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In-memory databases 

 

An in-memory database system is a database management system that stores data entirely in main memory, 

in contrast to traditional database systems, which are designed for data storage on-disk. Since working with 

data in memory is much faster than writing to and reading from a file system, in-memory databases systems 

perform very well with respect to applications’ data management functions. Hence, in-memory databases 

are most commonly used in applications that demand very fast data access, storage and manipulation. 

 

An important use for in-memory database systems is in real-time embedded systems. When running on 

real-time operating systems, they provide the responsiveness needed in applications including IP network 

routing, telecom switching, and industrial control.  Non-embedded applications demanding outstanding 

performance are also an important area for in-memory database systems. For example, applications for 

financial markets use in-memory database to provide instant data manipulation, in order to identify and 

leverage market opportunities, while some multi-user web applications – such as e-commerce and social 

networking sites – use them to cache portions of their back-end on-disk database systems.  

 

In the real world, IT and data management practitioners need to assess when the investments in technology, 

resources and new skills required to transition to an in-memory framework is really essential. The practical 

aspects involve weighing the need for increased database performance versus the associated costs of 

acquiring and deploying an in-memory platform. Even though RAM costs have decreased, systems with 

large-scale memory configurations will still be significantly more expensive compared to database servers 

that stay with disk storage only. To make an in-memory database technology purchase pay off, it is 

necessary to find applications with characteristics that make them a good fit, which lies partly in assessing 

the organisation's demand for processing increased data volumes and the business value that could be 

delivered as a result of reduced database response time.  

 

In the context of a supply chain management fuelled by in-memory software, enabling real-time analysis 

of a variety of data streams - inventory data from warehouses and retail locations, information about items 

in transit on trucks or rail cars, updates on traffic and weather conditions - could help drive faster decisions 

on routing and distribution to ensure that goods get to where they need to be, when they need to be there. 

A resulting increase in sales clearly could justify the in-memory investment. Hence, when considering 

going for an in-memory type of solution, it is necessary to question what will be the difference of running 

a query or processing transactions 10, 50 or 100 times faster for a specific business domain.  

Therefore, with in-memory, companies can crunch massive amounts of data, in real time, to improve 

relationships with their customers to generate add-on sales and to price based on demand, the marketing 

team wants real-time modelling of changes to sales campaigns, operations wants to adjust fulfilment and 

supply chain priorities on the fly, internal audit wants real-time fraud and threat detection.  



 

Background 

 

Creating a unified view of big data is a burdensome and onerous task. Moreover, business analysis reports 

typically are not run directly on operational level, but on aggregated data from a data warehouse. 

Operational data is transferred into the data warehouse in batch jobs, which makes flexible, ad hoc reporting 

on the most up-to-date data impossible. As a consequence, company leaders have to make decisions based 

on data which are either out of date or incomplete. This is obviously not a true ‘‘real-time’’ solution. The 

continuous and rapid evolution of hardware architectures seen since the introduction of the microprocessor 

plays an important role on this scenario. This has become especially significant in the last decade where 

multi-core processors and the availability of large amounts of main memory at low cost are now enabling 

new breakthroughs in the software industry. It has become possible to store data sets of whole companies 

entirely in main memory, offering performance that is orders of magnitudes faster than traditional disk-

based systems. Hard disks, the only remaining mechanical device in a world of silicon, will soon only be 

necessary for backing up data. With in-memory computing and insert-only databases using row and 

column-oriented storage, transactional and analytical processing can be unified. This development has the 

potential to change how enterprises work and finally offer the promise of real time computing. 

 

One important question on this context is "How can companies take advantage of in-memory applications 

to improve the efficiency and profitability of their business?". It is not very difficult to predict that this 

breakthrough innovation will lead to fundamentally improved business processes, better decision-making, 

and new performance standards for enterprise applications across industries and organisational hierarchies. 

In-memory technology is a catalyst for innovations, and the enabler for a level of information quality that 

has not been possible until the near past. In-memory enterprise data management provides the necessary 

equipment to excel in a future where businesses face ever-growing demands from customers, partners, and 

shareholders. With billions of users and a hundred times as many sensors and devices on the internet, the 

amount of data we are confronted with is growing exponentially. Being able to quickly extract business-

relevant information not only provides unique opportunities for businesses; it is a critical differentiator in 

competitive markets. 

 

With in-memory technology, companies can turn the massive amounts of data available into information to 

create strategic advantage in near-real time. Operational business data can be interactively analysed and 

queried directly by decision makers, opening up completely new scenarios, horizons and opportunities. 

 



When considering the area of financial accounting, where data needs to be frequently aggregated for 

reporting on a daily, weekly, monthly, or annual basis, in-memory data management along with the 

necessary filtering and aggregation can happen in real time. Accounting can be done anytime and in an ad 

hoc manner. Financial applications not only becomes significantly faster, but they will also become less 

complex and easier to use. Every user of the system is able to directly analyse massive amounts of data. 

New data are available for analysis as soon as they are entered into the operational system, and simulations, 

forecasts, and what-if scenarios can be done on demand, anytime and anywhere. What took hours or days 

in traditional disk-based systems can happen in the blink of an eye. Users of in-memory enterprise systems 

tend to be more productive and responsive. 

  

Comparison of RDBMS and In-memory technologies 

 

In-memory technology is set to revolutionise enterprise applications both in terms of functionality and cost 

due to a vastly improved performance. This enables enterprise developers to create completely new 

applications and allow enterprise users and administrators to think in new ways about how they wish to 

view and store their data. The performance improvements also mean that costly workarounds, necessary in 

the past to ensure that data could be processed in a timely manner, are no longer necessary. Chief amongst 

these is the need for separate operational and analytical systems. In-memory technology allows analytics to 

be run on operational data, simplifying both the software and the hardware landscape, leading ultimately to 

lower overall cost. 

  

Special materialised data structures, called cubes, have been created to efficiently serve analytical reports. 

Such cubes are based on a fixed number of dimensions along which analytical reports can define their result 

sets. Consequently, only a particular set of reports can be served by one cube. If other dimensions are 

needed, a new cube has to be created or existing ones have to be extended. In the worst case, a linear 

increase in the number of dimensions of a cube can result in an exponential growth of its storage 

requirements. Extending a cube can result in a deteriorating performance of those reports already using it. 

