
12/23/2015

 Master in Information Technology for

Business Intelligence

Subject: Advanced Databases

Project Name:

Students:

 Andres Vivanco Villamar

 William Espinoza

(NEO4J)-[:IS A]->(GRAPH DATABASE)

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Table de Contents
1) Abstract ... 2

2) Background ... 3

2.1) Origin of Graphs ... 3

2.2) What is a Graph? ... 4

3) Graph Database .. 4

3.1) The Property Graph Model .. 4

3.2) Graph Database ... 5

3.3) Graph Compute Engine .. 7

3.4) Graph Database Vs Relational Database ... 8

4) Neo4J... 10

4.1) Neo4J Features .. 10

4.2) The Cypher Query Languages (CQL) .. 11

4.3) Performance in NEO4J ... 19

4.4) Indexing and constraints for faster search .. 20

4.5) Neo4j Editions .. 20

4.6) Installation of Neo4j and two ways to use it. .. 21

5) Building a Graph Database Application .. 25

5.1) Selection of the topic: Electoral Roll and Friend’s Relationship .. 25

5.2) Conceptual Model.. 26

5.3) Relational Model .. 27

5.3) Graph Model .. 28

5.4) Populating of the Databases .. 29

5.5) Comparative Queries (Neo4j vs SQL Server 2016) .. 31

5.6) Analysis of Results (Neo4j vs SQL Server 2016) ... 39

6) Conclusion ... 41

(NEO4J)-[:IS A]->(GRAPH DATABASE)

1) Abstract

With the needs to manage large and sparse datasets, with many kinds of relationships

between them, new kinds of Database have been developed to supply it with a performance and

capability better than the traditional databases technologies and queries languages.

Many of these new Kinds of Databases using graph structures like the main engine to

allow to user to insert, update, query, delete and apply analysis techniques based in graphs in

the networks of graphs.

In this report we will look at from the origin of graphs, features of a graph database,

passing for a technical comparison between Traditional Database and Graph Databases, a review

of a graph database management system, and in the end the results of creating a Graph Database

application to analysis advantages, disadvantages and a personal conclusion of this kind of

technology using the most leading Graph Database named NEO4J.

Our topic selected to implement in a graph database is about “Electoral Roll” with a

“Friend relationship information of the citizens”. This project is focusing in to test out by

ourselves the best features of a graph database vs a classical relational database like SQL Server.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

2) Background

2.1) Origin of Graphs

In the 18th Century, the mathematician Leonhard Euler (1707-1783) could solve

one of the most interesting problems in that time named “The Königsberg Bridge

Problem”.

1

Picture 1. Königsberg City

 Konigsberg is a town on the Preger

River, (before it was part of German,

but now it is part of Russia).

The city has two river islands (C,D) with

seven bridges connected to two bank

areas (A,B) (left Picture1).

The problem was over the river Preger

can all be traversed in a single trip

without doubling back, also it needs

ends in the same place it start.

2

Picture 2. Königsberg in Graph

 The problem is similar to asking if

the multigraph on four nodes and

seven edges (left Picture2) has an

Eulerian cycle. This problem was solved

in the negative by Leonhard Euler

(1736), and represented the beginning

of graph theory.

Although, Leonard Euler resolved the

problem, the most important was the

mathematical basis that he created to

solve it.

1 The Königsberg Bridge Problem, Königsberg City, NRICH math. Retrieved from https://nrich.maths.org/2484
2 The Königsberg Bridge Problem, Königsberg in graph, NRICH math. Retrieved from https://nrich.maths.org/2484

https://nrich.maths.org/2484
https://nrich.maths.org/2484

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Neo

4J
Graph

DB

NO

SQL

CQ

L

2.2) What is a Graph?

In a mathematical world a graph is a

collection of vertices and edges, from the Computer

Science and Database perspective a graph is a set of

nodes and relationships that connect them. Entities

are represented by nodes and the way how these

nodes relate to the worlds are relationships. This

concept allows to model many kind of scenarios,

such as Social Network (friends of friends),

Connections between places, etc.

3) Graph Database

3.1) The Property Graph Model

 The property Graph Model looks similar to

the Object Model or an Entity Relationship

diagram. The property graph3 has entities (nodes)

connected between them, it could have some

attributes (key-value-pairs). For expressing roles

is useful labels tagged to the Nodes. In the same

context, for attaching metadata, or indexing, or

establishing constraint information could be using

Labels too.

 The Relationships (edges) represent the

name and direction between two nodes (entities).

A relationship need to have a direction, type of

relationship, and start and end nodes. Also

Relationships could have some properties. In a

graph database the storing of relationships is stored efficiently, hence many relationships

between nodes not will affect the performance.

