

Erasmus Mundus Master’s Programme in Information

Technologies for Business Intelligence (IT4BI) 2015-2017

GRAPH DATABASES AND ORIENTDB

INFO-H-415: Advanced Databases (Project)

Professor: Esteban Zimányi
Teaching Assistant: Stefan Eppe

Authors:
 Ahsan Bilal
 Madiha Khalid

Contents
Abstract... 1

Introduction to NoSQL ... 1

Why NoSQL?.. 1

When to choose an RDBMS and NoSQL ... 3

NoSQL Categories .. 4

NoSQL Graph Databases .. 5

Graph Structure ... 5

TinkerPop Blueprints stack ... 5

Gremlin Language .. 5

The Power of Graph Databases .. 6

OrientDB ... 7

Features ... 7

The Document Model: ... 7

The Object Oriented Model: .. 7

The Key/Value Model: ... 8

The Graph Model... 9

Building Recommendation Engine in OrientDB .. 10

Step 1 (a): Import Data using ETL ... 10

Step 1(b): Import Data Using JAVA API .. 10

Step 1(c): Import Data Using .NET API ... 11

Limitations .Net API: .. 11

Step 2: Import Data in SQL SERVER 2012 ... 11

Relational Logical Model of MovieLens .. 11

Step 3: Query Graph Data Model: .. 12

Building Queries .. 12

Code Sample ... 17

Performance Tuning .. 18

Caching: .. 18

Connection: ... 18

Query and DB Structure Tips: ... 18

Installing OrientDB: ... 19

For Windows ... 19

For Mac ... 19

For Linux and any other *NIX system ... 19

Graph Databases and OrientDB

 2

Conclusion... 20

Graph Databases and OrientDB

1

Abstract
In recent years, more and more companies provide services
that cannot be anymore achieved efficiently using relational
databases. As such, these companies are forced to use
alternative database models such as XML databases, object-
oriented databases, and document-oriented databases and,
more recently graph databases. Graph databases only exist for
a few years.
In this document we are exploring OrientDB as Graph

Database model as NoSQL database. The main goal of this

project is to provide theoretical, technical details and debates

on some powerful features of OrientDB. We provide some

comparison attempts between OrientDB 2.1.8 and SQL Server

2012, they are mostly focused on MovieLens dataset and build

recommendation engine.

Introduction to NoSQL
oSQL is not about saying that SQL should never be

used or SQL is dead, neither a negation of the

traditional RDBMS ecosystem, it just stands for

“Not only SQL”.

NoSQL Definition: Next Generation Databases
mostly addressing some of the points: being non-relational,
distributed, open-source and horizontally scalable1.
NoSQL databases have become the first alternative to

relational databases, with scalability, availability, and fault

tolerance being key deciding factors.

Why NoSQL?
The data landscape has changed. During the past 15 years, the

explosion of the World Wide Web, social media, web forms

you have to fill in, and greater connectivity to the Internet

means that more than ever before a vast array of data is in

use.

New and often crucial information is generated hourly, from

simple tweets about what people have for dinner to critical

medical notes by healthcare providers.

Systems designers no longer have the luxury of closeting

themselves in a room for a couple of years designing systems

to handle new data. Instead, they must quickly create systems

that store data and make information readily available for

1 NOSQL. NOSQL databases http://nosql-database.org/

N

Industrial Revolution of

Data

Ninety percent (90%) of all the

data in the world has been

generated over the last two

years. Internet-based

companies are awash with

data that can be grouped and

utilized.

BigData

BigData makes it possible to

achieve research results that

cover a wide range of issues,

and can tell us a great deal

about developments in the

world in many different areas.

http://nosql-database.org/

Graph Databases and OrientDB

 2

search, consolidation, and analysis. All of this means that a particular kind of systems technology is

needed.

Let’s have look at some driving trends which leads developers to think beyond the RDBMS structure.

1- Massively increase of Data Size.

2- Data Connectivity in application like social media.

3- Semi-structured Information.

