(“NOW”). Finally every time a new tuple with

an existing primary key arrives and if the previous tuple, the existed tuple before the new arrival, has to

its Valid Ending Time column the value “NOW” then this tuple(the old one) takes as its VET the current

transaction time and the new arrived tuple takes the date interval that the user has assigned.

2.1.3.1.3 Bi-Temporal Table

In a Bi-Temporal database we do not have a new dimension but a co-existence of both previous

dimensions, the TT dimension and the VT dimension. Every time a new tuple arrives, the temporality is

handle with the respective rules of each dimension. Now as before the user has to assign dates only for

the Valid Time dimension while the system will assign the dates for the Transation Time dimension

automatically.

2.1.3.2 Metadata Tables

The Metadata tables serve for maintaining a historical archive of every table's schema change in the

database. Those two tables are the core objects that allow us to maintain a Mutli-Version Database.

Despite they are two different tables, they are cooperating closely together for keeping a table's

metadata. The first one is the 'relation' Metadata table which stores the Temporal information of all the

tables in our system. Whenever a database table's Temporal dimension is changed, that fact is recorded

into the 'relation' table and the corresponding Application Times are being updated, too. There are also

cases when we update the 'relation' table whenever an update happens in the 'attribute' table because a

schema change has happened there and therefore we have to increase the Schema Version number by 1

(for both tables). From the point of view of the 'attribute' table, the events that we record in this table

have to do with schema changes of a table in our database. Every time a new column is added or an

existing one is deleted, the 'attribute' table is updated along with the Schema Version number. An

additional case of updating the 'attribute' table is when the Temporal dimension of a table has changed

and therefore we have to record the 2 new Temporal attributes of the new schema. In general, we see

that if one of the two tables is updated, then it is required to update the other one, too.

Below we have a more detailed explanation for each Metadata table:

RELATION

9

relation_name: The name of the relation we are making a reference to. This attribute is the Primary Key

of this Metadata table.

schema_version_number: Each time we record a new table's Temporal state, we have to increase the

schema version number by one. The last schema version number of a table indicates its current state.

schema_version_format: This attribute indicates the current Temporal dimension of a table. The

Temporal dimension of a table can be either Snapshot(SN) or Transaction Time(TT) or Valid Time(VT).

app_start_Time: The Application Start Time keeps the initial time when a table obtained a specific

Temporal dimension.

app_end_Time: The Application End Time keeps the last time of a Temporal dimension of a table. In

case the Temporal dimension is still valid on the table, then it is being assigned a null value in this

Metadata attribute. We should also note that the End Time of a Temporal dimension has to be equal to

the Start Time of the new Temporal dimension of a particular table.

ATTRIBUTE

relation_name: The name of the relation we are making a reference to. This attribute is the Primary Key

of this Metadata table.

schema_version_number: Whenever a schema change is happening, either because the user interaction

or because of a Temporal dimension change, we have to update this attribute by 1.

att_name: Indicates the name of a particular attribute of a table in our database.

domain: Indicates the data type of an attribute. We should record a change on the domain of an

attribute, as well.

is_key: Indicates if an attribute is a Primary Key of the table. The values(boolean) can either be 1 for an

attribute being the PK of the table or 0 otherwise.

att_order_number: Shows us the ordinal number of a particular attribute in the table. This Metadata

attribute proved to be helpful for dealing in various ways with table columns in some of our procedures.

2.1.3.3 A 'dump' table: SystemArrayList

10

We have created this particular table for storing temporal data which we handle during different

processes of functions, mainly in the INSERT_INTO procedure. The need for the creation of this table is

because the MS SQL Server does not provide any array variable or arraylist but only common variables.

Thus in cases when we do not know the exact number of values we need to store in variables, we just

insert the values in this 'dump' table for later use and we then immediately delete these values for not

interfering with future similar values. The table has 3 attributes which helps a procedure to identify its

own attributes(considering there are various procedures using this table simultaneously): the attribute

'Value' which normally is used to store the actual value, the 'Destination' attribute which is normally

used to defined the table destination of the value and the 'Other' attribute for any other purpose. This

table is a system table only(not handled as temporal).