3 The Property Graph Model, NEO4. Retrieved from http://neo4j.com/developer/graph-database/

http://neo4j.com/developer/graph-database/

(NEO4J)-[:IS A]->(GRAPH DATABASE)

3.2) Graph Database

A Graph Database describes a model of Graph which has the methods: create,

read, update and delete (CRUD) as part of the operation support. A Graph Database is an

online platform and real time in nature, generally using it in transactional systems (OLTP).

A Graph Database model shows data in a fashion way comparing with others

NoSQL models or type of Databases. The Graph Network is represented in the form of

tree-structures or graphs that have entities (nodes) what are connected between them

with and relationships (edges). This way of representation of the information allow to do

operations easier to perform like for example data mining, cascade queries, short path

between nodes, etc.

 There are two important properties in a graph database:

 The Underlying storage

 The Processing engine

The Underlying storage

Exist Graph Database technologies that using native graph storage, which is

optimized for managing and storing graphs. However, there are graph databases that

storing graph data in a relational database, or in an object-oriented database or another

kind of databases.

The processing engine

Generally, a graph database should use index-free adjacency, it is means that each

node is connected physically to each other in the database. Some databases from User’s

perspective seems graph databases, because it exposes a graph data model through

CRUD operations. However, from a technical view the importance of index-free-adjacency

is a native graph processing is synonym of performance advantage.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

There are two tradeoffs in the IT market about Graph Database, one is focused in native

graph storage, the second is focused in native graph processing. Both of them have

advantages and disadvantages. For instance, (see tables below)

Property of Graph DB Benefit

Native graph storage Performance and Scalability

Nonnative graph storage Possibility to use with a Well Known

mature non graph backend (Ex, SQL

server , MySQL)

Table 3.1.1 Benefit Native graph storage

Property of Graph DB Benefit

Native graph processing Traversal performance

Nonnative graph processing Easy to make queries with intensive

use of memory

Table 3.1.2 Benefit Native graph processing

The next picture 3.24 represents an overview of some graph databases on the market

based in the storage and processing models

Picture 3.2 An overview of Graph Databases

4 Ian Robinson, Jim Webber & Emil Eifrem (2015) – 2nd Edition. Graph Databases. p. 6. O’ Reilly Media Inc., C.A. USA

(NEO4J)-[:IS A]->(GRAPH DATABASE)

3.3) Graph Compute Engine

A graph compute engine is a technology for running graph computational algorithms in a

big dataset. Graph Compute engines are designed mainly to recognize cluster in the data, or

to know the numbers of relationships (edges), doing a special emphasis in queries like how

many friends do you have, or how many friends or friends in different grades of deep. This is

the main reason that Graph Databases are very useful to manage social networks. The next

picture 3.3.1 is a Graph using neo4j, with the relationship “Follows” of the twitter account of

the student Andres Vivanco limited to one hundred nodes.

Picture 3.3.1 Graph Network of “Follows” relationship of the

twitter account of Andres Vivanco.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Global queries in graph compute engines are optimized for scanning and

processing large connections of nodes in batches, very similar to another batch analysis

technology such as datamining or OLAP. Some graph compute engines5 (see picture 3.3.2)

include a system of record (SOR) database with OLTP properties. Also a layer for

processing data with is requested for an external application to respond the query with

the results. A high-level overview of a graph computation engine setup

Picture 3.3.2. A high-level overview of a graph computation engine setup

3.4) Graph Database Vs Relational Database

From the 80s, Relational Databases have been the most useful databases of the software

applications. A relational database stores structured data in tables with certain types of columns

and a lot rows of the same type of information.

For references one table with another tables are necessary to set primary key attributes

and foreign keys, to kept the referential integrity is necessary to do constraints. The cost for doing

join queries is exponential.

This costly join operation with join tables, are usually focusing by denormalization of the

data to decrease the numbers of joins necessary.

Relationships are the strongest point of the graph database comparing with another

database management system, because each node in a graph database contains directly and

physically a list of relationships-records, which represents the relationship with another node.

5 Sonal Raj (2015). Neo4j High Performance. p.16. Pack Publishing Ltd. Birmingham, UK.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

In other words, the Join operation in a Relational Databases is replaced in a graph

database by itself, because the graph database just uses the list of relationships of each node in

a direct way deleting the need for an expensive search or math computation.

This highlight of pre-materializing relationships, enable to the graph database do join

queries with large amount of data from minutes (with relational database) to seconds (with graph

database).