4- Different architecture used to build application.

Single Application
(1980’s)

Integration Database
Antipattern

(1990’s)

Service-Oriented Architecture
(2000’s)

The original intention of NoSQL approach has been creation of modern web-scale databases. NoSQL
is designed for distributed data stores with needs of scaling of the data (e.g. Facebook or Twitter,
which accumulates terabits of data every single day). The basic characteristic belong:

 schema-free

 easy replication support
 own API

 consistency (BASE/ ACID (Atomicity, Consistency, Isolation, Durability) transactions)

 huge amount of data

 unstructured data

 data on multiple servers in the cloud

Figure 1 Service-Oriented Architecture (2000’s)

Figure 1: History of Database Evolution of NoSQL

Graph Databases and OrientDB

 3

When to choose an RDBMS and NoSQL

 Pros Cons

NoSQL

1. flexible data model without

restrictions on data

2. suitability for running in the Cloud

3. good options for horizontal scaling

without buying additional expensive
hardware

4. suitability for storing of rapidly
growing data

5. suitability for hierarchical, heavily
interconnected or unstructured data

6. suitability for creation semantic
model (semantic web)

1. unsuitability for users with small programming

skills → difficulty to manage database and
make database queries

2. partial instability of open source projects (the
most of NoSQL projects are open source) → on-
going development process → some required
features could be missing

3. bigger difficulty to install and set-up than

RDBMS

RDBMS

1. suitability for structured data with the

ability to ask different questions all
the time

2. native referential integrity and ACID
transactions

3. well-known relational model which
uses well-known query language
(SQL)

1. unsuitability for storing application entities in a

persistent and consistent way

2. unsuitability for hierarchical application objects
with query capability into them

3. unsuitability for storing large trees or networks

4. unsuitability for running in the Cloud and usage
as a distributed database

5. unsuitability for very fast growing data which is
not possible to process on a single machine

6. not easy accessible horizontal scaling (without
buying more expensive hardware)

7. performing JOIN operations

Graph Databases and OrientDB

 4

NoSQL Categories
There are following basic NoSQL categories:

a. Graph Databases

b. Key-Value

c. BigTable

d. Document

The right choice of database model for specific use case

is very important and also difficult task. We can see

comparison between relational and NoSQL databases

according to the scaling size and database model

complexity on Figure 2.

Figure 2: Positions of NoSQL databases (scaling vs. complexity)

Some of the NoSQL vendors are as shown in:

Figure 3: NoSQL Vendors

Graph Databases and OrientDB

 5

NoSQL Graph Databases
raph Databases recently gained lot of attention due to its performance and features which,

combined together, offer a tool that is by far different from any other product in the DBMS

ecosystem.

Graph databases are a rising tide in the world of big data insights, and the enterprises that tap into

their power realize significant competitive advantages and can handle relationships in an easier and

faster way compared to traditional databases.

Graph databases can be especially used when following characteristics are desirable:
 Develop application related with social networking

 To dynamically build relationships between objects that have dynamic properties

 To build database incrementally through programming

 To avoid very nested JOIN operations (thanks to fast navigation between graph entities)

Graph Structure
A graph (or network) is a data structure. It is composed of vertices (dots)

and edges (lines). Many real-world scenarios can be modelled as a graph.

This is not necessarily inherent to some objective nature of reality, but

primarily predicated on the fact that humans subjectively interpret the

world in terms of objects (vertices) and their respective relationships to one

another (edges).

The popular data model used in graph computing is the property graph. The following example

demonstrate graph modelling via scenario.

