

IT4BI - Université Libre de Bruxelles

In-Memory Databases
MemSQL

Gabby Nikolova
Thao Ha

In-memory Databases 1

Contents
I. In-memory Databases...4

1. Concept: ...4

2. Indexing: ..4

 AVL Tree: ..4 a.

 B-Tree and B+ Tree: ...5 b.

 T-Tree: ..5 c.

 Modified Linear Hashing: ...6 d.

3. Querying In-Memory Database Systems: ..6

4. Necessary Disk Access: ..7

II. MemSQL ...7

1. Architecture:...7

2. Data storage: ..8

3. Code generation: ..9

4. Distribution: ...9

 Tables: ..9 a.

 Query execution architecture: .. 11 b.

5. Lock-free data structures and multiversion concurrency control: 13

6. Index: ... 13

7. Durability: .. 13

8. Integration: ... 14

III. Performance analysis between MemSQL and SQL Server .. 14

1. Environment: .. 14

2. Data:... 14

3. Queries: .. 15

 SELECT ... 15 a.

 SELECT with JOIN .. 16 b.

 UPDATE .. 18 c.

 DELETE ... 20 d.

 INSERT .. 20 e.

IV. Conclusion ... 21

Resources: ... 22

In-memory Databases 2

In-memory Databases 3

Database management systems are the heart of any well-functioning software and
applications. Traditionally, database systems keep the data on disk where it is non-volatile, but
retrieving it from there takes time. That’s where in-memory databases (also called as main
memory databases) come into play. In-memory databases are widely used for time-sensitive
applications. Whether they are providing directions to a hungry user looking for the nearest
pizza place or live information to a data scientist trying to gain insight and improve their
corporation, fast performance is essential. In today’s world people don’t have the patience to
wait for information to load, we want instantaneous results. We think, “the faster the better”
when it comes to software performance. In-memory databases differ from regular database
management systems because the data resides in the main memory and not on disk. When the
data is stored in the main memory the access time is magnitude faster than from disk therefore

increasing the response time and transaction throughput. That means faster access to the data
and a higher number of transactions for the system. In-memory databases are usually used for
real-time applications, big data analytics, and monitoring and detection, just to name a few. In
this report, we would like to present our general analysis about in-memory database and one of
its representations in market place – MemSQL to know more about how in-memory database
comes from theory to real life.

Figure 1: Difference in architecture between a traditional DB and in-memory DB
http://opensourceforu.efytimes.com/2012/01/importance-of-in-memory-databases/

In-memory Databases 4

I. In-memory Databases

1. Concept:
When talking about in-memory databases we can assume that the whole database will be

kept in memory. In recent years this has become more possible because of the increased size of
main memory and the decrease in price. However, in really large applications it is possible to
find different classifications of data and partitioning of data into a few databases. There is hot
data which is accessed frequently and cold data which is accessed less and keeps more historical
data. Naturally, the database which contains the hot data will be kept in memory.

In traditional database management systems the primary performance goal is to limit the
amount of disk accesses. In a regular database management system the main memory is usually
used as a cache for some data to increase the database performance. Caching the frequently
accessed records in memory may speed up reading the data, but when writing the data must still
be written to disk, so it is not as efficient as in-memory databases. Another way people believe
they can get the same performance as an in-memory database is by putting an entire disk

database on RAM. However, the system is still designed for disk storage, has to compute the
disk address, and then has to go through a buffer manager to check if the data block is in
memory. After the block is found the tuple will be loaded into the application buffer where it will
be used. It will be far more efficient to use the memory address instead if the tuple is already in
memory. The in-memory database primary goal is to efficiently use the CPU cycles and memory
storage. The algorithms, data structures, query processing, concurrency control and recovery
must be reworked in order to achieve this.

2. Indexing:
 Indexing in memory and indexing structures on disk have completely different purposes.
When storing data in main memory the goal is to reduce the overall computation time and
minimize the amount of memory used.