In theory, a graph database should be much faster than a relational database in graph

traversal. To illustrate it, in a social network, the search friends of friends, while more deeply is

the search of friends of friends the time execution of a graph database is better that relational

database.

The above table 3.4 Time execution MySQL vs Neo4j 6 is the result of an experiment did

for Aleksa Vukotic and Nicki Watt, authors of the book Neo4J in Action. This experiment consisted

of in a social network, finding all the friends of a user’s friend in different grades of depth. They

ran queries in MySQL and NEO4J with a database of one millions of users. For it was used a 7–

powered commodity laptop with 8 GB of RAM

Depth Execution Time* –
 MySQL

Execution Time *–
Neo4j

2 0.016 0.010

3 30.267 0.168

4 1,543.505 1.359

5 Not Finished in 1 Hour 2.132

Table 3.4. Time execution MySQL vs Neo4j

*Execution time is in seconds, for 1000 users

Meanwhile in depth 2 and 3 the results are not very surprising, the results of query 4

and 5 are really dramatic with a significant degradation of performance, especially in the depth

5 when MySQL was choked. The reason of it, is that to find friends of friend in a depth 5, the

engine of MySQL need to calculate the Cartesian product of the table user_friend five times, for

example a table with 50,000 records, the result will be 50,0005 rows, which is too much time

for computing it, also it is necessary to discard more than 99% to return 1,000 records that we

request.

6 Aleksa Vukotic and Nicki Watt (2015). Neo4j in Action. Chapter 1. Manning Publications, USA.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

4) Neo4J

4.1) Neo4J Features

Neo4J is the most leading graph database management system, it is implemented in Java

and Scala. The source code is available in GitHub7. Successful cases of using Neo4j, including

different type of industries such as matchmaking, analytic and scientific research, routing,

network management, project management, and especially social networks. Etc.

The main feature is that neo4j not depend heavily on index because it supplies a natural

adjacency by the graph. Neo4j using this locality to move through the graph. These operations

could be kept with an excellent efficiency, crossing millions of nodes per second.

Graph Databases, specially Neo4j, don’t depend heavily on indexes because it is supply

Some highlights of Neo4J are:

 ACID transaction compliance

 Materializing of relationships at creation time.

 Constant time for crossing of relationships.

 Developed on top of the Java Virtual Machine

 Memory caching for graphs and compact storage.

 Capability to manage billions of entities in a moderate computer.

 Easy data modeling

 It uses a visualization framework for the representation of data and query results

 Compatible bindings for Python, Java, Ruby and others.

 Disk based storage manager optimized

 It is highly scalable.

 It has a powerful traversal framework for better performance

 It is completely transactional in nature.

 Supporting features as JTA, 2PC, XQ, Transaction Recovery, Deadlock detection

 Neo4J can traverse graph depths of more than 1000 levels in a few seconds

 Neo4j uses Cypher Query Languages

 Easy to write queries about relationships with many types of deep.

7 Neo4j Source code: https://github.com/neo4j/neo4j

(NEO4J)-[:IS A]->(GRAPH DATABASE)

4.2) The Cypher Query Languages (CQL)

The Cypher Query Languages is a ‘declarative’ language, in another words it means that a

user does not need to indicate how to go to a node, just the user needs to ask which is the

node to study.

CRUD operations in NEO4J (Create, read, update, delete)

Neo4j stores entities (i.e. Person, City) in nodes, theses nodes are connected to each other

by relationships (edges) (i.e. Person “is friend of” Person, or City “is part of” State). Nodes

and relationships could be defined with properties or metadata with key-value pairs.

The next are the commands to each CRUD operation.

Create

 Creating a node Person with three properties

 name:'Andres'

 lastName: 'Vivanco'

 title: 'Developer'

Code:

CREATE (n:Person {name :'Andres', lastName: 'Vivanco',

 title: 'Developer'}) RETURN n

Result in Console:

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Creating a node Person with three properties

 name:'William'

 lastName: 'Esponiza'

 title: 'Engineer'

Code:

CREATE (n:Person {name :'William', lastName: 'Espinoza',

 title: 'Engineer'})

RETURN N

Creating a relationship named ‘knows’

Code:

MATCH (a:Person),(b:Person)

WHERE a.name ='Andres' AND b.name ='William'

CREATE (a) –[r:Knows]->(b)

RETURN r

Result in Console:

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Read

Read the node named ‘William’ and return the title.

Code:

MATCH (n:Person)

WHERE n.name = 'William' RETURN n.title

Result in console:

Update

Update the node named ‘Andres’ with the next:

 title: 'Manager'

Code:

MATCH (n { name: 'Andres' })

SET n.title = 'Manager' RETURN n

Result in console:

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Delete

 Delete the node (Andres) with all its relationships

Code:

MATCH (n { name: 'Andres' })

DETACH DELETE n

Result in console:

Outstanding operations, queries and functions in Neo4j.