The decision to extend a cube or build a new one has to be considered carefully. In any case, a wide variety 

of cubes may be built during the lifetime of a system to serve reporting, thus increasing storage requirements 

and also maintenance efforts. Instead of working with a predefined set of reports, business users should be 

able to formulate ad-hoc reports. Their playground should be the entire set of data the company owns, 

possibly including further data from external sources. Assuming a fast in-memory database, no more pre-

computed materialised data structures are needed. As soon as changes to data are committed to the database, 

they will be visible for reporting. The preparation and conversion steps of data if still needed for reports are 

done during query execution and computations take place on the fly. Computation on the fly during 

reporting on the basis of cubes that do not store data, but only provide the interface for reporting, solves a 

problem that has existed up to now and allows for performance optimisation of all analytical reports 

likewise. 

  

As data volumes grew, RDBMSs were no longer able to efficiently service the requirements of all categories 

of enterprise applications. In particular, it became impossible for the DBMS itself to service ad-hoc queries 

on the entire transactional database in a timely manner. One of the reasons the DBMSs were unable to 

handle these ad-hoc queries is the design of the database schemas that underlie most transactional enterprise 

applications. OLTP schemas are highly normalised to minimise the data entry volume and to speed up 



inserts, update and deletes. This high degree of normalisation is a disadvantage when it comes to retrieving 

data, as multiple tables may have to be joined to get all the desired information. Creating these joins and 

reading from multiple tables can have a severe impact on performance, as multiple reads to disk may be 

required. Analytical queries need to access large portions of the whole database, which results in long run 

times with regard to traditional solutions. Online Analytical Processing (OLAP) systems were developed 

to address the requirement of large enterprises to analyse their data in a timely manner. These systems relied 

on specialised data structures designed to optimise read performance and provide quick processing of 

complex analytical queries. Data must be transferred out of an enterprise’s transactional system, into an 

analytical system and then prepared for predefined reports. 

  

The data transfer happens in cyclic batches, in a so-called Extract, Transform, and Load (ETL) process. 

The required reports may contain data from a number of different source systems. This must be extracted 

and converted into a single format that is appropriate for transformation processing. Rules are then applied 

during the transformation phase to make sure that the data can be loaded into the target OLAP system. 

These rules perform a number of different functions, for example, removing duplicates, sorting and 

aggregation. Finally, the transformed data is loaded into a target schema optimised for fast report 

generation. This process has the severe limitation in that one is unable to do real-time analytics as the 

analytical queries are posed against a copy of the data in the OLAP system that does not include the latest 

transactions. 

  

The main reason that current RDBMSs cannot perform the required queries fast enough is that query data 

must be retrieved from disk. Modern systems make extensive use of caching to store frequently accessed 

data in main memory but for queries that process large amounts of data, disk reads are still required. Simply 

accessing and reading the data from disk can take a significant amount of time. Main memory or in-memory 

databases have existed since the 1980s but it is only recently that Dynamic Random Access Memory 

(DRAM) has become inexpensive enough to make these systems a viable option for large enterprise 

systems. The ability of the database layer in an enterprise application to process large volumes of data 

quickly is fundamental to our aim of removing the need for a separate analytics systems. This will allow us 

to achieve our goal of providing a sub-second response time for any business query. In-memory databases 

based on the latest hardware can provide this functionality and they form the cornerstone of the database 

architecture. 

  

Technological Improvements 

 

Since in-memory databases utilise the server’s main memory as primary storage location, the size, cost, and 

access speed provided by main memory components are vitally important. With the help of data 

compression, today’s standard server systems comprise sufficiently large main memory volumes to 

accommodate the entire operational data of all companies. Main memory, as the primary storage location 

is, nevertheless, becoming increasingly attractive as a result of the decreasing cost/size ratio. The database 

can be directly optimised for main memory access, omitting the implementation of special algorithms to 

optimise disk access. 

 



  
Figure 1. The storage price development 

 

The cost/size relation for disks as well as main memory has decreased exponentially in the past according 

to the Fig.1. For example, the price for 1 MBof disk space dropped below US $ 0.01 in 2001, which is a 

rapid decrease compared to the cost of more than US $ 250 in 1970. A similar development can be observed 

for main memory. In addition to the attractiveness of fitting all operational business data of a company into 

main memory, optimising and simplifying data access accordingly, the access speed of main memory 

compared to that of disks is four orders of magnitude faster: a main memory reference takes 100 ns. Current 

disks typically provide read and write seek times about 5ms. 

  

In reality, the performance of Central Processing Units (CPUs) doubles every 20 months on average. The 

brilliant achievement that computer architects have managed is not only creating faster transistors, which 

results in increased clock speeds, but also in an increased number of transistors per CPU per square meter, 

which became cheaper due to efficient production methods and decreased material consumption. This leads 

to higher performance for roughly the same manufacturing cost. For example, in 1971, a processor consisted 

of 2,300 transistors whereas in 2006 it consisted of about 1.7 billion transistors at approximately the same 

price [Shiva 2013]. Not only does an increased number of transistors play a role in performance gain, but 

also more efficient circuitry. A performance gain of up to a factor of two per core has been reached from 

one generation to the next, while the number of transistors remained constant. 



 
Figure 2. Plot of CPU transistor counts 

  

The clock speed of processors had been growing exponentially for almost 30 years, but has stagnated since 

2002. Power consumption, heat distribution and dissipation, and the speed of light have become the limiting 

factors for Moore’s Law. The Front Side Bus (FSB) speed, having grown exponentially in the past, has also 

stagnated. In 2001, IBM introduced the first processor on one chip, which was able to compute multiple 

threads at the same time independently. The IBM Power 4 was built for the high-end server market and was 

part of IBM’s Regatta Servers. Regatta was the codename for a module containing multiple chips, resulting 

in eight cores per module. In 2002, Intel introduced its proprietary hyper-threading technology, which 

optimises processor utilisation by providing thread-level parallelism on a single core. With hyper-threading 

technology, multiple logical processors with duplicated architectural state are created from a single physical 

processor. Several tasks can be executed virtually in parallel, thereby increasing processor utilisation. Yet, 

the tasks are not truly executed in parallel because the execution resources are still shared and only multiple 

instructions of different tasks that are compatible regarding resource usage can be executed in a single 

processing step. Hyper-threading is applicable to single-core as well as to multi-core processors. Until 2005, 

single-core processors dominated the home and business computer domain. For the consumer market, 



multi-core processors were introduced in 2005 starting with two cores on one chip, for example, Advanced 

Micro Devices’s (AMD) Athlon 64 X2. At its developer forum in autumn 2006, Intel presented a prototype 

for an 80-core processor, while IBM introduced the Cell Broadband Engine with ten cores in the same year. 