The disk uses blocks to store and access data. The disk is always going to read/write
entire blocks even if the request is for smaller amounts of data. These read/write operations have
a fixed cost, thus the goal is to limit disk accesses. Data in memory is stored with pointers to the
tuples. The pointers provide access to the data value in the tuple and the tuple itself. Following
the pointers is fast so accessing and querying the data becomes easier because there is no extra
time allocated for getting it from disk. There are two main types of data structures for storing
data in memory. These are structures that have a natural ordering and those that randomize the

data.

 AVL Tree: a.
One structure is the AVL tree. It is good because it uses binary search, which is fast. The

tree is susceptible to becoming imbalanced (becomes too deep and there are too many nodes on
one side) so it needs to be rebalanced with a rotation operation when nodes are inserted or
deleted. One notable disadvantage is that it has poor storage utilization. Each node holds one
data item, control information, and two pointers.

In-memory Databases 5

 B-Tree and B+ Tree: b.
 B-trees and B+ trees are used for storing data on disk because they are shallow and allow
for a few node accesses to retrieve the data. These only keep data values on the leaves of the tree.
For in-memory data storage a B-tree is better than a B+ tress because keeping data only in the
leaves is a waste of space. Searching a B tree is quick because it uses binary search, storage
utilization is good because the leaf nodes only hold data (without pointers) and they form a large
portion of the tree.

 T-Tree: c.
 For ordered data there is another structure called the T-tree which gives the overall the
best performance for inserts and deletes while maintaining a low cost for storage. It is a binary
tree with many elements in a node.

 Internal node: t-node that has two subtrees

 Half-leaf node: one null child pointer, one none-null child pointer

 Leaf node: two null child pointers

Each internal node contains a number of items. It also has a leaf or half-leaf node that holds the
predecessor of its smallest data item called the “greatest lower bound” and one that contains the

successor of its greatest data item called “the least upper bound”.

Figure 2: T-tree structure
https://en.wikipedia.org/wiki/T-tree#/media/File:T-tree-2.png

The minimum and maximum data items usually differ by a small amount but that is enough to

notably decrease the number of rotations needed. Occupancy of internal nodes is flexible so that
aids to limit the number of rebalancing rotations necessary when inserting or deleting. The
rebalancing of a T-tree is similar to that of an AVL tree and the balance is checked whenever a
leaf is added or deleted. If two subtrees of a node differ in depth by more than one level, then a
rotation needs to be performed. Overall it has the good storage usage of a B Tree and requires
fewer rotations on inserts/deletes which is the reason why it is a good option to use when trying
to limit the space used in memory and improve query performance.

In-memory Databases 6

 Modified Linear Hashing: d.
 Modified linear hashing is a storage structure for keeping unordered data in memory. It is
similar to linear hashing except optimized to be used in memory. Modified linear hashing users a
dynamic hash table that grows linearly (unlike extendible hashing) with chained single item
nodes. The splitting criteria are based on the average length of the hash chains rather than the
storage utilization. The length of the chains provides a more direct way of managing the query
speeds.

3. Querying In-Memory Database Systems:
Relational tuples can be represented as a set of pointers to data values. When querying in-

memory sequential access is not significantly faster than random access. Using pointers is space
efficient because actual values can be stored only once. An example of this is when we want to
join a relation A with B on a common attribute. We do this by taking the smaller relation A and
scanning all of the tuples. For each tuple we follow the pointer to the value of the common
attribute and from there we follow the pointers to all of the tuples in B that use the common
attribute and add them to the result. Additional storage might be needed to make sure we have all

the pointers that lead to the tuples which have the common value in the relations. Temporary
data structures can be created to hold results from each operation and consumed by the next
operation. For example a temporary relation is created after a select. These temporary structures
hold pointers referencing the relevant tuples. The temporary structures are compact since they no
not hold the actual values. The structures speed up join processing. The performance of in-
memory databases is evaluated mainly on the processing time because disk operations are
conducted outside of transactions.

