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Introduction 
 

Managing large data sets has become a key feature of many applications in the last two decades. In 

addition, more and more often applications dealing with real-life data need to handle uncertainty in it. 

There are vast variety of reasons for imprecision in data: in sensor and RFID data imprecision happens 

due to errors in measurement; in information extraction it comes from the ambiguity of natural-

language text; and in business intelligence imprecision is used to reduce the cost of data cleaning (1). 

In some areas, such as privacy-preserving data mining, additional errors may be added intentionally 

in order to mask the identity of the records so this data can later be published and used for research 

(2). Decision support and diagnosis systems naturally use hypothetical queries. Scientific databases 

for storing the results of scientific experiments, frequently contain uncertain data such as incomplete 

observations or imprecise measurements. Software in the fields of fighting crime or terrorism, tracking 

moving objects, and plagiarism detection essentially relies on techniques for processing and managing 

large uncertain datasets (3). 

Traditional database management systems are not designed to deal with uncertain data, which is why 

these new progressive applications quickly became so popular: they query, search, and aggregate large 

volumes of imprecise data to find the “diamonds in the dirt” (1). This tendency points to the growing 

need for universal tools to handle imprecise data. Here, we offer an overview of the state of the art 

techniques to handle imprecise data, in particular, probabilistic data. 

A probabilistic database management system – ProbDMS – is a system that stores large volumes of 

probabilistic data and supports complex queries (1). In addition, a ProbDMS needs to also support 

regular types of queries, such as updates or inserts, just like any database management system (DBMS) 

does. Major challenge in a ProbDMS is that it needs to provide both handling of probabilistic 

information and scalability. And while many scalable data management systems exist, probabilistic 

inference is still a complex issue, and current systems do not scale to the same extent as data 

management systems do (1).  

Artificial Intelligence research community has made much progress in the field of inference in 

uncertain data in the past years. Some of the most promising AI projects belong to this area, for 

example implementation and application of graphical models in biology. While a number of papers 

on uncertain data and probabilistic databases have been already written over the past decades, this 

area has become the focus of research interest very recently, and work on scalable systems has only 

just started (3). This tendency proves that there are many further potential applications of probabilistic 

data management, which will emerge in future when probabilistic database systems become fully 

available for use in real-world situations. 

In this report, we describe the key concepts in probabilistic database systems. Furthermore, we offer 

an overview of one of the most popular existing products – MayBMS, and demonstrate its possibilities 

on a case study. 
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Overview of probabilistic databases and management systems 

 

An example of probabilistic database  

 

The best way to start a journey of learning new theory or technology is a demonstration. Let us 

illustrate the use of probabilistic information on an example from an information extraction system.  

Example 1. We constructed a simple skeleton of a database for a system that consists of structured 

information about the football players. All data is found on the Web: the system extracts lists of 

players together with related information about them. Figure 1(a) illustrates the players’ (possible) 

current team assignments, and Figure 1(b) illustrates the roles they (might) have taken in different 

championships. Each tuple contains the probability of it being a true fact.  

9 tuples in Players are grouped in four groups of disjoint events, e.g. 𝑡2
1, 𝑡2

2, 𝑡2
3 are disjoint, and so are 

𝑡3
1, 𝑡3

2. And tuples from different blocks are independent, e.g., 𝑡1
1, 𝑡2

2, 𝑡4
1; also 11 tuples in 

Championships are independent probabilistic events. X and Y are hidden variables used for the 

examples in the following sections. 

 

 
Name Team P 

 

𝑡1
1 Messi Barcelona FC P1

1 = 1 𝑋1 = 1 

𝑡2
1 Ronaldo Manchester United P2

1 = 0.3 𝑋2 = 1 

𝑡2
2  Real Madrid P2

2 = 0.6 𝑋2 = 2 

𝑡2
3  Sporting Lisbon P2

3 = 0.1 𝑋2 = 3 

𝑡3
1 Neymar Santos P3

1 = 0.2 𝑋3 = 1 

𝑡3
2  Barcelona FC P3

2 = 0.8 𝑋3 = 2 

𝑡4
1 Figo  Real Madrid P4

1 = 0.5 𝑋4 = 1 

𝑡4
2  Barcelona FC P4

2 = 0.4 𝑋4 = 2 

𝑡4
2  Sporting Lisbon  P4

3 = 0.1 𝑋4 = 3 

Figure 1 (a) Players 
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Name Championship Role P 

 