TinkerPop Blueprints stack 2

TinkerPop blueprints provide interfaces and implementations for the property graph data model
under apache2 license. Technology stack contains:

 Pipes: data flow framework

 Gremlin: a graph traversal language

 Frames: an object-to-graph mapper

 Rexter: a graph server
Now TinkerPop3 made a sharp distinction between the various TinkerPop projects: Blueprints, Pipes,
Gremlin, Frames, Furnace, and Rexster. With TinkerPop3, all of these projects have been merged and
are generally known as Gremlin. Blueprints → Gremlin Structure API : Pipes → GraphTraversal :
Frames → Traversal : Furnace → GraphComputer and VertexProgram : Rexster → GremlinServer.3

Gremlin Language
Gremlin is a graph manipulation language. It is specialized to work with Property graphs. Gremlin is a

part of TinkerPop Blueprints stack. It provides support for Java and it supports multiple traversal

patterns.

2 Apache Tinkerpop3 https://tinkerpop.incubator.apache.org/
3 Apache TinkerPop3 Documentaion http://tinkerpop.apache.org/docs/3.1.0-incubating/#_tinkerpop3

G

Graph Database Structure

https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
https://tinkerpop.incubator.apache.org/

Graph Databases and OrientDB

 6

Gremlin main features are:

 manual working with graph (create, delete, update, etc. vertices and edges, ensuring of

integrity)

 to query graph; Gremlin is very efficient by querying the graph model

 exploring, analysis graphs

 exploring the semantic Web/Web of data; Gremlin can be used with RDF graphs and allows

working with the semantic web in real-time

 gremlin is extensible with new methods and steps defined in Gremlin or in Java; Gremlin can

take advantage of Java API

 it is a Turing complete language – it provides memory and computing constructs to support

arbitrary path recognition

Simple Query Example of Gremlin to traverse the Graph: Gets all names and paths from vertex with

ID = 1 (in Gremlin we have to choose arbitrary root vertex. The root vertex is the vertex from which

searching starts. We can choose more than one vertex. Letter g is reference to the graph instance.

Figure 4: Gremlin Example

The Power of Graph Databases

A Graph Database has an “index-free adjacency” 4 mechanism to cross the graph without any index

lookup. This means that once you have a record, to access related records you don’t have to lookup

relations in an index. – Like in traditional RDBMS – since relations are self-contained in the records

themselves. Having self-contained relations means that to move from a record to another one will

always have a constant cost, no matter how big the graph is: on the other end, RDBMS, once they

start having a big amount of records, tend to highly worsen in terms of performances, since their

indexes – and the lookups associated to them – grow logarithmically; in graph DBs, the cost is constant

instead.

4 IBM System G: Graph Database Overview [online], last visited 30.12.2015
http://systemg.research.ibm.com/database.html

Graph Databases and OrientDB

 7

OrientDB
rientDB5 is a tool capable of defining, persisting, retrieving and traversing information. We

want to start there, rather than saying it is a type ABC database. Because OrientDB can be

used in multiple ways. It can play a document database (making it a competitor to MongoDB,

CouchDB, etc.), it can be a graph database (making it a competitor to Neo4J, Titan, etc.) and it can be

an Object-Oriented Database. And it can play all those roles at the same time. It combines all the

features of four model and make one complete core model. OrientDB continuously working to provide

one solution for all types of NoSQL Database Models. OrientDB has three type of interfaces to work

with: Console, OrientDB Studio and Gremlin console.

Features 6
The Standard Edition is shipped with a rich set of out of the box features; all of them are
immediately available after the server installation.

1- Apache2.0 license

2- ACID Transaction

3- Free of cost

4- Gremlin Language for graph computing

5- SQL Language Syntax for graph computing

6- RESTful API

7- Fast

8- Multi Master Replication

9- Sharding

10- Official release APIs for JAVA, .Net, PHP and many others

11- Developed in JAVA hence can be run in any OS.

The Document Model:
Documents is stored in this type of model. It does not forced to have schema. It also helps to created

relationship between documents. Documents is stored in the form of Classes and Clusters and their

relationship is represented as Link.