There are some operations, queries and functions that could be used in Neo4j for

doing analysis optimized or loading data in the graph database properly.

A continuation the most relevant:

 Importing CSV files with Cypher

CSV files with nodes and relationships could be store on the graph database

indicating the Path in the computer or a URL, Neo4j support load csv via https, http, and

ftp.

For loading nodes, the code is the next:

LOAD CSV WITH HEADERS FROM
'http://neo4j.com/docs/2.3.1/csv/artists-with-headers.csv' AS
line CREATE (:Artist { name: line.Name, year: toInt(line.Year)})

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Result in console:

IMPORTANT for Importing large amounts of data is necessary to write previously

“USING PERIODIC COMMIT “, it will optimize the loading and doing commit each 1000

rows per default. The numbers of rows could be set, for example do commit after each

500 rows, the command is in this form: USING PERIODIC COMMIT 500.

For loading nodes using periodic commit the code is the next:

USING PERIODIC COMMMIT 500

LOAD CSV WITH HEADERS FROM
'http://neo4j.com/docs/2.3.1/csv/artists.csv' AS line

CREATE (:Artist { name: line.Name, year: toInt(line.Year)})

Result in console:

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Find related neighbors

This code allows to find “neighbors” of a node, in this case we given the NationalID

of a node of Person.

Code:

MATCH (n:Person { NationalID: '100697455' })-[:KNOWS]-
(neighbors) RETURN n, neighbors

Result in console:

\

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Variable length paths

This code allows to find “neighbors” of a node, in different grades of depth for

example we can define friends of friends (depth 2), friends of friends of friends (Depth 3),

etc. For do this we need to set the level in the next way, we will find friends with the

relationship “Knows”:

Depth Code Explanation

2 [:KNOWS*1..2] Friends of friends

3 [:KNOWS*1..3] Friends of friends of friends

* [:KNOWS*] Infinite friends of friends, depends

how many friends of friends of

friends…. Exists!

Code:

MATCH (n:Person { NationalID: '100697455' })-[:KNOWS*1..3]]-
>(friend_of_friend) RETURN DISTINCT
friend_of_friend.FirstName,

friend_of_friend.LastName

ORDER BY friend_of_friend.FirstName ,
friend_of_friend.LastName

Result in console:

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Shortest path

This code shows the shortest path, between two nodes, in another words, the

shortest path with the less relationships needs, the way needs to start in one node and

finish with the another one.

Code:

MATCH p=shortestPath(a:Person {NationalID: '111480057'})-[*]-
(b:Person {NationalID: '111480065'})
)
RETURN p

Result in console:

(NEO4J)-[:IS A]->(GRAPH DATABASE)

4.3) Performance in NEO4J

These are some tips for Tune Neo4j for maximum performance:

 Ascertain if Neo4J Java process has enough memory. If the JVM heap

resident needs more memory, then the OS will swap it out to storage.

When occurs a garbage collection, it will be swapped out, and this

swap-trashing effect has a negative impact on the performance of

Neo4j. In steady-state, a well-tuned Neo4j database does not need to

have any swap activity.

 Ascertain if the Java Virtual Machine has enough memory, the next

values are recommended. Open the JVM with –server flag and -

Xmx<good sized heap>, for example in good sized heap try with the

maximum memory possible, one best one is Xmx4g for 4GB

(considering that currently a new laptop has 8GB or 12 GB of memory),
Sometimes a too large heap could be affect the performance, so try

by yourself the best heap sizes in your case.

 Ascertain that neo4j is using a concurrent garbage collector, one of the

best values is: -XX:+UseG1GC.

 Ascertain that file caching memory is enough to fit the entire store, set

in neo4j.properties the values of dbms.pagecache.memory, it value

could be based in the next formula:

o dbms.pagecache.memory = ((totalnodes * 15)+

(totalrelationships * 34) + (number of properties *64))

 Ascertain if the size of the JVM heap is correct for your database

application, it could be set in the file: conf/neo4j-wrapper.conf . The

attribute wrapper.java.maxmemory could be set with the next values

of the picture 4.38 Guide Lines for Heap Size, recommended by Neo

Technology

Picture 4.3 Guide Lines for Heap Size.