𝑠1 Messi Champions League  Striker q1
1 = 1 𝑌1 = 1 

𝑠2 Messi La Liga Right Wing  𝑞2
1 = 0.3 𝑌2 = 1 

𝑠3 Messi La Liga Striker q2
2 = 0.6 𝑌3 = 1 

𝑠4 Messi La Liga Play Maker q2
3 = 0.1 𝑌4 = 1 

𝑠5 Ronaldo Champions League Striker q3
1 = 0.2 𝑌5 = 1 

𝑠6 Ronaldo La Liga Left Wing q3
2 = 0.8 𝑌6 = 1 

𝑠7 Ronaldo La Liga Striker q3
2 = 0.2 𝑌7 = 1 

𝑠8 Neymar Brasileiro Série A Left Wing q4
1 = 0.2 𝑌8 = 1 

𝑠9 Neymar La Liga Left Wing q4
2 = 0.7 𝑌9 = 1 

𝑠10 L. Figo Champions League Left Wing 𝑞10 = 0.6 𝑌10 = 1 

𝑠11 L. Figo La Liga Right Wing 𝑞11 = 0.2 𝑌11 = 1 

Figure 1 (b) Championships 

 

As we can see, the extracted teams of the players in Figure 1(a) are not unique. These variations occur 

because of outdated or false information that we can often find on the Web. But even if we are 

operating on the most recent webpage, the extraction is a difficult process, so we have to produce 

many alternative results in order not to miss valuable data (1). As a result, each Name contains several 

possible teams. Therefore, we can think of Team as an attribute with imprecise values. There are two 

constraints on the data of this example: tuples with the same Name but different Team are mutually 

exclusive; and tuples with different values of player’s Name are independent. The championships and 

roles in Figure 1(b) are extracted from sport-themed websites and are also imprecise. In both 

examples, the uncertainty is showed as a probabilistic confidence score, which can be computed, for 

example, by the extracting program. There can be other kinds of uncertainties, for example, 

probabilities produced after applying entity matching algorithms (does Neymar in one webpage refer 

to the same person as Neymar in another webpage? We cannot assume that there is only one player 

with such name in football world). The example in Figure 1 demonstrates a general principle: 

uncertain data has a confidence score (i.e. probability) attached to it (1).  

 

Probabilistic graphical models 

 

Before we can start talking about probabilistic database management systems, it makes sense to define 

the models that are commonly used to represent probabilistic data. 
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Probabilistic graphical models is a powerful class of approaches that enable us to compactly represent 

very large joint probability distributions. They deal with the uncertainty by combining probability 

theory graph theory and have been proven useful in a wide range of domains, such as natural language 

processing, social networks, bioinformatics, code design, sensor networks etc. (4).  

A graphical model consists of two components (2): 1) A graph whose nodes are the random variables 

and whose edges connect variables that interact directly. 2) A set of small functions called factors - 

each over a subset of the random variables. The set of factors that can be associated with a graphical 

model can be undirected or directed and differ depending on the structure of the graph. The power of 

graphical models comes from the graphical representation of factors that makes them easy to 

understand. There are two popular classes of graphical models: Bayesian networks (directed models), 

and Markov networks (undirected models) - depending on the nature of the interactions between the 

variables (2). 

 

Bayesian networks 

 

Bayesian networks - directed graphical models, are used to represent interactions between random 

variables. Directed edge from variable 𝑋𝑖 to variable 𝑋𝑗 in the acyclic graph means that 𝑋𝑖 directly 

influences 𝑋𝑗. Moreover, if 𝑋𝑖 is not a descendant or a parent of 𝑋𝑗 , then 𝑋𝑖 ⊥ 𝑋𝑗 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑗). The 

probability distribution that a directed graphical model represents is: 

𝑃𝑟(𝑋1, . . . , 𝑋𝑛)  =  ∏ 𝑃𝑟(𝑋𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))𝑛
𝑖=1 . 

This means that each of the factors associated with a Bayesian network is a conditional probability 

distribution over a node given its parents in the graph (5). 

Example 2. While having an evening walk in the park, Mr. Holmes gets a phone call from Dr. Watson, 

his neighbor, who claims that there is a burglar alarm sound coming from the direction of Mr. 

Holmes’s house. Mr. Holmes, obviously, starts to worry and prepares to rush home, but at the same 

time he recalls that Dr. Watson is known in the neighborhood as the practical joker. So he (Mr. 

Holmes) decides to call his other neighbor first – Mrs. Gibbon, who he considers more reliable despite 

her drinking problem (4). The graph representing this uncertainty model (where “Alarm sound” is the 

uncertain variable) looks like this: 

 

Figure 2 Bayesian network graph 
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Since Bayesian networks are easy to design, interpret and reason about, they are extensively used in 

practice (2). 