2.2 TEMPORAL API

Functions of the Temporal API can be discussed under two different category namely, operational

functions and maintenance functions. Additionally, some triggers are defined to enforce the rules

established in the assumptions subtitle above.

2.2.1 Operational Functions

Users of the database management system that we have developed will be able to use some operational

functions to query over the data reside in their database(s). Supported set of operational functions are

mostly the ones that explicitly relate to temporal operations such as COALESCE, PROACT, RETROACT and

TJOIN. Additionally, an insertion procedure called INSERT_INTO is also provided to replace standard SQL

Server insert function. These functions differ from the maintenance functions in that these do not alter

database structure in anyway but make simple transactions or visualize the data or metadata.

INSERT_INTO: A simple definition of this function is that allows the user to assign new data in a table.

But besides that, the function takes care for all the Temporal aspects for inserting properly new data in

the table. More specifically the function takes 3 parameters: 1st the name of the table in which the data

will be assigned, 2nd all the values of the columns separated by the “|” character followed by a value for

the particular column, and 3rd the schema version number of the table. For the 3rd paremeter, the logic is

that the Multi-Version table has had multiple schemas over time and we have to specify in which schema

we want to add the new values and accordingly to define the values of the columns in the 2nd parameter.

This features allows user to see the relation as if it was defined under a past schema when inserting new

tuple and it is essential to implement backward compatibility. In order for the user to be able to know

the exact table schema of a specific version, there exist the GET_TABLE_SCHEMA procedure which is

going to be explained in a separated section. Explaining further the 2nd parameter, if for example we

have a table schema as below:

RandomTable (A int primary key, B int, C varchar(10), D datetime)

The parameter's values should be: '4|5|randval|2013-12-22 07:40:54.151'

11

In this point we have to say that we always define the value of the first column without a “|” character

and after the first column we always do use the “|” character and the value of the next column. We also

should have in mind that we do not have and shouldn't add the “|” character at the end of the query.

The only case we can type the “|” character at the end of the query is when we want to leave the last

column empty and therefore we do not type anything else afterwarts, as in the example below:

'4|5|randval|' <- we have left the datetime empty(or NULL)

Below is following a full example of this procedure considering again the above table in its 4rth version

schema:

INSERT_INTO 'RandomTable' , '10|30|MATHH415|2013-12-22 07:40:54.151' , '4'

We also should mention that there is not any update function and whenever the user wants to update

an existing column, he has to use the INSERT_INTO logic and to re-enter the new tuple's values. The

function by itself will identify that the user has inserted an already existed tuple(by looking the primary

key(s)) and will insert the new tuple following the Temporal rules of the table, if and only if the table has

a Temporal dimension otherwise an update in a SN table is not possible because we also assume the SN

table being Temporal but without time-crossover 'abilities'.

GET_TABLE_SCHEMA: This procedure is usually called before using the INSERT_INTO procedure. The

reason is that the GET_TABLE_SCHEMA proc. receives the table's name and a version number and

presents in an ordinal order all the columns of that table's schema in that specific version. Considering

this column ordering, the user has to assign the values in the 2nd paremeter of the INSERT_INTO

procedure.

Example:

GET_TABLE_SCHEMA 'RandomTable', 2

ADD_COLUMN_TO_TABLE: This procedure adds a new column to the specified table and record the

event in the Metadata tables. The most important update happens in the 'attribute' table where we re-

import all the table's columns plus the new one and increase the version number by one. A similar action

is performed in the 'relation' table where we also increase the version number by one.

Example:

ADD_COLUMN_TO_TABLE 'RandomTable', 'NewRandomCol', 'INT'

DROP_COLUMN_TO_TABLE: This procedure makes the particular column unvailable for future use from

the user by removing its existence in the new schema version in the Metadata tables but does not

remove it from the actual table because in this way we can keep all the values of this column up to its

deletion and therefore having a Temporal history of the data, no matter if they have been deleted.