8 Guide Lines for Heap Size. http://neo4j.com/docs/stable/performance-guide.html

http://neo4j.com/docs/stable/performance-guide.html

(NEO4J)-[:IS A]->(GRAPH DATABASE)

4.4) Indexing and constraints for faster search

Queries in Neo4j could be optimized if the data is indexed, and also applying some

constraints. With this trick we will avoid redundant matches and does directly to the desired

index location.

For applying index on a label the code is the next:

 CREATE INDEX ON: Person(NationalID)

On the another hand, to create constraints for example unique values is with the next code:

 CREATE CONTRASTRAINT ON n:Person

ASSERT n.NationalID is UNIQUE

Managing Index and constraints will be more efficient the queries, especially search

large amount of data.

4.5) Neo4j Editions

Neo4j has 2 types of licenses:

 Community Edition. It is free and open source, is a high performance

with whole features described in the chapter 4.1.

 Enterprise Edition. Include all features of chapter 4.1 and also include

scalable clustering, fail-over, high-availability, cache sharding, live

backups, and comprehensive monitoring.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

4.6) Installation of Neo4j and two ways to use it.

For our experiment we used Neo4j Community Edition v.2.39:

1.) Download the last version available of Neo4j from http://neo4j.com/download/

2.) Open the Installer and select the folder where it will be installed

9 Neo4j Community Edition v.2.3 http://neo4j.com/download/

http://neo4j.com/download/
http://neo4j.com/download/

(NEO4J)-[:IS A]->(GRAPH DATABASE)

3.) Accept the agreement, and next, next

4.) Wait until it finishes to install all components

5.) Click in Finish and open Neo4j

(NEO4J)-[:IS A]->(GRAPH DATABASE)

6.) When you open neo4j, please select in the bottom “choose”, the folder when you

want to work. Each different folder, is like a different database

7.) Do click in Start , now is running

For working in neo4j, there are two ways one is in the browser, the another one is in shell

console:

1.) For using in a browser, do click in the link in the green box or open in a browser with

the next url: http://localhost:7474/browser/ . For writing queries is in the red circle

http://localhost:7474/browser/

(NEO4J)-[:IS A]->(GRAPH DATABASE)

2.) For using from a shell console, to do click in the bottom Options, after do click in

bottom Command Prompt , in the shell write “Neo4jShell” and Enter.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

5) Building a Graph Database Application

5.1) Selection of the topic: Electoral Roll and Friend’s Relationship
The Database application selected to work with Neo4J is about “Electoral Roll” adding by

ourselves manually information of friend’s relationship between citizens to evaluate main

features of graph databases and comparing with a classic relational database like SQL Server

2016.

The input data downloaded is public information of Costa Rica10 about Electoral Roll of

2015.

The present information was downloaded of the website of the Supreme Electoral

Tribunal of Costa Rica (or in Spanish Tribunal Supremo de Elecciones de la Republica de Costa

Rica) contains:

 Citizens (People in our model): 3.198.597,00

 Polling Places (Number of Districts): 2.123,00

 Cities: 124,00

 Provinces: 8,00

 Relationship (People VOTING ON districts) 3.198.597,00

10 Electoral Roll of Costa Rica (2015) http://www.tse.go.cr/descarga_padron.htm

http://www.tse.go.cr/descarga_padron.htm

(NEO4J)-[:IS A]->(GRAPH DATABASE)

It’s important to considerer that in the data downloaded also exist information about

citizens who voting in different embassies of Costa Rica around the world, and the

information about the place where they voting is:

Tables or nodes of Places For people living abroad

District City of the Embassy

City Country of the Embassy

Province Static value ‘CONSULADO’

Like we said previously, we also created “invented” data about “Friend’s relationship”

with the name “Knows” to simulate that one person “Knows” to another person. The

numbers of this relationships are:

 Relationships (‘Knows’): 3.764.822,00

5.2) Conceptual Model
The next picture 5.2.1 is the Conceptual Model of our Database Application

 Picture 5.2.1 Conceptual Model

Person VOTING

ON

District

(Polling Place)

KNOWS

City Province

IS

IN

IS

PART OF

(NEO4J)-[:IS A]->(GRAPH DATABASE)

5.3) Relational Model

The next picture 5.2.2 is the Relational Model of our Database Application

Picture 5.2.2 Relational Model

(NEO4J)-[:IS A]->(GRAPH DATABASE)

5.3) Graph Model

The next picture 5.2.3 is a graph which represents the nodes and how these are connected I

our graph database in neo4j

.

Picture 5.2.3 Graph Model

Person

District

(Polling Place)

City Province

KNOWS

IS IN

IS PART OF

(NEO4J)-[:IS A]->(GRAPH DATABASE)

5.4) Populating of the Databases

For loading data in the database, we use some tools depending the technology. Also

previously we changed the headers of the files with names more readable.