 

Markov networks 

 

Undirected graphical models - Markov Networks, are useful for representing distributions over 

variables where there is no natural direction of the influence of one variable over another. Examples 

include atoms in a molecular structure, the labels of pixels of an image, or the interactions between 

environmental sensors data (2).  

The probability distribution represented by a Markov network factorizes in a somewhat less intuitive 

manner than Bayesian networks. Let G be the undirected graph over the random variables 𝑋 =

 {𝑋1, . . . , 𝑋𝑛} corresponding to a Markov network, and let CS denote the set complete subgraphs of G. 

Then the probability distribution represented by the Markov network factorizes as follows (6): 

𝑃𝑟(𝑋1, . . . , 𝑋𝑛) =  
1

𝑍
∗ ∏ 𝑓𝐶(𝑋𝐶)𝐶 ∈ 𝐶𝑆   

where 𝑓𝐶(𝑋𝐶) are the factors over a complete subgraph of G. 𝑍 =  ∑ ∏ 𝑓𝐶(𝑋𝐶)𝐶 ∈ 𝐶𝑆 𝑋  is the 

normalization constant. 

Example 3. A very simple example with random variables describing the tuberculosis status of four 

patients. Patients that have been in contact are linked by undirected edges. Each edge means the 

possibility for disease transmission. For example, Patient 1 has been in contact with both Patient 2 

and Patient 3, but not with Patient 4 (6). 

 

Figure 3 Markov network graph 

The conditional independences captured by a Markov network are determined as follows: if a set of 

nodes X separates sets of nodes Y and Z, then Y and Z are conditionally independent given X.  
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Characteristics of a ProbDMS 

 

There are three most important characteristics of any ProbDMS (1):  

1) How do we store (represent) a probabilistic database?  

2) How do we answer queries using the chosen representation?  

3) How do we present the result of queries to a user?  

Representation. There is a conflict between the complexity of representation and the possibility to 

scale the system. A simple way of representation where each tuple is an independent event with 

probability attached is easier to process, but it cannot model the correlations between events. In 

contrast, if we take a more complicated representation, e.g., a large Markov Network (6), it can capture 

the semantics of the data, but it may be impossible to compute even simple SQL queries using this 

model. Additional problem is ensuring that the representation system should is applied to relational 

database – for handling non-probabilistic data (1). 

A ProbDMS needs to support complex decision-support SQL. Simple queries may be useful for some 

relatively small applications or test examples, but the real value comes from queries that work with 

large number of tuples, or aggregate over big amount of data. For example, the result of the query to 

find the Team of the Play Maker in “La Liga” will be obviously imprecise and relatively meaningless, 

but a query such as finding all teams with more than 6 “La Liga” members returns much more 

interesting and useful results.  

Query computing. There are two logical steps in computing any SQL query on probabilistic data sets 

(1): first, fetch and transform the data, and second, perform probabilistic deduction. The first approach 

that comes to mind is to separate them: use a database engine for the first step, and some probabilistic 

inference algorithm for the second. But on large data sets the probabilistic deduction process quickly 

becomes much more time consuming than the actual query. So a better approach is to integrate the 

steps: this makes it possible to use some database specific techniques, such as query optimization, 

materialized views and metadata.  

User interface. The result of an SQL query is a set of tuples. The challenge of any ProbDMS is to 

represent this set to the user in such a way that the correlations between the tuples are clear. 

Additionally, a big problem is the obtaining feedback from the users and using this feedback to “clean” 

the database. This is a difficult and complex issue, which has not yet been solved (1). 

 

Applications of probabilistic database systems 

 

Probabilistic databases are currently being used (or potentially can be used) in a wide range of 

applications. Information obtained from sensors that acquire temperature, pressure, or humidity data 

from the environment - the BBQ system (7) showed that this sensor data can be managed with a 

probabilistic data model. In this case probabilistic model can answer wide range of queries without 

needing additional data from the sensor. This proved to be an important optimization since fewer 

sensor readings basically means longer battery life (7).  
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In data cleaning, deduplication is one of the key components. It was proven that a probabilistic 

database can simplify the task of finding and removing duplicates, by allowing multiple conflicting 

tuples in the database with probabilities attached to them (8).  

Many other applications have looked may use or already use probabilistic databases for their data 

management needs: social networks, management of anonymized data, scientific data management 

(1), crime fighting, surveillance, tracking moving objects, plagiarism detection, predicting terrorist 

action, lean expert systems and decision support systems (9). 