Figure 3: In-memory DB architecture
http://opensourceforu.efytimes.com/2012/01/importance-of-in-memory-databases/

MemSQL 7

4. Necessary Disk Access:
Although in-memory databases use the main memory as the data storage we cannot

eliminate the use of disk entirely. The memory is usually accessible by the processors while disk
is not. This makes the data in memory more vulnerable than on disk. Since the main memory is
cleared on shutdown the data is susceptible to hardware failures, shutdowns, and crashes. That
means there will need to be regular backups of the database stored on disk to limit data loss and

be able to restore the database in case of failures. That will also affect the commits for each
transactions logging. Committing each transaction to disk can affect the performance of the in-
memory database system but at the same time logging to disk is essential to keep data integrity.
One way to get around this issue to have a portion of the log in stable memory and then another
process us responsible for writing the log from stable memory to disk. Another way to get
around this problem is through group commits. This is where several transactions are allowed to
gather in memory and then they are all written to disk in a single operation.

II. MemSQL
As the rising of new generation of database system which is used for specific purpose like

temporal database, graph database, object database and etc., MemSQL is an in-memory
database developed by MemSQL Inc. which was founded in 2011 and is a graduate of Y
Combinator startup program. MemSQL Inc. officially launched their database to public on June
18, 2012. With notable implementation of columnstore structure, code generation and distributed
architecture, MemSQL claimed itself as the fastest memory database. However, it is really hard
to conclude if this is correct or not because database performance depends on various factors
such as amount of data, usage purpose, queries, etc. Therefore, our group would like to use this
report as an overview about MemSQL technology and terminology which helps to understand
more about one representative product of in-memory database and easier to consider whether
we should use MemSQL or not.

1. Architecture:
To provide high scalability and replication in database system, MemSQL implements two

tiered clustered architecture. Each instance of MemSQL is called a node and there are two types
of node in MemSQL (as described in Figure 4):

 Aggregator: this node acts as a query router in clustered architecture. It stores only

metadata and is responsible for querying leaf node, aggregating results and returning to

client. A MemSQL cluster can have one or many aggregators but it can only have one

master aggregator. Master aggregator is used for cluster monitoring and failover.

 Leaf node: this node acts as a data storage node. It stores data into slices which is called

partitions, for each partitions, a part of database is stored.

MemSQL 8

Figure 4: MemSQL architecture
http://docs.memsql.com/latest/intro/

Thanks to two tiered architecture, MemSQL allows user restore data and create new node easily.
It also allows managing cluster without restarting database server.

2. Data storage:
In addition to in-memory rowstore storage as traditional database system, MemSQL also

supports disk backend columnstore storage. Column – oriented stores treat each column as a unit
and store segment of each column in the same physical location. The MemSQL rowstore and
columnstore differ both in storage format (row, column) and storage location (RAM, disk).
Compared to rowstore storage, columnstore is more efficient for retrieving data individually
from column and allows using compression for duplicate data in columns (We can see in Figure
6: x2 means Red color happens twice). Therefore, we often use columnstore for aggregation
queries, applications where the data set does not fit in memory or where cost-efficiency does not
make using the in-memory rowstore possible. Meanwhile, rowstore is typically used for highly
concurrent OLTP and mixed OLTP/analytical workloads.

Figure 5: Rowstore
http://docs.memsql.com/latest/concepts/columnstore/#choosing-a-columnstore-or-rowstore

MemSQL 9

Figure 6: Columnstore

http://docs.memsql.com/latest/concepts/columnstore/#choosing-a-columnstore-or-rowstore

The column store is enabled by adding a CLUSTERED COLUMNSTORE index to a table.
When we define this index, the table itself is physically stored using columnstore.

3. Code generation:
MemSQL is an in-memory database and it could be not denied that the obvious benefit of in-

memory database is fast processing speed of RAM and throwing away I/O cost. However,
MemSQL also uses C++ for their infrastructures which partly help to boost the system
performance. Moreover, instead of caching query results as traditional databases, MemSQL uses
parameterized query as a key figure in its code generation system.