Loading data in SQL Server 2016

For loading data in SQL server, we used the tool of the SQL Server “Import and

Export Data” which is included in the SQL Server 2016.

Picture 5.4.1 Tool for Import in SQL Server

(NEO4J)-[:IS A]->(GRAPH DATABASE)

Loading data in NEO4J

For loading data in NEO4J, we used the tool showed in the chapter 4.2, in the sub charter:

Importing CSV files with Cypher.

Example code to upload a csv with headers with data of People:

USING PERIODIC COMMIT
LOAD CSV WITH HEADERS FROM "file:/Neo4J/ELECTORAL_ROLL.csv" AS row
CREATE (n:Person)
SET n = row

IMPORTANT, for an optimized work we considered these important points.

 For importing we used always “USING PERIODIC COMMIT “.

 We split files greater than 3 million of rows or more, in files of 1.5

million maximum in one load.

 Always create index with the nodes and properties more usables.

Example the index for person for search by National ID is:
CREATE INDEX ON :People(NationalID)

Picture 5.4.2 Tool for Import in Neo4J

file://///Neo4J/PADRON_100.csv

(NEO4J)-[:IS A]->(GRAPH DATABASE)

5.5) Comparative Queries (Neo4j vs SQL Server 2016)
We will run X number of queries to compare the performance. It is will be running in Cypher Query

Language and Structure Query Language for comparing the expressivity of both technologies.

1) Search the country and the city where a Citizen of Costa Rica, living abroad could vote. The

name of the citizen is “Esteban Zimanyi”:

MATCH (p:Person)-[:VOTING_ON]->(District)-
[IS_IN]->(City)-[PART_OF]->(Province)
WHERE p.LastName = 'ZIMANYI' AND p.FirstName
= 'ESTEBAN'
RETURN City.city_name as Country ,
District.district_name as EmbassyCity

SELECT c.city as Country, d.district as
EmbassyCity
FROM District d, Person p , City c, Province pr
WHERE d.district_id = p.PollingPlaceId and
 d.city_id = c.city_id and
c.province_id = pr.province_id
 and p.LastName = 'ZIMANYI' AND
P.FirstName = 'ESTEBAN'

1.1 In the same way of this query, showing graphically the connections of the graph

MATCH (p:Person)-[*]->(Province)
WHERE p.LastName = 'ZIMANYI' AND p.FirstName =
'ESTEBAN'
RETURN *

It is Not Possible to do it in Sql Server

(NEO4J)-[:IS A]->(GRAPH DATABASE)

2) Count the number of citizens (People) who voting in each district (Polling Place):

MATCH (Person)-[:VOTING_ON]->(District)
RETURN District.district_name as
PollingPlace, count(*) as NumberofPeople
order by District.district_name

SELECT d.district as 'PollingPlace', count(*) as
'Number of People'
FROM District d, Person p
WHERE d.district_id = p.PollingPlaceId
GROUP BY d.district order by PollingPlace

3) Count the number of citizens (People) who voting in each City:

MATCH (Person)-[:VOTING_ON]->(District)-
[IS_IN]->(City)
RETURN City.city_name as City, count(*) as
Voters order by City.city_name

SELECT c.city as 'City', count(*) as 'Voters'
FROM District d, Person p , City c
WHERE d.district_id = p.PollingPlaceId and
 d.city_id = c.city_id
GROUP BY c.city order by City

(NEO4J)-[:IS A]->(GRAPH DATABASE)

4) Count the number of citizens (People) who voting in the province of “Cartago”

MATCH (Person)-[:VOTING_ON]->(District)-
[IS_IN]->(City)-[PART_OF]-
>(Province{province_name: 'CARTAGO'})
RETURN Province.province_name as Province,
count(*) as Voters order by
Province.province_name

SELECT pr.province_name as 'Province', count(*) as
'Voters'
FROM District d, Person p , City c, Province pr
WHERE d.district_id = p.PollingPlaceId and
 d.city_id = c.city_id and
c.province_id = pr.province_id
 and pr.province_name = 'CARTAGO'
GROUP BY pr.province_name order by
pr.province_name

5) Considering that in the data, exist information about people who living abroad but they are

voting in the embassies of Costa Rica over the world, count the number of citizens (People) who

voting in each Country, in this case the province is with the value of “CONSULADO” and order the

results in descendent order.