The IBM Cell Broadband Engine consists of two different types of processing elements, one two-core 

PowerPC processing element and up to eight synergistic processing elements that aim at providing 

parallelism at all abstraction levels. In 2008, Tilera introduced its Tile64, a multi-core processor for the 

high-end embedded systems market that consists of 64 cores. 3Leaf is offering a product that is based on 

the HyperTransport architecture with 192 cores. In the future, higher numbers of cores are anticipated on a 

single chip. In 2008, Tilera predicted a chip with 4,096 cores by 2017 for the embedded systems market 

and Sun estimated that servers are going to feature 32 and up to 128 cores by 2018. 

  

The increased performance of the FSB, which so far has been the only interface from the CPU to main 

memory and all other input/output (I/O) components, that no longer keeps up with the exponential growth 

of processor performance. Important for the calculation of the theoretical memory throughput are clock 

speed (cycles per second) and bandwidth of the data bus. The increased clock speed and the use of multiple 

cores per machine are resulting in a widening gap between the ability of processors to digest data and the 

ability of the infrastructure to provide data. In-memory and column-oriented data storage enable the usage 

of additional processing power despite the bottleneck created by the aforementioned widening gap. High 

compression rates of column-oriented storage can lead to a better utilisation of bandwidth. In-memory data 

storage can utilise enhanced algorithms for data access, for example, prefetching. Using compressed data 

and algorithms that work on compressed data is standard technology and has already proven to be sufficient 

to compensate the data supply bottleneck for machines with a small number of cores. It is, however, failing 

with the addition of many more cores. Experiments with column-oriented, compressed in-memory storage 

and data-intensive applications showed that the FSB was well utilised, though not yet congested, in an 

eight-core machine. The data processing requirements of the same applications on a 24-core machine 

surmounted the FSB’s ability to provide enough data. From these experiments it was concluded that new 

memory access strategies are needed for machines with even more cores to circumvent the data supply 

bottleneck. Processing resources are often underutilised and the growing performance gap between memory 

latency and processor frequency intensifies the underutilisation.  Intel improved the available transfer rate, 

doubling the amount of data that can be transferred in one cycle or added additional independent buses on 

multi-processor boards. The HyperTransport protocol was introduced by AMD in 2001 to integrate the 

memory controller into the processor. Similar to the HyperTransport protocol, Intel introduced Quick Path 

Interconnect (QPI) in the second half of 2008. QPI is a point-to-point system interconnect interface for 

memory and multiple processing cores, which replaces the FSB. Every processor has one or multiple 

memory controllers with several channels to access main memory in addition to a special bus to transfer 

data among processors. Compared to Intel FSB in 2007 with a bandwidth of 12.8 GB/s, QPI helped to 

increase the available bandwidth to 25.6 GB/s in 2008. In Intel’s Nehalem EP chips, each processor has 

three channels from the memory controller to the physical memory. In Intel’s Nehalem EX chips, these 

channels have been expanded to four channels per processor. 

  

On an Intel XEON 7560 (Nehalem EX) system with four processors, benchmark results have shown that a 

throughput of more than 72 GB/s is possible. In contrast to using the FSB the memory access time differs 

between local memory (adjacent slots) and remote memory that is adjacent to the other processing units. 

As a result of this characteristic, architectures based on the FSB are called Uniform Memory Access (UMA) 



and the new architectures are called Non-Uniform Memory Access (NUMA). There is a differentiation 

between cache-coherent NUMA (ccNUMA) and non cache-coherent NUMA systems. Incc NUMA 

systems, all CPU caches share the same view to the available memory and coherency is ensured by a 

protocol implemented in hardware. Non cache-coherent NUMA systems require software layers to take 

care of conflicting memory accesses. Since most of the available standard hardware only provides 

ccNUMA, it is preferably to pay attention and to concentrate on this form. To exploit NUMA completely, 

applications have to be made aware of primarily loading data from the locally attached memory slots of a 

processor. Memory-bound applications might see a degradation of up to 25% of their performance if only 

remote memory is accessed instead of the local memory. Reasons for this degradation can be the saturation 

of the QPI link between processor cores to transport data from the adjacent memory slot of another core, or 

the influence of higher latency of a single access to a remote memory slot. The full degradation might not 

be experienced, as memory caches and prefetching of data mitigates the effects of local versus remote 

memory. Assume a job can be split into many parallel tasks. For the parallel execution of these tasks 

distribution of data is relevant. Optimal performance can only be reached if the executed tasks solely access 

local memory. If data is badly distributed and many tasks need to access remote memory, the connections 

between the processors can become flooded with extensive data transfer. Aside from the use for data-

intensive applications, some vendors use NUMA to create alternatives for distributed systems. Through 

NUMA, multiple physical machines can be consolidated into one virtual machine. The difference in the 

commonly used term of virtual machine, where part of a physical machine is provided as a virtual machine. 

With NUMA, several physical machines fully contribute to the one virtual machine giving the user the 

impression of working with an extensively large server. With such a virtual machine, the main memory of 

all nodes and all CPUs can be accessed as local resources. Extensions to the operating system enable the 

system to efficiently scale out without any need for special remote communication that would have to be 

handled in the operating system or the applications. In most cases, the remote memory access is improved 

by the reservation of some local memory to cache portions of the remote memory. Further research will 

show if these solutions can outperform hand-made distributed solutions. 3Leaf, for example, is a vendor 

that uses specialised hardware. Other companies, for example, ScaleMP rely on pure software solutions to 

build virtual systems. In summary, the enhancement of the clock speed of CPU cores has tended to stagnate, 

while adding more cores per machine is now the reason for progress. As we have seen, increasing the 

number of cores does not entirely solve all existing problems, as other bottlenecks exist, for example, the 

gap between memory access speed and the clock speed of CPUs. Compression reduces the effects of this 

gap at the expense of computing cycles. NUMA as an alternative interconnection strategy for memory 

access through multiple cores has been developed. Increased performance through the addition of more 

cores and NUMA can only be utilised by adapting the software accordingly. In-memory databases in 

combination with column-oriented data storage are particularly well suited for multi-core architectures. 

