

ADVANCED DATABASES
PROJECT

Juan Manuel Benítez V. - 000425944

Gledys Sulbaran - 000423426

TABLE OF CONTENTS

Contents
Introduction ___ 1

What is NoSQL? ___ 2

Why NoSQL? ___ 3

NoSQL vs. SQL ___ 4

Mongo DB - Introduction ___ 5

Installation - Connection to MongoDB __ 6

SQL vs. Mongo DB CRUD operations __ 9

Where to use MongoDB instead of RDBMS? ___ 11

Representative Queries ___ 12

References __ 22

INTRODUCTION

Page 1

Introduction

he database systems can be classified into different types, some examples are:

relational, object-oriented, relational and object-oriented. However, in practice,

most database engines are based on the relational architecture and they use the

SQL query language to work with the data. Due its use over the years SQL has become a

standard "de facto" language for relational databases. Relational databases require a

higher degree of Normalization i.e. decomposition of relations to eliminate redundancy

[1] and furthermore, they require scalability in order for them to be expanded

dependent upon varying demands.

Interactive applications have changed dramatically through the years and web

companies have emerged with dramatic increases in their demands on data storage. As

soon as Web companies and successful startups arrived with millions of users so did the

requirement of high scalability.

Each time multiple JOINs are managed in SQL the process becomes increasingly

complex; the amount of data collected and processed increases faster and it becomes

more valuable to capture all types of data. When demand on data storage first started to

increase relational database technology was behind and could not keep up with the

requirement to process faster and capture more and more data. At that time the

technology had limitations, which led to the requirement for high scalability becoming a

problem.

The problem was solved with “NoSQL”, or non-relational databases systems by building

flexible data models with higher scalability and higher performance. Web companies

and other organisations recognised that to operate at scale it is more effective to run on

cluster and schema-less data models.

For this project we chose to research one of the most famous NoSQL databases;

MongoDB. Within this project we will explain how this NoSQL Database works, the

benefits of using NoSQL, we will compare SQL vs. Mongo DB query operations and we

will show some representatives queries in MongoDB.

T

WHAT IS NOSQL?

Page 2

What is NoSQL?

According to MongoDB 3.0 org, NoSQL encompasses a wide variety of different database

technologies that were developed in response to; a rise in the volume of data stored

about users, the amount of objects and products, the frequency in which this data is

accessed, and increasing needs in performance and processing. Relational databases on

the other hand, were not designed to cope with the scale and agility challenges that

modern applications face, nor were they built to take advantage of the cheap storage and

processing power available today.

NoSQL Databases Types

The primary difference between relational and non-relational databases is the way data

is stored. Relational data is tabular by nature (it is stored in Tables with rows and

columns). Non-relational data on the other hand, does not fit in tables of rows and

columns; non-relational data is often stored as Collections, like in documents, key-

value pairs, graphs or Wide-column stores.

 Document databases pair each key with a complex data structure known as a

document. Documents can contain many different key-value pairs, or key-array

pairs, or even nested documents e.g. MongoDB and CouchDB.

 Graph stores are used to store information about networks, such as social

connections e.g. Neo4j and Giraph.

 Key-value stores are the simplest NoSQL databases. Every single item in the

database is stored as an attribute name (or "key"), together with its value e.g.

Riak and Redis

 Wide-column stores are optimized for queries over large datasets and store

columns of data together, instead of in rows e.g. HBase and Cassandra.

WHY NOSQL?

Page 3

Why NoSQL?

Relational databases were not designed to deal with: [2]

 Large volumes of structured, semi-structured, and unstructured data.

 Agile sprints, quick iteration, and frequent code pushes.

 Object-oriented programming that is easy to use and flexible.

 Efficient, scale-out architecture instead of

expensive, monolithic architecture.

Google, Amazon, Facebook and LinkedIn were among the

first companies to discover the serious limitations of

relational database technology for supporting their new

application requirements. A RDBMS is not always the

best solution as it cannot meet the increasing growth of

unstructured data. As data processing requirements have

grown exponentially, NoSQL has become a dynamic and

cloud friendly approach to dynamically process

unstructured data with ease.