The table below illustrates the comparison between the relational model, the document model, and

the OrientDB document model:

Relational Model Document Model OrientDB Document Model

Table Collection Class or Cluster
Row Document Document

Column Key/value pair Document field

Relationship not available Link

Table 1: Comparison between Document Model and Relational Model

The Object Oriented Model:
With OrientDB we are able to define a hierarchy between tables (they are called “classes”) and thus

being able to take advantage of inheritance. Suppose we have collection of Animals and want to

5 OrientDB [online], last visited 30.12.2015 http://orientdb.com/
6 OrientDB Key advantages, [online] last visited 30.12.2015 http://orientdb.com/why-orientdb/

O

http://orientdb.com/docs/last/Concepts.html#class
http://orientdb.com/docs/last/Clusters.html
http://orientdb.com/docs/last/Concepts.html#document
http://orientdb.com/docs/last/Concepts.html#relationships
http://orientdb.com/
http://orientdb.com/why-orientdb/

Graph Databases and OrientDB

 8

iterate through and output their calls. Different animals have different characteristics what if we

present together in same table? Representing data in this way is a bad smell (called NULLfull

antipattern, as it leads to records full of NULL attributes), but having different tables is not always a

viable solution.

What if we have to query all animal which start with ‘F’ in multiple table scenario you have query in

all table means N queries and at the end data have to combine results using UNION. In OrientDB you

can simply create ‘N’ classes (Cats, Dogs, Snakes...) which extend parent class ‘Animal’. Now the query

seems little easy.

Select name from Animal where name like ‘F’
The table below illustrates the comparison between the relational model, the Object model, and the

OrientDB Object model

Relational Model Object Model OrientDB Object Model

Table Class Class or Cluster
Row Object Document or Vertex

Column Object property Document field or Vertex/Edge property

Relationship Pointer Link

Table 2: Object Oriented Model Representation in OrientDB

The Key/Value Model:
This is the simplest model of the three. Everything in the database can be reached by a key, where the

values can be simple and complex types.

Relational Model Key/Value Model OrientDB Key/Value Model
Table Bucket Class or Cluster

Row Key/Value pair Document

Column not available Document field or Vertex/Edge property
Relationship not available Link

Table 3: Key/Value Model Representation in OrientDB

Single Table Structure Multiple Table Structure

http://orientdb.com/docs/last/Concepts.html#class
http://orientdb.com/docs/last/Clusters.html
http://orientdb.com/docs/last/Concepts.html#document
http://orientdb.com/docs/last/Concepts.html#relationships

Graph Databases and OrientDB

 9

The Graph Model
And now comes Graph data model. As we discussed above graph database is form of Vertex and Edges.

Representation of a Vertex is composed of a unique identifier, collection of properties, set of Incoming

Edges (inE) and set of outgoing edges (outE) similarly an Edge is also composed of a unique identifier,

an outgoing vertex (outV), a label, and incoming vertex (inV) and collection of properties which

represents relationship between vertices shown in (Figure 5). Each vertex or Edge can be any type of

class which describes the structure and properties of vertex or edge and the class should inherit from

base class V for Vertex and E for Edge respectively shown in (Table 4).

A cluster is a place where a group of records are stored. OrientDB arranges create bunch of record per
class. All the records of class are stored in one class. In OrientDB each record represent by its own
unique identifier #<cluster-id>:<cluster-position> e.g. #12:0.

OrientDB support Bidirectional edges in OrientDB property graph model. OrientDB also supports

Graph Language Gremlin as discussed above and can be usable from Gremlin console, OrientDB Studio

or directly from Java API. Gremlin provides methods for working with graphs from Java API.

Figure 5: Representation of Vertex with edges (relationship) of MovieLens

Relational
Model

Graph Model OrientDB Graph Model

Table Vertex and Edge
Class

Class that extends "V" (for Vertex)
and "E" (for Edges)

Row Vertex Vertex

Column Vertex and Edge
property

Vertex and Edge property

Relationship Edge Edge

Table 4: Graph Model Representation in OrientDB

http://orientdb.com/docs/last/Concepts.html#class

Graph Databases and OrientDB

 10

Building Recommendation Engine in OrientDB
To work with OrientDB we choose MovieLens Dataset from GroupLens Research7. We used 1M8