Figure 7: Code generation flow
http://www.memsql.com/content/architecture/

As described in above figure, the first time a query is executed; all constants are pulled out of the
query and replaced with parameters. Then MemSQL turns the resulting parameterized query into
a C++ program and compiles it into a shared object (.so file). Subsequent executions of the same
parameterized query will skip the code generation phase and reuse this shared object to execute
later. Therefore, the first time query is always slower than subsequent executions.

4. Distribution:

 Tables: a.
There are two types of tables in MemSQL: reference table and shared table.

 Reference tables: are small tables that do not need to be distributed so they are replicated

on every node in the cluster. User interacts with reference table through master

aggregator then the action is reflected on every machine.

MemSQL 10

 Sharded table: every database in a distributed system is split into a number of partitions.

Each shared table is split with a hash partitioning over the table’s primary key (also

called as shard key) and part of the table will be stored in each partitions of database.

Partitions are stored on leaf node and considered as a database of that leaf. For example,

partition 3 of database Sample is stored as database Sample_3 on leaf node. For every

shared table created inside Sample, a portion of its data will reside in Sample_3 on that

leaf. In the case that queries match the shard key exactly, an aggregator will route it

directly to a single leaf. If the queries do not match, the aggregator will send the query

across all leaves and aggregate results from those leaves. Those executions will be

explained in detail in the next part. The below figure shows partitions of table Test. We

can see that there are 2 rows in table Test which are stored on separate partitions.

Figure 8: Sharded table

MemSQL also implements availability group in distribution system. “An availability
group is a set of leaves which store data redundantly to ensure high availability”
(http://docs.memsql.com/4.1/concepts/distributed_architecture/). Each availability group

contains a copy of every partition. Therefore, each leaf in the availability group has a
corresponding pair node in the other group. This means a leaf and its pair share the same
partitions and in the event of failure, MemSQL will use partitions from the leaf’s pair to recover
data. Currently, MemSQL supports up to two availability groups but you can reset this via the
redundancy_level variable.

MemSQL 11

Figure 9: Availability group
http://www.memsql.com/content/durability/

 Query execution architecture: b.
MemSQL allows user interaction with an aggregator as if it were a database, running

queries and updating data like normal via SQL commands. But in fact, the aggregator queries the
leaf, then gets back the result, aggregates it and sends back the result to the client. All
communication between aggregators and leaves is also implemented as SQL statements.

As indicated in a previous part, data is shared across leaves into partitions. Each partition will be
named as <databasename_N> with N – ordinal number of leaf. By default, MemSQL will create

one partition per CPU core on the leaves for maximum parallelism. Below is the query execution
mechanism implemented in MemSQL:

 When user runs an INSERT query, the aggregator computes the hash value of shard key

in the distributed table, it does a modulo operation to get a partition number and sends the

INSERT query to the appropriate partition on a leaf machine.

Figure 10: INSERT query
http://docs.memsql.com/latest/concepts/distributed_sql/

 When user runs a SELECT query, if the query matches the whole shard key, aggregator

will directly send queries to the appropriate leaf. If the query does not match the

aggregator then sends the query to all leafs(like pictured in figure 11).

MemSQL 12

Figure 11: SELECT query
http://docs.memsql.com/latest/concepts/distributed_sql/

Below is the screenshot which shows the translated query which aggregator sends to leaf node.
We can see that aggregator uses “Test_0” (which is “db_0.test”) as a database in a leaf node.