Example:

12

DROP_COLUMN_TO_TABLE 'RandomTable', 'ExistingRandomCol'

GET_TABLE_CURRENT_SCHEMA: We usually use this procedure in order to retrieve a table's schema

attributes in its most new schema version. The only paremeter we have to provide is the table name. The

columns shorting is made by the ordinal position of the them.

Example:

GET_TABLE_CURRENT_SCHEMA 'RandomTable'

GET_TABLE_ALL_SCHEMAS : By using this procedure we take all the table schema attributes from all the

existing schema version, thus we will get two columns in our results, the first one which states the

schema attributes and the second which states the schema version number. The shorting is made by the

schema version number and the ordinal position of the columns.

Example:

GET_TABLE_ALL_SCHEMAS 'RandomTable'

PROACT: When a bi-temporal time relation passed to it, this procedure displays the tuples that are

inserted proactively (validity starts later than the transaction time) to the database.

RETROACT: Like PROACT, when a bi-temporal time relation passed to it, this procedure displays the

tuples that are inserted retroactively (validity starts earlier than the transaction time) to the database.

TJOIN: This procedure basically computes the sequenced (temporal) join of two tables according to the

temporality type specified for each which is taken into account when finding the overlapping tuples.

Temporality type can be either ‘VT’ or ‘TT’ implying that relation to be joined cannot be snapshot. User

can join two tables with different temporality types (e.g one is transactional time whereas the other is

valid time) as long as the relation supports the specified temporality. For example, while temporal join of

a bi-temporal time relation over validity time and transactional time relation over transactional time is

possible, join of these two is not allowed when temporality specified for the latter is ‘VT’

Example:

TJOIN ‘rel1’,’TT’,’rel2’,'VT’

SEQDIFF: This procedure computes the sequenced difference of two relations. The interface of the

procedure is pretty much the same as that of TJOIN. However, It takes only one relation name defined in

the database and one temporality types associated with it. Then, it finds the sequenced difference over

the temporal dimension specified (VT or TT)

SEQDIFF ‘rel1’,’VT’

SEQDIV: This procedure computes the sequenced division of three relations. The procedure takes three

relation names and three temporality types which will be considered as the temporal dimension of each

of them respectively when computing the division. The first relation should always be the ‘dividend’ In

other words, it should be the relation in which the user wants to finds the tuples whose existence over

the temporal domain is universally spans over the existence period of the correlated tuples from the

second and third relations. Additionally, this correlation of the relations should be defined by some

common attributes (foreign keys) More concretely, all these three relations should have mapping that

13

correlates the first relation to the second, the second to the third, and the third to the first one. A good

illustrative procedure call for this function is as follows:

create table aff(SSN int, dnumber int, primary key(SSN,dnumber))

create table controls(dnumber int, pnumber int primary key(dnumber, pnumber))

create table workson(SSN int, pnumber int primary key(SSN, pnumber))

SEQDIV att,’TT’,controls,’TT’,workson,’TT

After creating the relations, Following SEQDIV call is valid and produces the sequenced division of the

tuples in the first relation over the tuples in second and third relations when they all have a valid ‘TT’

dimension (Note that they can be bi-temporal relations as well as transactional time)

COALESCE_TABLE: In the Coalesce method, we put all the existing dates in an 'linear' order such as they

again form a bigger time interval constructed by all the other smaller and spread dates. The bigger

interval starts from a random date until the sequence of dates is not interrupted. Below we explain the

procedure's parameter:

TABLE_NAME: The name of the table.

COLUMN_NAME: The name of the column which we are going to project over the time-line that is going

to be formed.

TemporalDimension: The user should provide the Temporal dimension, he wants to coalesce the table.

This Implies that the user must know what is the current Temporal dimension of the table and pass the

Temporal dimension. The idea is that in a Bi-Temporal table, there isn't any factor about on which

dimension to Coalesce, therefore the user must take this responsibility. There are two options: the 'TT'

value for coalescing on the Transaction Time Columns(TST & TET) or the 'VT' value for the Valid Time

Columns(VST & VET)

Example:

COALESCE_TABLE 'RandomTable', 'ExistingRandomCol', 'VT'

SEQ_AGGREGATION: The functionality of this procedure is to find all the time intervals that exist in our

Temporal table and then compute a specific aggregation value for each one of those intervals. At this

point we should have in mind that no coalesce method happens yet in this function, therefore the dates

do not form a continues time period. Below we are explaining in details the parameters of this

procedure:

TABLE_NAME: The name of the table.