Column-oriented data storage inherently provides vertical partitioning that supports operator parallelism. 

 

  



Redis 

 

Redis is an open source (BSD licensed), in-memory and key-value data structure store, used as database, 

cache and message broker. Most key-value data stores have a limited set of datatypes, but Redis is relatively 

rich, since it supports data structures such as strings, hashes, lists, sets, sorted sets. Redis has built-in 

replication, transactions and different levels of on-disk persistence, and provides high availability via Redis 

Sentinel and automatic partitioning with Redis Cluster.  

 

Redis manages data in the form of key and value pairs, which are stored in main memory (RAM). Since all 

data needs to fit in main memory, ideally it is preferred to store essential information which needs to be 

accessed, modified and inserted at a very fast rate. In summary, Redis outperforms relational databases by 

an order of magnitude when it comes to speed. However, that also means that the size of the Redis datastore 

is limited to the size of the available memory. Therefore, although it is possible to use Redis as a standalone 

database system, it is not very common to use it as the main primary database, mainly due to its limitation 

regarding storage space. Redis usually comes along with a relational database (MySQL, SQL Server, 

PostgreSQL, Oracle, etc) or even with other non-relational database. This means that in order to take 

advantage of Redis, it is not necessary to switch to Redis, but rather use it in existing environments to do 

things that were not possible before or to fix existing problems. 

 

The main advantage of adding Redis to an application is the gain of performance. Additionally, when 

compared to other databases, Redis supports much richer data types. It allows keys and values to be strings, 

lists, sets of strings, sorted sets and hashes, which are more associable to the data types of the high level 

programming languages commonly used in software development. This eases mapping the concepts 

employed in development, as well as it is more intuitive than when it comes to the tables in relational 

databases. Moreover, it is important to note that Redis operations and transactions are atomic.  

 

If using data structures instead of tables poses as an advantage, since developers can directly map the same 

data structures in their code, the way querying works in Redis could possibly be considered as a 

disadvantage. This is because there is no query language (only commands), no support for relational 

algebra, and no ad-hoc queries (as it happens when using SQL on a RDBMS). Additionally, all data 

accesses should be anticipated by the developer, and the proper data structures and data access paths 

must be designed and carefully considered before developing the application. 

 

Architecture  

 

Redis architecture contains two main processes: Redis client and Redis Server. They can be in the same 

computer or in two different computers. 



 

Redis server is responsible for storing data in memory and it handles all kinds of management. Redis client 

can be Redis console client or any other programming language’s Redis API. 

Redis stores everything in main memory, which is volatile, and it also uses persistence on disk so the data 

is not lost once the Redis server is restarted (for instance, because the computer was turned off). However, 

this is not mandatory and depends on the application requirements. 

Data Structures 

 

Redis allows the storage of keys that map to any one of different data structure types: STRINGs, LISTs, 

SETs, HASHes, and ZSETs. The first four should be familiar to almost any programmer, and their 

implementation and semantics are similar to those same structures built in a variety of programming 

languages.  

 

 

Redis keys 

Redis keys are binary safe, which means that any binary sequence can be used as a key, from a string to the 

content of a JPEG file. An empty string is also a valid key. Shorter keys are recommended not only memory-

wise, but also because the of the key lookups, which may require several key-comparisons. However, the 



keys shouldn't be very short because it's better if they are readable. For example, writing "u1000flw" as a 

key instead of "user:1000:followers" is not a very good choice. Additionally, sticking with a pattern for the 

keys is also preferable. 

Redis expires: keys with limited time to live 

Regardless of the value type, it is possible to set a timeout for a key, which means that it has a limited time 

to live. When the time to live elapses, the key is automatically destroyed, exactly as if the user called the 

DEL command with the key. 

Altering and querying the key space 

There are commands that can be used with keys of any type. For example the EXISTS command returns 1 

or 0 to signal if a given key exists or not in the database, while the DEL command deletes a key and 

associated value, whatever the value is. 

There are many key space related commands, but the above two are the essential ones together with the 

TYPE command, which returns the kind of value stored at the specified key. 

Redis Strings 

String is the simplest type of value that can be used as a Redis key. Using the SET and the GET commands 

are the way to set and retrieve a string value. SET will replace any existing value already stored into the 

key, in the case that the key already exists, even if the key is associated with a non-string value. Values can 

be strings (including binary data) of every kind, and it cannot be bigger than 512 MB. 

Redis Lists 

Redis lists are implemented using Linked Lists, which means that the operation of adding a new element in 

the head or in the tail of the list is performed in constant time. The speed of adding a new element with the 

LPUSH command to the head of a list with ten elements is the same as adding an element to the head of 

list with 10 million elements. Redis Lists are implemented with linked lists because for a database system 

it is essential to be able to add elements to a list of any size in a very fast way.  

The LPUSH command adds a new element into a list, on the left (at the head), while the RPUSH command 

adds a new element into a list, on the right (at the tail). Finally, the LRANGE command extracts ranges of 

elements from lists: 

> rpush mylist A 

(integer) 1 

> rpush mylist B 

(integer) 2 

> lpush mylist first 

(integer) 3 

> lrange mylist 0 -1 

1) "first" 

2) "A" 

3) "B" 



 

Note that LRANGE takes two indexes, the first and the last element of the range to return. Both the indexes 

can be negative, telling Redis to start counting from the end: so -1 is the last element, -2 is the penultimate 

element of the list, and so forth. Moreover, both LPUSH and RPUSH commands are variadic commands, 

meaning that you are free to push multiple elements into a list in a single call: 

> rpush mylist 1 2 3 4 5 "foo bar" 

(integer) 9 

> lrange mylist 0 -1 

1) "first" 

2) "A" 

3) "B" 

4) "1" 

5) "2" 

6) "3" 

7) "4" 

8) "5" 

9) "foo bar" 

 

An important operation defined on Redis lists is the ability to pop elements. Popping elements is the 

operation of both retrieving the element from the list, and eliminating it from the list, at the same time. 

Elements can be popped from left and right, similarly to how they can be pushed to both sides of the list: 

> rpush mylist a b c 

(integer) 3 

> rpop mylist 

"c" 

> rpop mylist 

"b" 

> rpop mylist 

"a" 

 

Redis returns a NULL value to signal that there are no elements into the list. 