Figure 12: Sample of translated query

When user runs an aggregate query, the query will be forwarded to one or many partitions, then

the result will be sent back and merged on the aggregator node to compute the final result. Each

calculation will be converted into an expression that is associative which can computed in each

leaf. For example, AVG(expr) is converted to SUM(expr) / COUNT(expr) as shown in below

screenshot

Figure 13: Sample of translated query

MemSQL 13

5. Lock-free data structures and multiversion concurrency control:
Unlike traditional databases which manage concurrency with locks, MemSQL achieves high

throughput using lock-free data structures and multiversion concurrency control, which allows
the database to avoid locking on reads and writes. Every time a transaction modifies a row,
MemSQL creates a new version which stays on top of the existing one. This version is only
visible to the transaction that made the modification. Read queries which access the same row
can only see the old version of this row. MemSQL only takes a lock in case of a write – write
conflict on the same row.

6. Index:
MemSQL supports two index types: skiplist index and clustered columnstore index.

The basic idea of skiplist is a sorted linked list. “A skiplist is made up of elements attached to
towers. Each tower in a skiplist is linked at each level of the tower to the next tower at the same
height forming a group of linked lists, one for each level of the skiplist. When an element is
inserted into the skiplist, its tower height is determined randomly via successive coin flips (a
tower with height n occurs once in 2^n times). The element is linked into the linked lists at each
level of the skiplist once its height has been determined. The towers support binary searching
by starting at the highest tower and working towards the bottom, using the tower links to check
when one should move forward in the list or down the tower to a lower level.”
(http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/)

Figure 14: Skiplist index
http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/

Skiplist is optimized to run in memory because it can be implemented lock free and offer

faster insert performance. Meanwhile, column store indexes provide significant data
compression, are backed by disk, and are very useful for analytical workload. Currently, column
store indexes cannot be combined with in-memory row store indexes on the same table.

7. Durability:
MemSQL uses persistent logs and snapshots to ensure durability for database. Transactions

written in memory are serialized into a transaction buffer. After that, a background process will
pull groups of transaction and logs them on disk. If transaction buffer size is set to 0, database
will run with disk-synchronous durability which means every transaction is committed to disk
before the query is acknowledged. MemSQL also periodically takes full database snapshot and

Performance analysis between MemSQL and SQL Server 14

saves to disk. To restore a database, MemSQL will load the most recent snapshot and replays
remaining transactions from the log.

Figure 15: Transaction persistent flow
http://www.memsql.com/content/durability/

8. Integration:
One of the main features which effects the popularity of a database system is the integration

with other system. MemSQL can connect with Spark by MemSQL Spark Connector. It allows
transferring data in parallel between MemSQL and Spark cluster. Moreover, a user can use
MemSQL Loader as a utility for loading data from HDFS and Amazon S3. MemSQL can use
SQL to query JSON which allow BI tools to report on relational and JSON data together.

III. Performance analysis between MemSQL and SQL Server

1. Environment:
For testing performance, we used a virtual machine with a Linux operating system because

MemSQL requires it. We set up an Ubuntu VM using VMware and installed MemSQL on it. For
both MemSQL and SQL Server we used machines with 4GB RAM. However, on virtual
machines the virtual RAM actually uses physical disk on its host machine instead of using RAM.

MemSQL performance will be slightly hindered because it is set up on a VM.

In this test environment, we use SQL Server 2014 and MemSQL 4.1. We did not use
distribution architecture in MemSQL. Because one host can have only one leaf, we can only
configure one master node and one leaf node.

2. Data:

For testing purposes, we decided to use the employee sample data from MySQL (Source

https://dev.mysql.com/doc/employee/en/). We used data of departments, employees, and salaries

tables with the schema as shown in Figure 16. We made two versions of a script. One is SQL

server script. Another is MemSQL. We put data into 4 tables: department, employees (300

thousand rows), dept_emp (500 thousand rows), salaries (1 million rows).