COLUMN_NAME: The name of the column in which we are going to aggregate the value.

AGGREGATION_FUNCTION: Here we have to specify which aggregation method we want to use. There

are 5 possible options we can give: 'MAX', 'MIN', 'AVG', 'COUNT' and ‘SUM’.

InsertResultsIntoTable: The Boolean value that this parameter accepts indicates whether the results

should be saved into a new table or should be outputted to the user's screen. For saving the results into

a table, we should pass the value 1 otherwise for just showing the results on the screen, we pass the

value 0. In case of saving the results into a table, the name of that table is: the original name of the table

we are making the aggregation sequence followed by the aggregation function name: e.g.

14

Randomtable+MAX= RandomtableMAX . Let us also mention that the purpose of saving the results into

a table is made mostly because we it is needed into the 'COALESCE_TABLE_WITH_AGGREGATION'

procedure.

Example:

SEQ_AGGREGATION 'RandomTable', 'ExistingRandomCol', 'MAX', 'VT', 0

COALESCE_TABLE_WITH_AGGREGATION: Here we are implementing the Coalesce method and the

sequenced aggregation method. More specifically, we are aggregating the values of each date interval

that we form and then ordering those intervals in a continues time-interval. Let us explain in details the

parameters of this procedure:

Example:

COALESCE_TABLE_WITH_AGGREGATION 'RandomTable', 'ExistingRandomCol', 'MAX', 'VT'

2.2.2 Maintenance Functions

Maintenance functions are some procedures provided in Temporal API for the use of database

administrator to manage the database. In other words, they provide an interaction layer with a number

of interfaces for applications with elevated permissions to manipulate the temporality and versioning of

the database. In particular, these operations include upgrading of temporality, adding and removing non-

key attributes. Since, these procedures change the state of relations –changing the current schema- and

might add or remove some significant data, they should be used with caution although in principle they

can’t cause any loss of data due to the schema versioning (except for the temporal dimension, because

there are some downgrading operations available which simply chops off some one temporal dimension

altogether, see CONVERT_BT_TO_TT, and hence might lead temporal data loss)

CONVERT_RELATION_SN_TO_TT: What this function essentially does is increasing temporal dimension

by introducing some temporal columns to the relation it is applied to. Added columns are Transaction

Start Time (TST) and Transaction End Time (TET) Furthermore, as soon as this function is executed TST

becomes a part of the composite key of the relation to maintain temporal integrity. All the past tuples

inserted prior to the conversion will yield the time of the application of the procedure (application time)

for the field TST and Until Change (UC*) for the field TET.

Example:

CONVERT_RELATION_SN_TO_TT 'RandomTable'

CONVERT_RELATION_SN_TO_VT: What this function essentially does is increasing temporal dimension

by introducing some temporal columns to the relation it is applied to. Added columns are Validity Start

Time (VST) and Validity End Time (VET) Furthermore, as soon as this function is executed VST becomes a

part of the composite key of the relation to maintain temporal integrity. All the past tuples inserted prior

to the conversion will yield the time of the application of the procedure (application time) for VST and

‘NOW’ for the field VET.

CONVERT_RELATION_SN_TO_BT: What this function essentially does is increasing temporal dimension

by introducing some temporal columns to the relation it is applied to. Added columns are Transaction

Start Time (TST), Transaction End Time (TET), Validity Start Time (VST) and Validity End Time (VET)

15

Furthermore, as soon as this function is executed VST and TST become a part of the composite key of the

relation to maintain temporal integrity. All the past tuples inserted prior to the conversion will yield the

time of the application of the procedure (application time) for the fields of TST and VST, ‘NOW’ for VET

and ‘Until Change’ for the field TET.