Common use cases for lists 

Lists are useful for a number of tasks, and on Redis website it is possible to observe its use in the social 

network domain, for example, to remember the latest updates posted by users. Twitter takes the latest tweets 

posted by users into Redis lists. To describe a common use case, if a home page shows the latest photos 

published in a photo sharing social network and the goal is to speedup access, lists can be useful, for instance 

in two scenarios: (i) every time a user posts a new photo, its ID is added into a list with LPUSH, and (ii) 

when users visit the home page, LRANGE 0 9 is used in order to get the latest 10 posted items. 

Redis Hashes 

Redis hashes are basically field-value pairs: 

http://redis.io/commands/lpush


> hmset user:1000 username antirez birthyear 1977 verified 1 

OK 

> hget user:1000 username 

"antirez" 

> hget user:1000 birthyear 

"1977" 

> hgetall user:1000 

1) "username" 

2) "antirez" 

3) "birthyear" 

4) "1977" 

5) "verified" 

6) "1" 

 

While hashes are handy to represent objects, the number of fields allowed inside a hash has no limits other 

than available memory. The command HMSET sets multiple fields of the hash, while HGET retrieves a 

single field. HMGET is similar to HGET but returns an array of values: 

> hmget user:1000 username birthyear no-such-field 

1) "antirez" 

2) "1977" 

3) (nil) 

 

There are commands that are able to perform operations on individual fields as well, like HINCRBY: 

> hincrby user:1000 birthyear 10 

(integer) 1987 

> hincrby user:1000 birthyear 10 

(integer) 1997 

Redis Sets 

Redis Sets are unordered collections of strings. The SADD command adds new elements to a set. It's also 

possible to do a number of other operations against sets like testing if a given element already exists, 

performing the intersection, union or difference between multiple sets, and so forth. 

Sets are good for expressing relations between objects. For instance, sets can be used to implement tags. A 

simple way to model this problem is to have a set for every object we want to tag. The set contains the IDs 

of the tags associated with the object. 

In case we want to tag news, if our news ID 1000 is tagged with tags 1, 2, 5 and 77, we can have one set 

associating our tag IDs with the news item: 

> sadd news:1000:tags 1 2 5 77 

(integer) 4 

 

However sometimes it is necessary to retrieve inverse relation as well: the list of all the news tagged with 

a given tag: 



 

> sadd tag:1:news 1000 

(integer) 1 

> sadd tag:2:news 1000 

(integer) 1 

> sadd tag:5:news 1000 

(integer) 1 

> sadd tag:77:news 1000 

(integer) 1 

 

To get all the tags for a given object is trivial: 

> smembers news:1000:tags 

1. 5 

2. 1 

3. 77 

4. 2 

 

Note: in the example it is assume that there is another data structure, for example a Redis hash, which maps 

tag IDs to tag names. 

Redis Sorted sets 

Sorted sets are a data type which is similar to a mix between a Set and a Hash. Like sets, sorted sets are 

composed of unique, non-repeating string elements, so in some sense a sorted set is a set as well. However, 

while elements inside sets are not ordered, every element in a sorted set is associated with a floating point 

value, called the score (this is why the type is also similar to a hash, since every element is mapped to a 

value). Moreover, elements in a sorted sets are taken in order (so they are not ordered on request, order is 

a peculiarity of the data structure used to represent sorted sets). They are ordered according to the following 

rule: 

● If A and B are two elements with a different score, then A > B if A.score is > B.score. 

● If A and B have exactly the same score, then A > B if the A string is lexicographically greater than 

the B string. A and B strings can't be equal since sorted sets only have unique elements. 

Considering a simple example of adding a few selected hackers names as sorted set elements, with their 

year of birth as "score": 

> zadd hackers 1940 "Alan Kay" 

(integer) 1 

> zadd hackers 1957 "Sophie Wilson" 

(integer 1) 

> zadd hackers 1953 "Richard Stallman" 

(integer) 1 

> zadd hackers 1949 "Anita Borg" 

(integer) 1 

> zadd hackers 1965 "Yukihiro Matsumoto" 



(integer) 1 

> zadd hackers 1914 "Hedy Lamarr" 

(integer) 1 

> zadd hackers 1916 "Claude Shannon" 

(integer) 1 

> zadd hackers 1969 "Linus Torvalds" 

(integer) 1 

> zadd hackers 1912 "Alan Turing" 

(integer) 1 

 

It is possible to observe that ZADD is similar to SADD, but takes one additional argument (placed before 

the element to be added) which is the score. ZADD is also variadic, so it is possible to specify multiple 

score-value pairs. With sorted sets it is trivial to return a list of hackers sorted by their birth year because 

actually they are already sorted. 

In terms of implementation, it is important to note that sorted sets are implemented via a dual-ported data 

structure containing both a skip list and a hash table, so every time an element is added, Redis performs an 

O(log(N)) operation. 

   

Persistence  

There are three different possibilities to work with persistence using Redis: RDB, AOF and SAVE 

command. 

RDB Mechanism 

RDB makes a copy of all the data in memory and stores them in secondary, permanent storage. It consists 

of a very compact single-file and it performs point-in-time snapshots at specified intervals. RDB works 

very well for backups (daily snapshots, for instance). However, it is not the best approach in order to 

minimise the chance of data loss. The data created after a snapshot can be lost in case something goes wrong 

- a power outage, for example - before Redis performs the next snapshot. 

AOF 

AOF logs all the write operations received by the server, and allows the fsync policy to be defined (no fsync 

at all, fsync every second or every query). The AOF log is an append log only, and this mechanism allows 

Redis to deal quite easily when there is a power outage, or when new versions of the file needs to be created 

due to file size constraints. Compared to RDB, AOF files are usually bigger than the equivalent RDB files, 

and it can also be slower depending on the fsync policy. 

SAVE Command 

The SAVE command is a way to manually set the Redis server to create a RDB snapshot anytime in a given 

condition. For example, the server can be configured to automatically dump the dataset to disk every 60 

seconds if at least 1000 keys changed. 



In order to get the best persistence result, AOF can be used together with RDB. As a matter of fact, the 

Redis community aim to unify AOF and RDB into a single persistent model in the future. 