MovieLens dataset, contain 1,000,209 anonymous ratings of approximately 3,900 movies made by

6,040 users to build Movies Recommendation engine in both OrientDB 2.1.8 Community edition9 and

SQL Server 2012. Relational Diagram of this dataset is shown as below:

A recommender engine helps a user find novel and interesting items within a pool of resources. There
are numerous types of recommendation algorithms and a graph can serve as a general-purpose
substrate for evaluating such algorithms. We will demonstrate how to build a graph-based movie
recommender engine using the MovieLens dataset. The following steps are used to build
recommendation engine.
To load data in OrientDB we tries to explore more than one feature of OrientDB as show below.

Step 1 (a): Import Data using ETL
OrientDB comes with feature of ETL 10(Extract-Transform-Load) to load any type of files in OrientDB.
It is based on configuration file of type .JSON11. Configuration File allows one extractor from source,
multiple transformation and one destination.

Step 1(b): Import Data Using JAVA API
OrientDB developed in JAVA and comes with its more powerful native API12. You can download movies
recommendation project here in JAVA developed by Davor Lozić13 and explain step by step.

7 GroupLens Department CSE at the University of Minnesota http://grouplens.org/datasets/movielens/
8 MovieLens dataset 1M http://grouplens.org/datasets/movielens/1m/
9 OrientDB download http://orientdb.com/download/
10 OrientDB Manual Chapter 4. ETL http://orientdb.com/docs/2.0/orientdb-etl.wiki/Introduction.html
11 JavaScript Object Notation https://en.wikipedia.org/wiki/JSON
12 OrientDB JAVA Tutorial http://orientdb.com/docs/2.1/Tutorial-Java.html
13 MovieLens JAVA http://warriorkitty.com/site/importing-movielens-into-orientdb-graph-database/

http://en.wikipedia.org/wiki/Recommender_system
http://en.wikipedia.org/wiki/Graph_%28mathematics%29
https://github.com/warriorkitty/orientlens
http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/1m/
http://orientdb.com/download/
http://orientdb.com/docs/2.0/orientdb-etl.wiki/Introduction.html
https://en.wikipedia.org/wiki/JSON
http://orientdb.com/docs/2.1/Tutorial-Java.html
http://warriorkitty.com/site/importing-movielens-into-orientdb-graph-database/

Graph Databases and OrientDB

 11

Step 1(c): Import Data Using .NET API
During the working on OrientDB we found many examples implemented in Java that’s why we planned
to implement it in .Net to learn more about the official release of OrientDB .Net Driver14.
The development is really interesting for .Net developers by using LINQ expression easily perform

CRUD operations on database. Full source code can be downloaded from here.

Limitations .Net API:

We test the .Net script on Core i7-6500U CPU 2.5GHZ, 8GB RAM Window 10. Performance issue was
found while creating the 1M relations (edges) from users to movies which takes around ~20mins to
load only 1M records. Luckily, OrientDB now have feature of MassiveInsert15 available in Java API and
OrientDB console.

Step 2: Import Data in SQL SERVER 2012
To compare the OrientDB queries with RDBMS. We created script of BULK INSERT, which can be
downloaded from here.

Relational Logical Model of MovieLens
Following figure represents MovieLens RDBMS model in SQL Server 2012.

14 .NET driver for OrientDB; Official Driver https://github.com/orientechnologies/OrientDB-NET.binary
15 OrientDB Massive Insert Intent [online] http://orientdb.com/docs/2.1/Console-Command-Declare-
Intent.html

https://github.com/mkhalid12/OrientDB-MovieLens-Dataset-import-.Net
https://github.com/mkhalid12/OrientDB-MovieLens-Dataset-import-.Net
https://github.com/orientechnologies/OrientDB-NET.binary
http://orientdb.com/docs/2.1/Console-Command-Declare-Intent.html
http://orientdb.com/docs/2.1/Console-Command-Declare-Intent.html

Graph Databases and OrientDB

 12

Step 3: Query Graph Data Model:
To run the query you have to first start the OrientDB Server and launch OrientDB Studio in web

browser using the following address http://localhost:2480/. Select Database MovieRaings and Open

the Browser tabs to write queries.