NOSQL VS. SQL

Page 4

NoSQL vs. SQL

To make a clearly understandable comparison we found it useful to look at the general

differences between SQL and NoSQL in the following table [3, 4]:

 SQL Databases NoSQL Databases
Types One type – SQL databases There are many different types. The

main types are: Key-value stores,
document databases, wide-column
stores, graph databases

Schema and
flexibility

“Structure and data types are fixed in
advance” this means the columns must be
decided and locked before data entry and
each row must contain data for each
column.
In order to store new information the
entire database must be altered, during
which time the database must be taken
offline.

Schemas are dynamic. Applications can
add new fields on the fly, and each ‘row’
(or equivalent) doesn’t have to contain
data for each ‘column’.

Scaling Vertically, meaning that to store more
data a bigger server is needed which can
get very expensive. It is possible to scale
an RDBMS across multiple servers, but
this is a difficult and time-consuming
process.

Horizontally, meaning across servers
i.e. to add capacity, a database
administrator can simply add more
commodity servers or cloud instances.

ACID
Compliancy

The majority of relational databases are
ACID compliant.

It depends on product, but many NoSQL
solutions sacrifice ACID compliancy for
performance and scalability

The advantages of using NoSQL databases are evident, now we will look in more detail at

one of the most popular document based NoSQL databases, MongoDB. MongoDB is the

most downloaded NoSQL database with over 10 million downloads and hundreds of

thousands of deployments.

MONGO DB - INTRODUCTION

Page 5

Mongo DB - Introduction
ccording to the official MongoDB website [3] it is an open-source document

database that provides high performance, high availability and automatic scaling.

MongoDB avoids the need for Object Relational Mapping (ORM) to facilitate

development.

In other words, MongoDB is a flexible multiplatform data documents scheme oriented

database system. This means that every registration scheme may have different data

attributes or "columns" that need not be repeated from one record to another.

To understand how MondoDB works we can start with these simple concepts:

MongoDB documents are BSON documents.

BSON is a binary representation of JSON with

additional type information. In the documents,

the value of a field can be any of the BSON data

types, including other documents, arrays, and

arrays of documents.

MongoDB stores all documents in collections. A

collection is a group of related documents that

have a set of shared common indexes. Collections

are analogous to a table in relational databases.

In MongoDB, documents stored in a collection

must have a unique _id field that acts as a

primary key.

In summary, MongoDB is made up of databases which contain collections. A collection

is made up of documents. Each document is made up of fields. Collections can be

indexed, which improves lookup and sorting performance. Finally, when we get data

from MongoDB we do so through a cursor whose actual execution is delayed until

necessary.

A

Image Credit 1: MongoDB.org

Image Credit 2: MongoDB.org

INSTALLATION - CONNECTION TO MONGODB

Page 6

Installation - Connection to MongoDB
For this project we installed MongoDB on a Windows system. However, you can install

MongoDB in OS X and various Linux systems. Using the most popular Linux distributions

such as Red Hat, SUDE, Amazon Linux, Ubuntu or Debian is recommended for the best

installation experience.

Installing MongoDB
 Firstly, download MongoDB according to your Windows version (Refer to the link

below):

https://www.mongodb.org/downloads?_ga=1.205285456.174827563.1446822567#pr

oduction

 Secondly, double-click the downloaded MongoDB .msi file to start the installation.

If you want to specify the installation directory, then you have to select the

“Custom” installation. MongoDB can be installed in any folder due to it being self-

contained and not having any system dependencies.

Run MongoDB

1. Setting up the environment
MongoDB requires a directory to store data. The default data directory is c:\data\db

(this directory has to be manually created). The path for data storage can be specified

using the --dbpath option to mongodb.exe from the Command Prompt:

2. Starting MongoDB
To start MongoDB all you need to do is run mongod.exe. For this you can use the

Command Prompt:

If the message “waiting for connections” appears, it means the process is running

successfully.

It is possible to get a Security Alert dialog box about network issues. For security

documentation refer to https://docs.mongodb.org/manual/security/

https://docs.mongodb.org/manual/security/

INSTALLATION - CONNECTION TO MONGODB

Page 7

3. Connecting to MongoDB
To connect to MongoDB you just have to run mongo.exe:

Configure a Windows Service for MongoDB
 Make sure the directories for your database and log files are created:

c:\data\db

c:\data\log

 Create a configuration file. The file must set systemLog.path. You can include

additional information to this file when necessary. The configuration file should

look like this:

This information is stored in the file C:\Program Files\MongoDB\mongod.cfg,

which specifies both systemLog.path and storage.dbPath.