Performance analysis between MemSQL and SQL Server 15

Figure 16: Database schema

3. Queries:
 SELECT a.

For simple SELECT statement, we run three types of queries:

 Search all with select * from salaries

 Search string with select * from salaries where emp_no like '%0%'

 Search number with select * from salaries where emp_no <= 110000

Comparing with SQL Server, MemSQL always has greater execution time at the first run. Then
it will decrease after 4 trials and be more stable. You can see in the above graph, when the

0
10000
20000
30000
40000
50000
60000

1 2 3 4 5 6 7 8 9 10Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Trials

select * from salaries (over 1 million rows affected)

SQL Server

MemSQL

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8 9 10

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Trials

select * from salaries where emp_no like '%0%'
(over 500 thousand rows affected)

SQL Server

MemSQL

Performance analysis between MemSQL and SQL Server 16

performance reach stability, the speed in MemSQL can be equivalent to SQL Server or even
faster than SQL Server in second graph.

Additionally, we also put a test with parameterized query between MemSQL and SQL Server.

For the first time we run with like ‘%000%’, we have only 3 thousand rows affected then we

change like expression by ‘%0%’ to increase the result to 500 thousand rows. In this case, SQL

Server will increase their processing time due to the larger number of rows returned. Meanwhile,

MemSQL decreases their execution time for the second query even with larger number of rows.

And we have the same result when testing with emp_no <= 11000. The reason here is that SQL

Server uses memory to cache the result, while MemSQL use code generation mechanism to

compile shared object caching query, when we change the query SQL Server needs to calculate

another execution plan whereas MemSQL only needs to replace the constants in subsequent

query with parameters in shared object.

 SELECT with JOIN b.

Here we will test the performance of queries that join one or multiple tables. We will test

how long it takes for MemSQL and SQL server to execute the queries and compare the

performance.

 Select the current employees who have a salary higher than 80 thousand dollars.

 Select e.first_name, e.last_name, s.salary, s.from_date, s.to_date

from employees e, salaries s

where e.emp_no = s.emp_no

and s.salary > 80000

and s.to_date > GETDATE()

Rows affected: 26725

0

5000

10000

15000

20000

25000

30000

35000

40000

SQL Server MemSQL

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Parameterized query comparision

select with like '%000%'

select with like '%0%'

select with emp_no <= 11000

select with emp_no <= 110000

Performance analysis between MemSQL and SQL Server 17

 Select current employees, their salary, and current department they work for.

 Select e.first_name, e.last_name, s.salary, d.dept_name

From employees e, salaries s, dept_emp de, departments d

Where e.emp_no = s.emp_no

And s.to_date > getDate()

And s.emp_no=de.emp_no

And de.to_date > getdate()

And de.dept_no = d.dept_no

Rows affected: 92147

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10

Ex
ce

cu
ti

o
n

 t
im

e
 (m

s)

Trials

joining tables(over 20 thousand rows affected)

SQL

MemSQL

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

Trials

joining tables (over 90 thousand rows affected)

SQL

MemSQL

Performance analysis between MemSQL and SQL Server 18

 Select everything from table employees and salaries joined on emp_no. Check

performance on simple join with more than 1 million rows

 Select * from salaries s, employees e

Where s.emp_no = e.emp_no

Rows affected: 1091938

After MemSQL stabilized on all queries that incorporated a join of tables we noticed that it

performed as well or better than SQL. We really start noticing a difference when the number of

affected rows reaches 1 million or higher. MemSQL takes a few runs to stabilize but once it does

it performs really well while SQL has a stable performance each time the query is executed. SQL

stays at around 10 seconds to execute a query with over 1 million affected rows but MemSQL

takes half that time after it is stabilized.

 UPDATE c.

For testing Update statement, we need to switch between two statements below in MemSQL

to guarantee the number of affected rows in MemSQL is always 100 thousand rows for

comparing with SQL Server

 update employees set gender = 'F' where emp_no <= 110000;

 update employees set gender = 'T' where emp_no <= 110000;

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 9 10

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Trials

joining tables (over 1 million rows affected)

SQL

MemSQL

Performance analysis between MemSQL and SQL Server 19

Even MemSQL takes longer time for updating than SQL Server at the first run, MemSQL is

better because when updating with the same value, SQL Server will change values in all returned

rows, while MemSQL will get only different values to update (this is the reason why we need to

switch between two update statements in MemSQL). We can see in the picture below when

running the same update statement for two times, SQL Server update for 100 thousand rows in

the second run, while MemSQL updates no rows, which will get better performance with only

0.14 sec.