Figure 6: OrientDB studio

SQL

OrientDB’s query language is built on SQL and is augmented with a few extensions to manipulate trees

and graphs. Considering most developers are familiar with SQL, working with OrientDB is just easier

and enhanced it with operators for graph manipulations. The Graph manipulation syntax derived from

JDO/JPA standard16 .

OrientDB SQL supports these constructions:
WHERE conditions, SELECT projections, TRAVERSE to cross records by relationships, INSERT, UPDATE,

DELETE, Create Vertex/Edge to work with graphs, GRANT, REVOKE, Create class/property, Alter

class/property, Create index, Rebuild index, Create link, Alter cluster and next

Gremlin console also available in OrientDB to query using Gremlin.

Building Queries
Let’s start with basic syntax to write SQL query in OrientDB. We found in most of the scenario OrientDB

SQL and SQL server query syntax almost same.

16 JAVA Data Objects https://db.apache.org/jdo/jdo_v_jpa.html

http://localhost:2480/
https://db.apache.org/jdo/jdo_v_jpa.html

Graph Databases and OrientDB

 13

1- Select user with id=1?

Select * from users where id=1

Select * from users where userID=1

2- How many movies (vertex) available in MovieLens Dataset?

Select count(*) from Movies

Select count(*) from Movies

3- No More Joins in OrientDB
Movie Toy Story belongs to which Genera’s?

Select expand (outE('hasGenera').in.description)
from movies
where id=1

Select Title
from movies_genres mg join genres g
on mg.GenresID= g.GenresID
where MovieID=1

4- Power of Group by
What is the distribution of occupations amongst the user population?

Select description, count(*)
from
 (Select expand(out('hasOccupation'))
 from Users)
Group by description
Order by description

Select Title, count(userID) as C from users u join
occupation occ
on u.OccupattionID=occ.OccupattionID
group by Title
order by Title

Graph Databases and OrientDB

 14

5- Which user give maximum rating to movies?

select id, outE('rated').size() as C
from users
order by C desc
limit 1

Description: user id 4196 gave rating to 2314 movies.

Select top 1 userID, COUNT(movieID) [count]
from ratings
Group by userID
order by [count] desc

6-
Users gave 3 stars to Toy Story (1995) and same users gave 3 stars to which other movies?

Select expand(inE('rated')[rating = 3]
 .outV().OutE('rated')[rating=3]
 .inV().title)
from #13:0

Description: Notice that this list has many duplicates.
This is due to the fact that users who like Toy Story
also like many of the same other movies.

Select Title from movies m join (
 Select r.movieID from ratings r join
 (Select userID from ratings where Rating=3
 and movieID=1) TSRating
 on r.userID=TSRating.userID
 where r.Rating=3) r1
on m.MovieID=r1.movieID

Graph Databases and OrientDB

 15

7-
Among the users similar to the user id =1 (#16:0), which film has received more 5 stars and is still not present in
the films rated by 16:0

Select title, count(*) as cont
from (select expand(rid.outE('rated')[rating = 5].in)
 from (select @rid as rid, id as id, count(*) as cont
 from (select expand(outE('rated')[rating=5]
 .in.inE('rated')[rating=5].out) from #16:0)
 where @rid <> #16:0 group by rid, id
 order by id))
 where title not in (select out('rated').title from #16:0)
 group by title
 order by cont desc

Select m.Title, COUNT(*) c from movies m join (
 Select r4.movieID, r4.userID from ratings r4 join (
 Select userID, count(*) cont from (
 Select r1.ID, r1.userID, r1.movieID, r1.Rating
 from ratings r1 join
 (Select userID,movieID from ratings
 where userID=1 and Rating=5)r2
 on r1.movieID=r2.movieID
 where r1.Rating=5)r3
 where r3.userID !=1
 group by r3.userID) r5
 on r4.userID=r5.userID
 where Rating=5) r6
on m.MovieID=r6.movieID
where m.MovieID NOT IN
 (SELECT movieID from ratings where userID=1)
group by Title
order by c desc