 Install the MongoDB service by starting mongod.exe with the --install option

and the --config option so you can specify the previously mentioned configuration

file:

 Start the MongoDB service by using the following command:

 Stop the MongoDB service by using the following command:

INSTALLATION - CONNECTION TO MONGODB

Page 8

 Remove the MongoDB service by using the following command:

IMPORT EXAMPLE DATASET

Before importing data into the database, it is necessary to have a running

MongoDB instance.

Procedure:

1. Retrieve the sample dataset from:

https://raw.githubusercontent.com/mongodb/docs-assets/primer-

dataset/dataset.json

Save the data in a file named primer-dataset.json.

2. In order to import this data into the test database the mongoimport

command can be used either in the system shell or the command prompt:

After executing this instruction, the system shows a summary of the action. In

this specific case, the collection restaurants is dropped if a collection with the

same name already exists.

The mongoimport connects to a mongod instance running on localhost on

port number 27017.

In order to import data into a mongod instance running on a different host or

port, specify the hostname or port by including the --host and the --port

options in your mongoimport command.

https://raw.githubusercontent.com/mongodb/docs-assets/primer-dataset/dataset.json
https://raw.githubusercontent.com/mongodb/docs-assets/primer-dataset/dataset.json

SQL VS. MONGO DB CRUD OPERATIONS

Page 9

SQL vs. Mongo DB CRUD operations

In MongoDB a query targets a specific

collection of documents. Queries specify

criteria or conditions that identify the

documents that MongoDB returns to the

clients. A query may include a projection

that specifies the fields from the matching

documents to return. You can optionally

modify queries to impose limits, skips and

sort orders.

The following table compares some SQL operations with Mongo DB operations; the SQL

statements are presented alongside the corresponding MongoDB statements:

SQL Schema Statements MongoDB Schema Statements
Create, Insert, Update: Table-level actions and the corresponding MongoDB statements.

In this case, we specified id as primary key.

The primary key _id is automatically added if _id
field is not specified.

Collections do not describe or enforce the structure
of its documents; i.e. there is no structural
alteration at the collection level.

However, at the document level update()

operations can add fields to existing documents
using the $set operator.

SQL VS. MONGO DB CRUD OPERATIONS

Page 10

Index

SELECT: Reading records from tables in SQL (SELECT)

 MongoDB statements (db.collection.find()).

Update Records: Updating existing records in tables

Delete Records

https://docs.mongodb.org/v3.0/reference/method/db.collection.find/#db.collection.find

WHERE TO USE MONGODB INSTEAD OF RDBMS?

Page 11

Where to use MongoDB instead of RDBMS?

Any application that needs to store semi-structured data can

use MongoDB. Organizations are adopting MongoDB due to it

enabling them to build applications faster, handle highly

diverse data types and manage applications more efficiently

at scale.

 In order to facilitate fast development, MongoDB

documents map naturally to object-oriented programming languages.

 When applications make significant changes in real time they must integrate

seamlessly with diverse data types, MongoDB’s flexible data model enables

database schema to evolve with business requirements.

 When your deployments grow in terms of data volume and throughput,

MongoDB scales easily with no downtime and without changing your

application; this is simply unachievable with relational databases.

Some of the most common uses of MongoDB include: Single View, Internet of Things,

Mobile, Real-Time Analytics, Personalization, Catalog, and Content Management.

REPRESENTATIVE QUERIES

Page 12

Representative Queries

In this section a list of typical queries in MongoDB will be presented, the queries are

written using Java, so a basic knowledge in this programming language is mandatory.

The dataset used (Restaurants collection) is the same one presented in the Installation

section. The next document is a sample in Restaurants collection:

{

 "address": {

 "building": "1007",

 "coord": [-73.856077, 40.848447],

 "street": "Morris Park Ave",

 "zipcode": "10462"

 },

 "borough": "Bronx",

 "cuisine": "Bakery",

 "grades": [

 { "date": { "$date": 1393804800000 }, "grade": "A", "score": 2 },

 { "date": { "$date": 1378857600000 }, "grade": "A", "score": 6 },

 { "date": { "$date": 1358985600000 }, "grade": "A", "score": 10 },

 { "date": { "$date": 1322006400000 }, "grade": "A", "score": 9 },

 { "date": { "$date": 1299715200000 }, "grade": "B", "score": 14 }

],

 "name": "Morris Park Bake Shop",

 "restaurant_id": "30075445"