Replication 

Redis offers master-slave replication that allows slave Redis servers to be exact copies of master servers. 

Redis uses asynchronous non-blocking replication both on the master and slave sides. This means that they 

can handle queries while performing synchronisation. Replication can be used both for scalability, in order 

to have multiple slaves for read-only queries, or simply for data redundancy. If you set up a slave, upon 

connection it sends a SYNC command. It doesn't matter if it's the first time it has connected or if it's a 

reconnection. The master then starts background saving, and starts to buffer all new commands received 

that will modify the dataset. When the background saving is complete, the master transfers the database file 

to the slave, which saves it on disk, and then loads it into memory. The master will then send to the slave 

all buffered commands. This is done as a stream of commands and is in the same format of the Redis 

protocol itself. Slaves are able to automatically reconnect when the master-slave link goes down for some 

reason. If the master receives multiple concurrent slave synchronisation requests, it performs a single 

background save in order to serve all of them. 

 

Scalability 

 

The master-slave approach is also very important in terms of scalability. The simplest method to increase 

total read throughput available to Redis is to add read-only slave servers. Additional servers can run by 

connecting to a master, receive a replica of the master’s data, and be kept up to date in near-real time. This 

enhances additional read query capacity with every new slave by running read queries against one of several 

slaves.  With respect to maximising performance when the capacity of a single machine has been reached, 

it's time to shard the data across multiple machines.  

 

As from Redis 3.0, Redis includes a built in option for sharding called Redis Cluster. Redis Cluster is a 

distributed implementation that provides high performance and linear scalability up to 1000 nodes. There 

are no proxies, asynchronous replication is used, and no merge operations are performed on values. It also 

aims to ensure an acceptable degree of write safety. The system tries (in a best-effort way) to retain all the 

writes originating from clients connected with the majority of the master nodes. Redis Cluster is able to 

survive partitions where the majority of the master nodes are reachable and there is at least one reachable 

slave for every master node that is no longer reachable. 

 

Industry use cases 

 

In this section, we explore some practical examples on how Redis has been useful for big companies. 

 

Pinterest 

 

Pinterest is a photo sharing social network, and it figures as one of the most popular applications at the 

moment. It was founded in 2010 and it has more than 70 million registered users. As most other social 



networks, they have a follower model modelled as a graph. Unlike Facebook and Twitter, users can follow 

not only other users, but also boards (which can be seen as a photo album). Additionally, if a user A follows 

user B, A automatically follows all boards owned by B. With their enormous growth, they felt the need to 

rethink their follower model. They used a traditional model of storing the sharded graph on MySQL and 

caching it with memcached, but this solution was reaching its limits. Also, caching the graph data was hard 

because the cache was useful only if the entire subgraph of a user (vertex) is in cache, which can quickly 

result in an attempt to cache the entire graph. Moreover, caching also implies that queries "Does user A 

follow user B?" are either in the cache or not. Many times the answer was not in the cache, which required 

expensive lookups to the persistence store. 

 

The corpus size of the entire Pinterest follower graph is relatively small, so loading the entire graph in 

memory is feasible. They use Redis to store the graph, which is sharded by user IDs, and the Redis AOF 

feature updates to disk every second to avoid significant data loss. Since Redis is single threaded, they run 

multiple instances of Redis to fully utilise the CPU cores. Each Redis instance serves one virtual shard, 

which allows easy splitting of shards when the instances on one machine reach capacity. 

Pinterest needs to efficiently respond to point queries such as “Does user A follow user B”, support filtering 

queries used on a search page such as “Which of these 25 users are followed by me?”, and get all users 

followed by users or boards to fan out the incoming pins. In order to respond to such queries, they explore 

the main data structures of Redis to build their model: Set, Sorted Set and Hash.  

In the end, when Pinterest migrated away from the existing sharded MySQL cluster, they saved about 30% 

IOps. 

Flickr 

 

Flickr is a photo organiser and sharing. When they launched their new mobile app back in 2012, their 

main goal was to further increase user engagement by allowing users to know what was happening on 

Flickr in as near-real time as possible. In order to make this possible, they developed an event system 

that involved three steps: (i) event generation, which happens while processing a user request, and to 

ensure that there was little to no impact on the response times, they do a lightweight write into a global 

Redis queue; (ii) event targeting, in which many workers read from the global Redis queue, and load 

up any additional information necessary to act on the notification (checking to see what users should 

be notified, whether those users have devices that are registered to receive notifications, if they have 

opted out of notifications of this type); and (iii) message delivery, to which they have built a separate 

endpoint in NodeJS, and rely on the publish subscribe Redis built-in functionality. 

 

Flickr accomplished their initial goals when they turned to Redis to help their push notifications 

functionality involved near-real time response, and handling thousands of notification per second, which 

they assessed in their stress test: they were able to process more than 2,000 notifications per second on 

a single host (8 Node.js workers, each subscribing to multiple shards). 

 

Redis versus other databases 



 

Before comparing Redis directly to other database solutions, we would like to illustrate Redis' popularity 

and  The business software site G2 Crowd published in the fall of 2015 a report ranking eight NoSQL 

databases to help purchasers in their selections. Redis earned the highest overall satisfaction and market 

presence scores. A few factors were taken into consideration, such as customer satisfaction reported by 

users, and with vendor market presence determined from social and public data to rank products. The Fall 

2015 report was based on more than 130 reviews written by developers, database administrators and other 

business professionals. 

 
Figure 3. NoSQL Database Ranking 

 

Also, Redis figures well in another ranking, published by The DB-Engines Ranking, which represents a list 

of key-value database systems ranked by their current popularity. The popularity of a system is measured 

considering: (i) the number of mentions of the system on websites, given by the number of results in search 

engines queries (Google, Google Trends and Bing); (ii)  frequency of technical discussions about the 

system, as in related questions and the number of interested users on Stack Overflow and DBA Stack 

Exchange; (iii) number of job offers in which the system is mentioned on leading job search engines (Indeed 

and Simply Hired); (iv) relevance in social networks, mainly LinkedIn and Twitter. 



 
Figure 4. Key-value stores Database Ranking 

 

Redis vs Memcached  

 

Memcached vs Redis is a debate that often arises when cache comes into play, if the goal is to increase the 

performance of any application. Both Memcached and Redis are in-memory, key-value data stores. Hence, 

they keep all the data in main memory, and they perform similarly with respect to throughput and latency. 