8-
Recommendation by Genre: Find the top 5 genre interest of user (#16:0) and recommend more movies to like
of that genre which is not yet rated

Select description, count(*)
from (select expand(in.out('hasGenera'))
 from (select expand(outE()) from #16:0)
 where rating > 3)
group by description order by count desc
limit 5

Select top 5 g.Title, count(*) c from genres g join
 (Select mg.MovieID, GenresID
 from movies_genres mg join
 (select movieID from ratings where userID=1
 and Rating>3)m
 on mg.MovieID=m.movieID) mg2
 on g.GenresID=mg2.GenresID
 group by Title
 order by c desc

Graph Databases and OrientDB

 16

9- Suggest top 5 movies rated with 5 stars to the user’s most favorite genres

Select title, count(*)
 from (
 select expand(rid.in().inE('rated')[rating = 5].in)
 from (select @rid, description, count(*)
 from (select expand(in.out('hasGenera'))
 from (select expand(outE())
 from #16:0)
 where rating > 3)
 group by @rid, description
 order by count desc limit 5))
 where title not in
 (select out('rated').title from #16:0)
group by title
order by count desc
Limit 5

Select Title, c as RatedUserCount
from movies m1 join (
 Select top 5 r1.movieID, count(*) c
 from ratings r1 join
 (Select MovieID from movies_genres
 where GenresID IN
 (Select GenresID from
 (Select top 5 g.GenresID, count(*) c
 from genres g join
 (Select mg.MovieID, GenresID from
 movies_genres mg join (
 select movieID from ratings
 where userID=1 and Rating>3)m
 on mg.MovieID=m.movieID) mg2
 on g.GenresID=mg2.GenresID
 group by g.GenresID
 order by c desc) MostLikes))r2
 on r1.movieID=r2.MovieID
 where r1.Rating=5 and r1.movieID Not in
 (select movieID from ratings where userID=1)
 group by r1.movieID
 order by c desc) m2
on m1.MovieID=m2.movieID
order by c desc

Graph Databases and OrientDB

 17

Code Sample
using Orient.Client;

namespace Import_DataSet {

 class Program {

 static void Main(string[] args){

 Try {
 // create Database connection
 OrientDBDriver.CreateDatabase();

 OrientDBDriver.CreatePool();

 ODatabase oDB = new ODatabase(OrientDBDriver.DatabaseAlias);

 // Create Vertex and Edges and Load movielens dataset file

 oDB.Create.Class<Occupations>()

 .Extends<OVertex>()

 .CreateProperties<Occupations>()

 .Run();

 List<Occupations> _lisOccupations = LoadOccupations();

 foreach (Occupations occ in _lisOccupations) {
 oDB.Create.Vertex<Occupations>(occ).Run();

 }

 List<Users> _listUsers = LoadUsers(); // loading user.dat

 oDB.Create.Class<Users>().Extends<OVertex>()

 .CreateProperties().Run();

 oDB.Create.Class("hasOccupation").Extends<OEdge>().Run();

 foreach (Users user in _listUsers) {
 ODocument odoc = oDB.Create.Vertex("Users")
 .Set("userID", user.userID)
 .Set("Gender", user.gender)
 .Set("Age", user.age)
 .Set("ZipCode", user.ZipCode)
 .Run();

 string generateSQL = new OSqlSelect().Select()
.From("Occupations")
.Where("OccupationID")
.Equals(user.Occupation

ID)

.Limit(1).ToString();

 List<ODocument> result = oDB.Query(generateSQL);
 if (result.Count > 0) {
 OEdge edge = oDB.Create.Edge("hasOccupation")

.From(odoc.ORID)

.To(result[0].ORID)

.Run();

 }

 }

Graph Databases and OrientDB

 18

Performance Tuning

Many aspects can be considered to get better performance. Let’s start with general introduction to

some basic concepts about how OrientDB uses the memory and how it manages the I/O.