}

In order to test the following queries using Java, it is necessary to install the MongoDB

Java driver. The jar file (library to be added) can be found in the following link. The

name of the required file is mongo-java-driver-3.0.4.jar.

https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongo-java-

driver/3.0.4/

Before executing the next code snippets, a connection to a MongoDB instance must be

done. The way to connect is the following:

MongoClient mongoClient = new MongoClient();

MongoDatabase db = mongoClient.getDatabase("test");

In this case, test is the name of the used database. Here is assumed the MongoDB service

is properly running.

https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongo-java-driver/3.0.4/
https://oss.sonatype.org/content/repositories/releases/org/mongodb/mongo-java-driver/3.0.4/

REPRESENTATIVE QUERIES

Page 13

1. Adding a new document to the Restaurants collection:

DateFormat format = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'Z'",

Locale.ENGLISH);

 db.getCollection("restaurants").insertOne(

 new Document("address",

 new Document()

 .append("street", "2 Avenue")

 .append("zipcode", "10075")

 .append("building", "1480")

 .append("coord", asList(-73.9557413,

40.7720266)))

 .append("borough", "Manhattan")

 .append("cuisine", "Italian")

 .append("grades", asList(

 new Document()

 .append("date",

format.parse("2014-10-01T00:00:00Z"))

 .append("grade", "A")

 .append("score", 11),

 new Document()

 .append("date",

format.parse("2014-01-16T00:00:00Z"))

 .append("grade", "B")

 .append("score", 17)))

 .append("name", "Vella")

 .append("restaurant_id", "41704620"));

It is possible to use the method insertMany instead of the method insertOne. In

such a case, one or more documents will be inserted, and a call to the insertMany

method would be equivalent to a bulk write operation.

2. Return all documents in the Restaurants collection:

// Retrieve all documents without using a specific criteria:

 FindIterable<Document> iterable = db.getCollection("restaurants").find();

 // Iterate the results and apply an operation to each resulting document

 iterable.forEach(new Block<Document>() {

 @Override

 public void apply(final Document document) {

 System.out.println(document);

 }

 });

The block applied to each document can contain multiple kinds of operations, for

example; one could print the name of each restaurant instead of the document

itself. This could be done in the following way: document.getString("name")

REPRESENTATIVE QUERIES

Page 14

3. Query by a top-level field, for example; return all documents in the Restaurants

collection whose borough is Brooklyn.

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 new Document("borough", "Brooklyn"));

 The obtained results can be iterated as shown in the previous point.

In this case the find method receives a document as a parameter indicating the

criteria. In general, to implement equality conditions the following code is used:

new Document (<field>, <value>). The dot notation must be used whenever

the <field> is an embedded document or an array.

Note: The Java driver provides the Filters class to help specify the query

condition. It contains different static methods to simplify building the query

predicate, for example, the eq method can be used in the previous example as

follows (the result will be the same):

db.getCollection("restaurants").find(Filters.eq("borough", "Brooklyn"));

4. Query by a field in an embedded document, for example; return all documents

in the Restaurants collection whose zipcode is 10075.

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 new Document("address.zipcode", "10075"));

Similarly, the Filters class can be used as follows:

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 Filters.eq("address.zipcode", "10075"));

It is important to notice the dot notation (“address.zipcode”) must be used

because it has an embedded document in the <field>.

REPRESENTATIVE QUERIES

Page 15

5. Query by a field in an Array, for example; return all documents in the Restaurants

collection whose grades array contains an embedded document with a field grade

equal to “A”.

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 new Document("grades.grade", "A"));

Similarly, the Filters class can be used as follows:

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 Filters.eq("grades.grade", "A"));

6. Specify conditions with operators, for example; return all documents whose

grades array contains an embedded document with a field score greater than 35.

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 new Document("grades.score", new Document("$gt", 35)));

In this case, the greater than operator is used ($gt), query conditions using

operators generally have the following form:

new Document (<field>, new Document(<operator>, <value>))

However, it is important to keep in mind there are some exceptions, such as the

$or and $and conditional operators.

Similarly, the Filters class can be used as follows:

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 Filters.gt("grades.score", 35));

The less than operator ($lt) can be used in the same way as the greater than

operator was presented.