Memcached was developed in 2003, whereas Redis first release was in 2009, and parts of it were built in 

response to lessons learned from using Memcached. Both of them are used by many companies, mainly 

because they are not only extremely effective, but also relatively simple. Getting started with either 

Memcached or Redis does not take more than a few minutes, which turns a small amount of time and effort 

into a huge and positive impact on performance.  

 

Redis is newer and has more features when compared to Memcached. However, for caching small and static 

data Memcached can be considered a better and more efficient choice, because Memcached's internal 

memory management consumes comparatively less memory resources for metadata. The other case in 

which Memcached is preferable over Redis is for horizontal scaling, partly due to its design and simpler 

capabilities. Hence, Redis is usually a better choice as a result of its greater power and efficiency overall, 

and its more sophisticated approaches to memory management. Additionally, Redis provides greater 

flexibility regarding the objects that can be cached. Whereas Memcached works only with strings, and 

limits key names to 250 bytes and values to 1MB, Redis allows keys and values to be at most 512MB each, 

and it has six data types that allows better manipulation of cached data as well as more possibilities to the 

developer. In contrast to Memcached, Redis stores data to disk, and therefore offers support in case of 

failures and replication. 

 

Redis vs MongoDB  



 

MongoDB is one of the most popular NoSQL solutions. It is a cross-platform document-oriented database 

that relies on JSON-like documents with dynamic schemas, which makes the integration of data in certain 

types of applications easier and faster. Comparing MongoDB to Redis, MongoDB is more suitable for 

querying, whereas Redis is better on performance. However, MongoDB can cope well with much larger 

datasets than Redis, since all the data manipulated by Redis needs to fit in main memory. Additionally, for 

those who come from a relational database and SQL background, the learning curve is steeper for Redis 

when compared to MongoDB. 

 

Redis vs SQL Server and Oracle 

 

Overall, comparing Redis to SQL Server or Oracle, both traditional relational database solutions, is not 

very applicable. They operate with different purposes, and Redis does not support most of the common 

features inherent to DBMSs. However, both SQL Server and Oracle are offering in-memory solutions that 

pose as competition to Redis. Microsoft released SQL Server Hekaton in 2014 built-in with the new release 

of SQL Server. Hekaton is an in-Memory OLTP new database engine component, fully integrated into SQL 

Server. It is optimised for OLTP workloads accessing memory resident data. In-Memory OLTP allows 

OLTP workloads to achieve significant improvements in performance, and reduction in processing time. 

Tables can be declared as ‘memory optimised’ to enable In-Memory OLTP’s capabilities. Hekaton was not 

meant to run an entire database in memory but rather as a new engine designed to handle specific cases 

while keeping the interface the same. Everything to the end-user is identical to the rest of SQL Server: SQL 

and stored procedures to access data, triggers and indexes, and everything is still atomic with ACID 

properties. As for Oracle, they also introduced an in-memory solution in 2014. Similarly to Hekaton, Oracle 

Database In-Memory offers the possibility to populate only performance sensitive tables or partitions into 

memory. Additionally, they provide a unique dual-format architecture that enables tables to be 

simultaneously represented in memory using traditional row format and a new in-memory column format 

that has proven to be useful in analytics scenarios. Oracle Database In-Memory implements state-of-the-art 

algorithms for in-memory scans, joins and aggregation, which enable analytics that previously took hours 

to complete in seconds, easing real-time business decisions. Enabling Oracle Database In-Memory is as 

easy as setting the size of the in-memory column store and identifying tables to bring into memory. 

Background processes populate data from storage into in-memory columns while the database remains fully 

active and accessible. No changes are required to use it with any application or tool that runs against the 

Oracle Database.  

 

 

 

  



Practical examples using Redis  

 

We developed two applications to illustrate the use of Redis. The first was a chat application that highlights 

how Redis can be extremely useful in a context where two factors are necessary: (i) fast access to real time 

data, and (ii) the publish/subscribe messaging pattern plays an essential role on this domain.  The second 

was a Twitter-like simple social network that contains basically users and a timeline (which represents 

status messages from the users themselves and the users they follow). Additionally, users can follow other 

users, and on each user’s timeline the statuses of the users they follow are displayed in descending 

chronological order.  

 

Chat application 

 

The chat was developed as a web application, we used NodeJS on the server side with the Socket.IO library. 

Socket.IO is a library that is used both on the server and client sides, to ease the communication between 

both parts. It has built-in events such as connect, disconnect, join, message, that are defined on the server 

side, so that the server can detect and react to the different types of actions made by the client application.  

 

With respect to the publish/subscribe messaging pattern, Redis has a built-in implementation and it provides 

three main commands: SUBSCRIBE, UNSUBSCRIBE and PUBLISH. As accurately described on Redis’ 

website: “The senders (publishers) are not programmed to send their messages to specific receivers 

(subscribers). Rather, published messages are characterised into channels, without knowledge of what (if 

any) subscribers there may be. Subscribers express interest in one or more channels, and only receive 

messages that are of interest, without knowledge of what (if any) publishers there are. This decoupling of 

publishers and subscribers can allow for greater scalability and a more dynamic network topology”. 

 

Along with the pubsub pattern, we also use Redis to store the chat messages. Every time a new message is 

sent by an user, the server receives this message and executes the following command in order to save the 

incoming message: redisClient.lpush('messages', JSON.stringify(data)); This code pushes the latest 

message to the messages list stored in Redis. Then, when the client launches, or in case of a disconnect, 

users are still able to see the messages when they are back online. In our case, we just created one chat 

room, but with Redis it is also very simple to store messages for different chat rooms, which is more likely 

in a real world scenario. 

 

When comparing to what would be possible to do in a relational database, it is very clear that without Redis 

some additional work or library would be necessary to implement the publish/subscribe messaging pattern. 

Moreover, even though a chat application can be easily modeled with a relational schema, it is much faster 

to retrieve messages from main memory than from disk, and this performance attribute is extremely 

valuable in the context of a real-time application. 

 

The code for this application is available at: http://github.com/larissaleite/redis-examples/chat 

 

Twitter-like social network application 

 

http://redis.io/commands/subscribe
http://redis.io/commands/unsubscribe
http://redis.io/commands/publish


One of the first examples displayed on Redis’ website is a Twitter-clone developed with Redis and PHP. 