MATCH (Person)-[:VOTING_ON]->(District)-
[IS_IN]->(City)-[PART_OF]-
>(Province{province_name: 'CONSULADO'})
RETURN City.city_name as Country, count(*) as
Voters order by Voters desc

SELECT c.city as 'Country' ,count(*) as 'Voters'
FROM District d, Person p , City c, Province pr
WHERE d.district_id = p.PollingPlaceId and
 d.city_id = c.city_id and
c.province_id = pr.province_id
 and pr.province_name = 'CONSULADO'
GROUP BY c.city order by Voters desc;

(NEO4J)-[:IS A]->(GRAPH DATABASE)

6) Search friends of friends of the Person with National ID 100697455:

MATCH (Person {NationalID: '100697455'})-
[:KNOWS*1..2]->(friend_of_friend)
RETURN DISTINCT friend_of_friend.FirstName,
friend_of_friend.LastName
ORDER BY friend_of_friend.FirstName ,
friend_of_friend.LastName

select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select distinct Fid from Knows
where Pid = 100697455) --order by P.FirstName,
P.LastName)
Union select distinct P.FirstName, P.LastName from
Knows , Person P where Fid = P.NationalID and Fid
IN (Select distinct Fid from Knows
where Pid = 100697455) order by P.FirstName,
P.LastName

(NEO4J)-[:IS A]->(GRAPH DATABASE)

7) Search friends of friends of friends (3rd Grade of Depth) of the Person with National

ID 100697455:

MATCH (Person {NationalID: '100697455'})-
[:KNOWS*1..3]->(friend_of_friend)
RETURN DISTINCT friend_of_friend.FirstName,
friend_of_friend.LastName
ORDER BY friend_of_friend.FirstName ,
friend_of_friend.LastName

select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
 Select Fid
 from Knows
where Pid IN (Select Fid
 from Knows
where Pid = 100697455))
union
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
 Select Fid
 from Knows
where Pid IN (Select Fid
 from Knows
where Fid = 100697455))
union
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
 Select Fid
 from Knows
where Fid IN (Select Fid
 from Knows
where Fid = 100697455)) order by
P.FirstName, P.LastName

(NEO4J)-[:IS A]->(GRAPH DATABASE)

8) Search friends of friends of friends (5th Grade of Depth) of the Person with National

ID 100697455:

MATCH (Person {NationalID: '100697455'})-
[:KNOWS*1..5]->(friend_of_friend)
RETURN DISTINCT friend_of_friend.FirstName,
friend_of_friend.LastName
ORDER BY friend_of_friend.FirstName ,
friend_of_friend.LastName

select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid = 100697455))))
UNION
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid IN (Select Fid from Knows
where Fid = 100697455))))
UNION
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where Pid IN (Select Fid from Knows
where Pid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid = 100697455))))
UNION
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where Pid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid = 100697455))))
UNION
select distinct P.FirstName, P.LastName
from Knows , Person P
where Fid = P.NationalID and Pid IN (
Select Fid from Knows
where fid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid IN (Select Fid from Knows
where Fid = 100697455))))

(NEO4J)-[:IS A]->(GRAPH DATABASE)

9) Let’s suppose, that we want to connect or introduce two people between them, we

don’t know the name of the relationships or nothing about how they can be connected, the

unique data that we have is just the two National Ids. We want to know how can connect

them in a short way possible.

Search the Shortest Path between Two People with NationalIDs “100697455 “and

“101018697”

MATCH p=shortestPath(
 (a:Person {NationalID: '100697455'})-[*]-
(b:Person {NationalID: '101018697'})
)
RETURN p

It is Not Possible to do it in Sql Server
because for create a query, is necessary to
know previously which relationships are in the
middle, but it could violate the constraint
that we stablished for this query.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

10) We want to know all the circle of friends of friends. given a NationalID of a person.

 Find all friends of friends possible for one person, in another words, search friend of

friends of friends... until the last one that exist, to do it for the Person with the NationalID

“111480058”

MATCH (Person {NationalID: '111480058'})-
[:KNOWS*]->(friend_of_friend)
RETURN DISTINCT friend_of_friend.FirstName,
friend_of_friend.LastName
ORDER BY friend_of_friend.FirstName ,
friend_of_friend.LastName

It is Not Possible to do it in Sql Server
because for Sql always is needed to
stablish the grade of depth of friendship

10.1In the same way, we want to watch graphically the circle of friends of the query 9.

MATCH (Person {NationalID: '111480058'})-
[:KNOWS*]->(friend_of_friend)
RETURN DISTINCT friend_of_friend

It is Not Possible to do it in Sql
Server

(NEO4J)-[:IS A]->(GRAPH DATABASE)

5.6) Analysis of Results (Neo4j vs SQL Server 2016)
We worked in a Laptop (Microsoft Surface Pro 3) with the next features:

 Processor: Intel Pentium 5

 RAM: 8GB

We started from cero, in both databases, creating it, loading the data, creating the index

in Neo4jand primary and foreign keys in SQL Server.