REPRESENTATIVE QUERIES

Page 16

7. Combine conditions, for example; return all documents whose cuisine is “Mexican”

AND zipcode is “10016”.

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 new Document("cuisine","Mexican").append("address.zipcode", "10016"));

In this example a logical conjunction (AND) is specified for multiple query

conditions by appending conditions to the query document.

Similarly, the Filters class can be used as follows:

FindIterable<Document> iterable = db.getCollection("restaurants").find(

Filters.and(Filters.eq("cuisine", Mexican"),

Filters.eq("address.zipcode", "10016")));

8. Combine conditions, for example; return all documents whose cuisine is “Mexican”

OR zipcode is “10016”.

FindIterable<Document> iterable = db.getCollection("restaurants").find(

 new Document("$or", asList(new Document("cuisine", "Mexican"),

 new Document("address.zipcode", "10016"))));

In this example a logical disjunction (OR) is specified by using the $or query

operator.

Similarly, the Filters class can be used as follows:

FindIterable<Document> iterable = db.getCollection("restaurants").find(

Filters.or(Filters.eq("cuisine", "Mexican"),

Filters.eq("address.zipcode", "10016")));

REPRESENTATIVE QUERIES

Page 17

9. Sort query results, for example; return all documents sorted first by borough in

ascending order, and then sorted in ascending order by zip code within each

borough.

FindIterable<Document> iterable = db.getCollection("restaurants").find()

.sort(new Document("borough", 1).append("address.zipcode", 1));

This example shows the sort method for sorting the results set. This method

receives a document as a parameter which contains the fields to sort by and the

respective sort type, e.g. 1 for ascending and -1 for descending.

In respect of sorting, the Java driver provides the Sorts class, which contains

static methods to simplify the query.

Therefore, the Sorts class can be used as follows:

FindIterable<Document> iterable = db.getCollection("restaurants").find()

.sort(Sorts.ascending("borough", "address.zipcode"));

10. Update a top-level field, for example; update the cuisine field and the

lastModified field of the first document whose name is “Juni”.

UpdateResult result =

db.getCollection("restaurants").updateOne(new Document("name", "Juni"),

 new Document("$set", new Document("cuisine", "American (New)"))

 .append("$currentDate", new Document("lastModified",

true)));

In this example the updateOne method is used. The first parameter is the

matching criteria of the document to modify (name is equal to “Juni”). In the

second parameter the cuisine field is modified to “American (New)” by using

the $set operator, then the lastModified field is updated with the current date

by using the $currentDate operator. Some update operators such as $set will

create the field, if the field does not exist. The updateOne method returns an

UpdateResult which contains information about the operation.

REPRESENTATIVE QUERIES

Page 18

11. Update an embedded field, for example; update the street field in the embedded

address document.

UpdateResult result =

db.getCollection("restaurants").updateOne(new Document("restaurant_id",

"41156888"),

new Document("$set", new Document("address.street", "East 31st Street")));

Once again, when embedded documents are manipulated it is necessary to use

the dot notation.

12. Update multiple documents, for example; for all documents whose zipcode is

“10016” and cuisine is “Other”, set the cuisine field to “Category To Be

Determined” and the lastModified field to the current date.

UpdateResult result =

db.getCollection("restaurants").updateMany(new

Document("address.zipcode","10016")

.append("cuisine", "Other"),

new Document("$set", new Document("cuisine", "Category To Be

Determined"))

 .append("$currentDate", new Document("lastModified",

true)));

In order to update all the documents matching the specified criteria the

updateMany method is used. When necessary the getModifiedCount method

can be used to obtain the number of documents modified.

13. Replace an entire document except for the _id field.

UpdateResult result =

db.getCollection("restaurants").replaceOne(new Document("restaurant_id",

"41704620"),

 new Document("address",

 new Document()

 .append("street", "2 Avenue")

 .append("zipcode", "10075")

 .append("building", "1480")

 .append("coord", asList(-73.9557413,

40.7720266)))

 .append("name", "Vella 2"));

To do the replacement it is necessary to pass a new document as the second

parameter of the replaceOne method. The new document can contain different

fields from the original one. However, keep in mind that the new document will

not contain any of the old fields and it will only keep the information passed to

REPRESENTATIVE QUERIES

Page 19

the replaceOne method. On the other hand, it is not mandatory to specify the

_id field since it cannot be changed. In the case that it is included, then it has to

be the same one as in the old document.