Based on that, we developed a simplified version of a social network based on Twitter using the redis-py: 

a client library of Redis for Python. Our implementation was also based on the book “Redis in Action” 

[Carlson 2013]. The main goal of selecting this type of application was the ease to generate data to simulate 

a real application, when compared to the chat app. Moreover, this domain is more easily modelled in a 

relational database. Hence, we stored the same amount of data in SQLite in order to assess how the queries 

would perform when compared to Redis. 

 

In Redis, we use the main data structures to hold the data of the social network as follows: 

 

Users’ information (login, how many people they follow, how many followers they have, and the amount 

of status messages they have posted) are stored as a HASH. 

user:<id>, {followers: 0, following: 0, posts: 0, login: <username>} 

 

 
 

The status messages are also stored as a HASH: 

status:<id>, {uid: <user_id>, message: <message content>} 

 

 
 

We store as a ZSET (sorted set) the lists of users that each user follows, and the users that follow them.  To 

keep a list of followers and a list of those people that a user is following, we’ll also store user ID s and 

timestamps in ZSET s as well, with members being user ID s, and scores being the timestamp of when the 

user was followed: 
followers:<user_id>, [<follower_id> <timestamp>, <follower_id> 

<timestamp>, <follower_id> <timestamp> …] 

following:<user_id>, [<following_id> <timestamp>, <following_id> 

<timestamp>, <following_id> <timestamp> …] 

 



 
 

Finally, the timeline, the most important feature of the application, is also stored as a ZSET, in order to 

keep the statuses ordered by timestamp (called the score in Redis): 

home:<user_id>, [<status_id> <status_timestamp>, <status_id> 

<status_timestamp>, <status_id> <status_timestamp>, …] 

 
 

In our relational database using SQLite, we modelled the relationships as follows: 

 

 
 

In our application we basically created five methods: 

 

 Redis SQLite 

create_user(username) Inserts a new user as hash  Inserts a new user to the users table 

post_status(user, message) Inserts a new status as a hash 

and adds the status id to the 

sorted set of every follower of 

the corresponding user  

Inserts a new status to the status 

table, referencing the corresponding 

user in foreign key column 

follow_user(user1, user2) Inserts the user id of user1 to 

the followers sorted set of 

user2 and inserts the user id of 

user2 to the following sorted 

set of user1 

Inserts a new line to the follows table 



retrieve_timeline(user) Retrieves the timeline of the 

corresponding user by 

selecting all the status id from 

the home sorted set and getting 

the status content from the 

status hash 

Retrieves the timeline of the 

corresponding user by joining the 

tables user and status on the user id 

retrieve_followers(user) Retrieves basic information 

from all the followers of the 

corresponding user by getting 

all the followers from the 

followers sorted set and getting 

the information from each 

follower’s hash 

Retrieves basic information from all 

the followers of the corresponding 

user by selecting all the followers 

from the follows table and joining 

with the user table 

retrieve_following(user) Retrieves basic information 

from all the users are followed 

by the corresponding user, 

from the following sorted set 

and getting the information 

from each user’s hash 

Retrieves basic information from all 

the followers of the corresponding 

user by selecting all the users 

followed by him/her from the follows 

table and joining with the user table 

 

The methods’ signatures were the same for both versions of the application, using Redis and SQLite.  

 

We generated data corresponding to registering 10000 users, each user with 200 followers and 100 status 

messages. In this context, we calculated the time in milliseconds to run the queries corresponding to the 

last three methods:  

 

 Redis SQLite 

retrieve_timeline 0.36213 456.429 

retrieve_followers 0.05584 0.17909 

retrieve_following 0.04713 0.18737 

 

These numbers show that despite Redis taking longer to write all the data to the database, the performance 

when retrieving such data, specially in the case of the timeline, is significantly better when compared to 

SQLite. 

 

The code for this application is available at: http://github.com/larissaleite/redis-examples/twitter 

 

 

 

 

  



Conclusion 

Not so long ago, it would not have been easy to imagine enterprise-class database management systems 

running primarily in main memory. But since the cost of memory is orders-of-magnitude less expensive 

than it used to be, the decrease in prices have opened new opportunities for configuring database systems 

to take advantage of increased main-memory capacities. 

In-memory databases provide accelerated application performance in two ways: (i) maintaining data in 

main memory instead of significantly slower disk-based storage minimises the data latency associated with 

database queries; (ii) alternative database architectures enable more efficient use of the available memory. 

For example, many in-memory technologies use a columnar layout in tables instead of a row-based 

orientation, which are more suitable for compression, and the ability to rapidly scan all column values 

speeds up query execution. 

It's no longer just startup companies developing in-memory databases designed to support high-

performance processing needs. Leading database and software vendors - IBM, Oracle, Microsoft, SAP, 

Teradata - are marketing database technologies that support in-memory processing, putting money behind 

their belief that mainstream organizations are ready to consider incorporating such software into IT systems. 

In order to acquire an in-memory solution, it is important to assess the overall characteristics of the 

application, the organisation's demand for processing increased data volumes and the business value that 

could be delivered as a result of reduced database response times. It's also a good idea to take the overall 

characteristics of the organisation into account. In-memory databases are worth considering in organisations 

whose business processes can benefit from real-time data availability, simultaneous mixed-use applications, 

and noticeably faster reporting and analytics are good candidates for deploying in-memory databases. In 

most cases, the consideration of in-memory software must be aligned with IT spending priorities and 

corporate business objectives, including a demonstrable awareness of how key areas of corporate 

performance could be improved by the faster transaction processing and access to reports and ad hoc query 

results that in-memory processing makes possible. 

Redis is one of the most popular and complete key-values in-memory database solutions. It is used by many 

large and well-known companies like Twitter, GitHub and StackOverflow. Redis maps keys to values that 

can be not only strings, but also more complex data types such as lists, sets, sorted sets and hash tables. It 

supports high-level, atomic, server-side operations like intersection, union, and difference between sets and 

sorting of lists, sets and sorted sets. Along with the rich data structures, incorporating Redis normally means 

a significant gain in performance. 

Redis holds the whole data set into main memory and provides different levels of on-disk persistence. Since 

all data needs to fit in main memory, ideally it is preferred to store essential information which needs to be 

accessed, modified and inserted at a very fast rate.  
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