CONVERT_RELATION_TT_TO_VT: This procedure changes temporal dimension by translating tuples

defined under Transaction Time to Validity Time. Translation logic replaces columns TST-TET with VST-

VET. Primary key constraint is updated so that VST becomes the key or part of it while TST is dropped

totally. For the past tuples, VST takes the value of TST and VET takes ‘NOW’

CONVERT_RELATION_VT_TO_TT: This procedure changes temporal dimension by translating tuples

defined under Validity Time to Transaction Time. Translation logic replaces columns VST-VET with TST-

TET. Primary key constraint is updated so that VST becomes the key or part of it while TST is dropped

totally. For the past tuples, TST takes the value of VST and VET takes ‘UC’

CONVERT_RELATION_TT_TO_BT: What this function essentially does is increasing temporal dimension

by introducing some temporal columns to the relation it is applied to. Added columns are Transaction

Start Time (VST) and Transaction End Time (VET) Furthermore, as soon as this function is executed VST

becomes a part of the composite key. Note that VST was already (part of the) primary key since prior to

the conversion relation was Transaction Time. VST of the all the past tuples take the value of TST and VET

yields the value ‘NOW’

CONVERT_RELATION_VT_TO_BT: What this function essentially does is increasing temporal dimension

by introducing some temporal columns to the relation it is applied to. Added columns are Validity Start

Time (TST) and Transaction End Time (TET) Furthermore, as soon as this function is executed TST

becomes a part of the composite key. Note that TST was already (part of the) primary key since prior to

the conversion relation was Transaction Time. VST of the all the past tuples take the value of TST and VET

yields the value ‘NOW’

CONVERT_BT_TO_TT: This function downgrades the relation passed to it by eliminating the temporal

dimension of ‘Valid Time’ from the relation. Even though one of two eliminated columns namely the

‘VST’ is part of the composite key, removing this column does not result in tuples with the same values in

their corresponding composite key fields since ‘TST’ which no two of any tuple can necessarily have the

same value of (note that, transaction start time is recorded by the insert_into procedure and always

equals to the exact system time which the insertion of the tuple is realized) is guaranteed to still be the

part of the composite key in this conversion.

2.2.3 Triggers

16

MetadataEvent_NewTableCreation: This trigger fires whenever a new table is created in the whole

database. After the new table is created, the trigger records this event in the Metadata tables: 'relation'

and 'attribute'. Every table is created initially with a SN dimension and its initial version is number 1.

DataIntegrityTrigger_TABLERenamingRestriction: This trigger simply forbids the user to rename a table

because in our Metadata tables, the name of a table is part of the primary key. Therefore if we would

allow a table renaming we would not be able to track tables in the Metadata tables properly.

DataIntegrityTrigger_OR_MetadataEvent_ColumnRenamingRestriction_OR_ColumnRenaimingEvent:

This trigger focus on the column renaming of any table. If the user tries to rename a column which is a

Temporal column (such as TST or VET) then the trigger blocks the renaming and throws an error message

to the user. On the other hand, if the user wants to rename a column other than the Temporal ones then

the action is performed normally and is being recorded in our Metadata tables. A column renaming in

our Metadata tables is considered as we create a new column, thus the old column cannot be used

anymore by the user(despite it still exists) and the new renamed column is used instead. This action,

following the Temporal rules, is equal to dropping one column and adding a new column to the table.

3 CONCLUSION

3.1 OBSERVATIONS

During the development of our project, the idea of putting temporality and versioning together was

more challenging than we had been thinking before commencing on the implementation of this idea.

Eventually, we have faced many problems that we had to come up with some real solutions or

workarounds for them.

For example, ideally, a database management system with a native versioning support should always be

able to revert the database back to the any state that existed in past, however, in our design and

implementation when user wants to downgrade the schema of a relation (note that, there is only one

such temporal conversion procedure is provided: conversion from bitemporal time to temporal time)

some irreversible information loss occurs. We were tempted to exclude out this procedure to avoid this

possible permanent loss in data, but then we thought there can also be some situations where user

deliberately wants to lose the data. The consensus we reached at this point was to keep the procedure

yet not let everyone use it but some user with elevated permissions. However, since this kind of

authentication requirements should be handled on the upper layer (application that drives the

programming interface we developed), implementation of such a permission checking mechanism was

beyond the scope of the project.