14. Remove all documents that match a condition, for example; delete the

documents whose cuisine field is “Brazilian”.

DeleteResult result =

db.getCollection("restaurants").deleteMany(new Document("cuisine",

"Brazilian"));

In order to remove documents the deleteMany method can be used. This

method returns an UpdateResult which contains information about the

operation. When necessary the getDeletedCount method can be used to obtain

the number of documents deleted.

However, the deleteOne method will only remove the first document that

matches the condition.

15. Remove all documents in a collection.

DeleteResult result = db.getCollection("restaurants").deleteMany(new

Document());

In order to remove all documents the deleteMany method must receive an

empty conditions document as a parameter.

16. Drop a collection.

 db.getCollection("restaurants").drop();

Dropping a collection may be more efficient than deleting all the documents in it.

It is important to take into account that the drop method will not only remove

the collection itself, but also all the indexes for the collection, which is not the

same result as when deleting all the documents in a collection.

REPRESENTATIVE QUERIES

Page 20

17. Aggregate documents, for example; calculate the amount of documents by

cuisine field.

// Retrieve the amount of restaurants by cuisine

AggregateIterable<Document> iterable =

db.getCollection("restaurants").aggregate(asList(

 new Document("$group", new Document("_id", "$cuisine")

.append("count", new Document("$sum", 1)))));

 // Iterate the result set and apply a bock to each document

 iterable.forEach(new Block<Document>() {

 @Override

 public void apply(final Document document) {

 System.out.println(document.toJson());

 }

 });

The $group stage is used to group by a specific key, the group by key is

specified by the _id field. The $group accesses fields by the field path, which is

the field name prefixed by a dollar sign $. Like the aggregation functions in SQL,

in MongoDB the $group stage can use accumulators in order to perform

calculations for each group. In this example the $sum accumulator is used to

count the documents for each group of cuisine.

18. For those documents whose borough is “Manhattan” and cuisine is “Italian”,

calculate the amount of documents by zipcode.

 // Retrieve the amount of restaurants by zipcode,
 // only for the documents whose borough is Manhattan and cuisine is Italian

 AggregateIterable<Document> iterable =

db.getCollection("restaurants").aggregate(asList(

new Document("$match", new Document("borough","Manhattan")

.append("cuisine", "Italian")),

new Document("$group", new Document("_id", "$address.zipcode")

.append("count", new Document("$sum", 1)))));

// Iterate the result set and apply a block to each document

 iterable.forEach(new Block<Document>() {

 @Override

 public void apply(final Document document) {

 System.out.println(document.toJson());

 }

 });

REPRESENTATIVE QUERIES

Page 21

Unlike the previous example, a filter must be done before grouping the documents.

To filter the documents the $match stage can be used. The $match uses the

MongoDB query syntax, and the grouping is done in the same way as mentioned in

example 17.

19. Create a single field index.

db.getCollection("restaurants").createIndex(new Document("cuisine", 1));

An index can be created by using the createIndex method. This method receives

an index key specification document as a parameter, which contains the fields to

index and the index type for each field (1 is ascending index type and -1 is

desceding index type). In this example the only field to index is cuisine, and its

type is ascending (1). The createIndex method only creates an index when an

index does not exist.

20. Create a compound index.

db.getCollection("restaurants").createIndex(new Document("cuisine",1)

 .append("address.zipcode", -1));

As shown in this example, MongoDB allows the creation of indexes in multiple

fields. The order of the fields determines how the index stores its keys. In this

example the index stores its entries by ascending cuisine values. Inside each

cuisine group the entries are stored by descending address.zipcode values.

REFERENCES

Page 22

References

[1] U. W. Garcia-Molina, DATABASE SYSTEMS The Complete Book, New Jersey: Pearson

Prentice Hall, 2009.

[2] MongoDB, "Top 5 Considerations When Evaluating," A MongoDB White Paper, p. 5,

2015.

[3] "Official Mongo Website," MongoDB, 2015. [Online]. Available: www.mongodb.com.

[4] S. Edlich, "The NoSQL eMag," InfoQ.com, 2013, May.

[5] K. Seguin, The little MongoDB Book 2.6, www.MongoDB.org.