0

10000

20000

30000

1 2 3 4 5 6 7 8 9 10Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Trials

update employees set gender = 'F'
where emp_no<= 110000

(over 500 thousand rows affacted)

SQL Server

MemSQL

Performance analysis between MemSQL and SQL Server 20

 DELETE d.

With Delete statement, MemSQL gets the same result with Update statement. The first run

always takes longer for code generation in MemSQL, then the subsequent runs get accepted time

which is nearly equal to SQL Server.

 INSERT e.

Here we tested the performance of inserting 107378 rows into the employees table. To test

this we created a new database in MemSQL and SQL with the same tables and timed the

insertion of 107378 rows.

Notice that SQL takes about half the amount of time MemSQL does to insert over 100 thousand
rows. This is surprising because SQL needs to write these new rows all the way to disk while
MemSQL writes them only to RAM. We believe that this is due to the performance of the VM.

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Trials

delete from employees where emp_no<= 110000
(100 thousand rows affected)

SQL Server

MemSQL

30

65

0

10

20

30

40

50

60

70

se
co

n
d

s

Insert Time

SQL MemSQL

Conclusion 21

We believe if this was being executed on a physical server running Linux the MemSQL query
would be a few times faster than SQL.

IV. Conclusion

Overall, the MemSQL performance against SQL was descent. Before doing the performance
test, we expected the performance of MemSQL would be better than SQL Server because SQL
Server needs to write to disk while MemSQL keeps the data in memory and that should give it a
big advantage over SQL Server. Our results only partly reflect MemSQL performance. There are
a few reasons why we did not get the expected results. We believe our results could be due to the
use of a VM. VMs tend to a much slower than physical servers. The same queries on VMs can
be a few times slower than on a real server. Another reason behind our results could be that we

were only able to use one leaf node instead of distributing the data. If the data were split up
between a few leaf nodes then each one would query only a part of the data and then the results
would be put together by the aggregate, increasing the performance. Even though it still lacks
lots of features which are important for complex databases such as foreign key, triggers, stored
procedure, etc. we think MemSQL is a good foundation for a new generation of databases.
Especially, with DML statement like insert, update, delete and code generation mechanism
applied for parameterized queries, MemSQL gained good performance comparing to SQL
Server. It can be highly effective for large data sets with millions of rows. This is apparent in our
results where we can start to see big differences in execution time for queries which involve
more than 1 million affected rows. The difference in query execution time between SQL Server
and MemSQL is likely to increase as the size of the data increases more than this. Lastly, query
execution time improved and steadied as the number of trials increased. This will be convenient
for applications which use the same queries often because these queries will be highly
performant. Therefore, we think MemSQL is good for analytics applications and real-time
applications, large datasets, simple databases, and queries which are executed often and require
good response time.

Conclusion 22

Resources:
http://opensourceforu.efytimes.com/2012/01/importance-of-in-memory-databases/

http://pages.cs.wisc.edu/~jhuang/qual/main-memory-db-overview.pdf

http://go.sap.com/docs/download/2015/08/4481ad9e-3a7c-0010-82c7-eda71af511fa.pdf

https://www.quora.com/How-does-a-relational-DBMS-internally-store-its-data

http://www.mcobject.com/in_memory_database

http://www.vldb.org/conf/1986/P294.PDF

http://www-cs.ccny.cuny.edu/~jzhang/papers/nnsp_tr.pdf

http://docs.memsql.com

http://www.memsql.com/content/durability/

http://blog.memsql.com/the-story-behind-memsqls-skiplist-indexes/

http://www.memsql.com/content/architecture/

http://highscalability.com/blog/2012/8/14/memsql-architecture-the-fast-mvcc-inmem-lockfree-
codegen-and.html

http://www.zdnet.com/article/a-look-at-memsqls-memory-first-database-software/