We created different types of queries for evaluate time execution and the expressivity.

Our conclusion per groups of Query is the next:

 From Query 1 to Query 5: We can notice that these queries are simples query

without not too much data to search, and with information in 4 different tables in

SQL server, and in neo4j with 4 different types of nodes.

In this case SQL server had the best performance with the best time execution, for

each query, about the expressivity we can conclude that it could be similar, in both

cases for specific information we need to write each relationship or how the nodes

are connected to search the result.

But, for showing graphically the connections of one person like in the query 1.1,

neo4j has an incredible functionality, and it is very friendly for the users, also the

expressivity of the query is significant, with less lines of codes.

Just we need to write the node to find, addressed to with node we want to know

the information, like for Example:

MATCH (p:Person)-[*]->(Province)
WHERE p.LastName = 'ZIMANYI' AND p.FirstName = 'ESTEBAN'
RETURN *

In this case only knowing the input data (Name of the citizen) and indicate the last

node that we want to know, in this case Province, we can obtain nodes and

relationships between both. Like this:

 This important feature is named Traversal, and this is unique of graph model

(NEO4J)-[:IS A]->(GRAPH DATABASE)

 From Query 6 to Query 8: We did queries about friends of friends, in different

grades of depth, in SQL server we used the table “knows” meanwhile in Neo4j the

relationship “knows”.

We can notice for this type of queries SQL was superior in time execution until

depth 3th, in another words “friends of friends of friends”. But our surprised was

when we run friends of friend with depth 5(Query #8), SQL server did it in more

than 2 minutes, whereas in Neo4j was less of one minute. The theory of the

differences of these types of queries was proven. Another significant point and

not less important is the expressivity, practically in neo4j for this type of query is

the same query just with different parameters, but do this types of queries in SQL

server, to major grade of depth, is major the number of code lines.

 Query 9: For this type of queries, about the shortest path, the unique solution was

in Neo4J, neo4j like is a graph, using the mathematical algorithm for do it, it could

be very helpful for example to know the shortest way between two places. For

doing it in SQL server is necessary to know the relationships and the result could

be a complex query, but we supposed that we don’t need to know information

about relationships or how the tables are connected.

 Query 10: For this type of queries, the unique solution was in Neo4J, because in a

graph database we don’t need to indicate how to go to the information, just we

need to write what patrons or nodes we want to find. And the graph database

does it by itself. It is a powerful tool that could help in many circumstances to

explore information or inclusive in datamining, for example, to see connection

between people to avoid money laundering.

(NEO4J)-[:IS A]->(GRAPH DATABASE)

6) Conclusion
The next are some important conclusions, to summarize whole work in the passionate world of

graph databases that we researched.

 Leonard Euler resolved “The Königsberg Bridge Problem”, but also create a math basis to

solve it

 A Graph has Entities (nodes) and relationships (edges)

 The nodes, and relationships could possess properties

 The relationships have a named and direction to connect nodes.

 A graph could be modeled with almost any technology, i.e. relational, but the main

differences is the performance, for example execution time

 Linear cost to retrieve adjacent nodes: depends on the number of local neighbors

 Graphs are whiteboard friendly in comparative with a RDBMS

 Doing join queries in a graph database is more efficient and more expressive than a

relational database.

 Traversal, is the operation of visiting a set of nodes in a graph, going between nodes

connected with the relationships, this operation is unique of a graph mode.

 This is very powerful when the user wants to explore a set of data, because given double

click in the node, the user could watch more nodes related to it, and discovering

information, a little like datamining

 Shortest path, is a function very helpful, for example to find the shortest path between

two places, or search the shortest path to introduce one person to another one like in the

social network LinkedIn.

Although, In the storing computing world, Graphs databases seems like the next step of the

relational databases, we can notice some important points to consider it.

 Is not necessary leave to work with Relational DBMS, and just focus to work with a graph

database or just neo4j, but perhaps, you can combine to work the graph database with

your traditional database, and use neo4j specially to find relationships in your database,

because the engine of the graph database is focusing in optimize search or relationships.

See a graph database like a search engine for relations

 Due to the advantages of graph database we recommend to use it for:

o Fraud Detection, Money laundering

o Social Network

o Managing of relationship with good performance

o Exploring Data that you don’t know, just doing “Double click” you can discover

many things

o Recommendations Systems (I.e. Amazon recommends to buy something, Netflix)

o Route Planning Systems