Caching:
OrientDB uses two caches L1 (thread level) and L2 at JVM Level. If you are in a multi-

threaded scenario and tries to perform many writes; you may disable the L1 cache. Or, again

if you are in a multi-JVM scenario, you may consider disabling the level 2 cache also.17

Connection:
Local connection is much faster than remote. Use “plocal” based on the storage used on

database creation.

Query and DB Structure Tips:18
 Avoid putting properties on edges.

 It's much lighter to set properties in block than one by one

 It's even faster if you set properties directly on creation of vertices and edges

 For bulk operation in JAVA API or Console use MassiveInsert

 Use indexes to lookup vertices by an ID

 Disable validation

17 Claudio Tesoriero (2013), Getting Started with OrientDB Chapter 4: Performance Tuning
18 OrientDB Documentation Performance Tuning [online], last visited 30.12.2015
http://orientdb.com/docs/2.1/Performance-Tuning.html

http://orientdb.com/docs/2.1/Performance-Tuning.html

Graph Databases and OrientDB

 19

Installing OrientDB:
OrientDB is available in community and enterprise edition. Community addition is released as open

source under Apache 2.0 licence.

OrientDB in written in Java, so you can run it on any platform, it requires version 1.6 or higher. It comes

with server, console and Gremlin and also OrientDB Studio. 3-Steps installation required for all

operating systems. 19

For Windows
1- Download .zip file for windows and extract.

2- Go to bin directory and run server.bat.

3- Now you can start the Console.bat to run queries in console or go to http://localhost:2480/

for OrientDB studio.

For Mac
1- Download .zip file for windows and extract.

2- Go to bin directory and run server.sh.

3- Now you can start the Console.bat to run queries in console or go to http://localhost:2480/

for OrientDB studio.

For Linux and any other *NIX system
For Linux and Unix distributions that rely on init, copy the edited system daemon file to the

/etc/init.d/. To make the console accessible, copy the console script file to the system binary directory

/usr/bin

$ cp $ORIENTDB_HOME/bin/orientdb.sh /etc/init.d/orientdb

$ cp $ORIENTDB_HOME/bin/console.sh /usr/bin/orientdb

Doing this makes the script accessible to the service command. You can now start the database server

using the following command:

$ service orientdb start

Once the database starts, it is accessible through the console script.

19 OrientDB Manual Installation, [online] last visited 30.12.2015 http://orientdb.com/docs/2.1/Tutorial-
Installation.html

http://localhost:2480/
http://localhost:2480/
http://orientdb.com/docs/2.1/Tutorial-Installation.html
http://orientdb.com/docs/2.1/Tutorial-Installation.html

Graph Databases and OrientDB

 20

Conclusion
In conclusion we would like to share our feedback of OrientDB not only Graph Database but also

Multimodal NoSQL Database. If we individually take each of this feature, we won’t get excited, as most

of the products in the DB market implement a few of them, but being able to meld down all of them

together OrientDB is simply something that no developer has ever seen before; in his brief history, it

has gained so much attention that almost everyone in the NoSQL ecosystem is looking at this new

competitor with a curious eye.

OrientDB won’t be Swiss-army knife, is not going to be the one-size-fits-all tool you always needed

and never found before: it is a new way to think about data in our times, a way that has its own

boundaries and scopes.

On top of this, OrientDB is not only a NoSQL database: it’s a mixture of RDBMS, NoSQL databases and

eventually a graph DB; what makes this product so interesting is that it melds together 3 worlds as it

never happened before. OrientDB focuses on performances and it has been built to extremely

optimize data retrieval operations.

While working with OrientDB, we found its worth to know about new technology definitely in future

projects OrientDB as a Graph database will be our first preference for development of NoSQL database

application.

It was really very exciting and tremendous experience in exploring OreintDB technologies and the

NoSQL technologies especially with focus on Graph Databases.