Another challenge was to implement every single temporal procedure in such a way that it can be

applied to a past schema of a relation and produce results as if the past schema was the current one.

This was possible for at least two main operational functions to insert data and fetch data from

database. For insertion, a special procedure named INSERT_INTO is provided. For, displaying data resides

in the table, user can first learn the schema of a version he wants to display the data in the form of. Then

he can select tuples with the set of attributes from the schema version he wants to work with. However,

for many maintenance procedure or complex operational queries such as SEQDIV, SEQDIF or TJOIN,

17

schema specified should be the current schema. For the former case (maintanence procedure) this

restriction was because of the very nature of the procedure to be applied to the relation. For example,

nobody can expect temporal conversion function that converts the table from snapshot temporality to

bi-temporal temporality to be applied to a transaction time relation while there are temporal conversion

procedures available for transaction time relations. For the latter case, this was due to our design choice.

Since the data is always kept under the temporal column types that is defined under the ‘current’

schema, it was not possible to apply some of the operational temporal queries for a past version with

less temporal division than the current (this is well possible in the case of temporal downgrading

conversion is applied to the relation in question)

There were also some technical challenges that we were able to come up with complete solutions. For

instance, sometimes in our procedures we have to disable specific triggers which interfere with

processes of the procedure. An example is in the SEQ_AGGREGATION where we may need to create a

new table(to save the results into) but this action will fire the 'MetadataEvent_NewTableCreation' and

record the event into the Metadata tables. Such as we fist disable this trigger before the interfered

processes and re-enable it right after those processes.

In our database when a table gets a Temporal Dimension(TT, VT) then we assign in the existing Primary

Key(s), that the user defined, the Start Time of the Temporal dimension(TST or VST), too. The reason is

because whenever we need to re-insert an already existing tuple in the table(because of Temporality),

keeping only the user defined PK(s), will throw us an error of duplicate Primary Key. For this reason we

also assign as part of the PK, the Start Time, in order to avoid duplicate PK error from the system.

On the other hand, we also need somehow to be able to detect the transaction when the user inserts a

tuple which conflicts with the initial Primary Key(s) but in this case we don't get any error from the

system. For this, in order for us to be able to identify an initial PK conflict without involving the DBMS,

we just do not record the Temporal Columns' Start Time into our Metadata table 'attribute' as part of the

table's Primary Key. So now we can identify a PK conflict by the Metadata table and in parallel not having

a PK conflict error from the system. This particular issue concerns mostly the INSERT_INTO procedure.

On another observation, we do not provide any procedure for converting a TT table or a VT table to a SN

table. The reason is because we do not want this event to happen because in a Multi-Version table there

will be tuples with duplicate initial Primary Key which currently do not conflict because of the Temporal

Start Time column being part of that PK. But in a case where we want to make the table SN and

therefore delete the Temporal Start Time columns, we will have duplicate Primary Key errors from the

system which cannot be handled unless we delete them(but we cannot even think about such thing).

Therefore such a conversion is not feasible to be implemented.

Another observation is that whenever the user wants to rename a column, he has to rename it by using

the MS SQL server statement 'sp_rename' for the trigger being able to run properly. Otherwise if we use

the DBMS wizard, for some reason the trigger will fire twice because in this case the DBMS seems to

complete the task into two steps and therefore firing the trigger 2 times.

4 REFERENCES

• Brahamia Z., Mkaouar M., Chakhar S., Bouaziz R., “Efficient Management of Schema Versioning

in Multi-Temporal Databases The International Arab Journal of Information Technology, vol. 9,

no. 6, pp. 544-552, 2012

• Zimanyi, Esteban. "Temporal Aggregates and Temporal Universal Quantification in Standard

SQL."

18

• Torp K., Jensen C., and Snodgrass R., “Effective Timestamping in Databases,” The VLDB Journal,

vol. 8, no. 3-4, pp. 267-288, 2000

19