 

Semantics of a probabilistic database: possible worlds 

 

The formal semantics of a probabilistic database is the “possible worlds model” (10). In general, a 

probabilistic database is a probability space over the possible contents of the database (1). If there is 

a single table in the database instance (I), it is simply a set of tuples from the table, i.e. this is a 

traditional database. A probabilistic database is a discrete probability space: 

PDB = (W, P) 

Where W = {𝐼1, 𝐼2, . . . , 𝐼𝑛} is a set of possible instances - possible worlds; 

And 𝑃 ∶  𝑊 →  [0, 1] is such that   

∑ 𝑃(𝐼𝑖)
𝑛
𝑗=1 = 1.  

So there is one random variable for each possible tuple having values of 0 (the tuple is not present) or 

1 (otherwise), and a probabilistic database is a joint probability distribution over the values of these 

random variables. This is a very general and powerful definition, which covers all the data models 

that have been studied so far (1). 

Consider some tuple t: the probability that the tuple belongs to a randomly chosen world is  

𝑃(𝑡)  =  ∑ 𝑃(𝐼𝑗)𝑗:𝑡 ∈ 𝐼𝑗
  

which is called the marginal probability of the tuple t. Furthermore, if we have two tuples 𝑡1, 𝑡2, we 

can figure out the probability that both are present in a randomly chosen world - P(𝑡1𝑡2). When the 

this probability equals to P(𝑡1)P(𝑡2), we can say that 𝑡1 and 𝑡2 are independent. If it equals to zero, 

then we say that 𝑡1 and 𝑡2 are disjoint (or exclusive) tuples. If none of these is true, then the tuples are 

correlated in some other, not obvious way (1). 

If we now consider a query Q, and a possible tuple t in the query Q’s answer, 𝑃(𝑡 ∈  𝑄) is the 

probability that, in a randomly chosen world, t is a result of the query Q. This means that a probabilistic 

database system answering any given query Q should return all possible tuples 𝑡1, 𝑡2 . . . together with 

their probabilities 𝑃(𝑡1  ∈  𝑄), 𝑃(𝑡2  ∈  𝑄), etc. 

Representation solutions for probabilistic databases 

 

In practice, it is impossible enumerate all possible worlds, so we need to use some more applicable 

representation techniques. The most popular approach is to allow the possible records to be either 
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independent or disjoint. A probabilistic database block is called independent-disjoint, or BID, if we 

can divide all possible tuples into blocks in such a way that tuples from the same block represent 

disjoint events, and tuples from distinct blocks are independent (1). This approach was illustrated in 

Figure 1. The blocks are obtained by grouping Players by Name, and Championships by (Name, 

Championship, Role). The probabilities are given in attribute P. The tuples 𝑡2
2 and 𝑡2

3 are disjoint (they 

are in the same block), while the tuples 𝑡1
1 , 𝑡2

2, 𝑠1, 𝑠2 are independent (different blocks).  

Sometimes complex applications require a representation technique that can express complex 

correlations between records. Several techniques have been described in the literature: lineage-based 

(11), World-Set-Decompositions (12) and U-relations (13) (which we will explain and use later in 

the report). Amongst others are the Probabilistic Relational Model (14), which separates the data from 

the probabilistic network, Markov Networks, and Markov Chains (6). However, such representations 

are often hard to understand, and they increase the complexity of query evaluation (1). 

 

Lineage and c-tables notion 

 

The lineage of a tuple is an annotation that defines its derivation (1). It is used both to represent 

probabilistic data, and to represent query results. Lineage is also a powerful technology for 

understanding and resolving uncertainty in data. Users can provide very detailed feedback if they can 

see data lineage. And the result can be used to identify unreliable sources of data (1).  

The notion of lineage is used together with c-tables - a technique for representing incomplete 

databases. Here we illustrate c-tables and lineage by using the example in Figure 4. In a c-table, for 

each tuple there is a lineage of the tuple – a Boolean expression over hidden variables.  

Example 4. In our example (continuation of Example 1) there are four tuples: Barcelona FC, Real 

Madrid, Manchester United and Sporting Lisbon, each annotated with a lineage expression over 

variables 𝑋1, 𝑋2, 𝑋4, 𝑌1, 𝑌2, 𝑌5, 𝑌10. The variables in the expression define the world consisting of 

exactly those tuples whose lineage is true for those variables. So the c-table represents the set of 

possible worlds defined by all possible assignments of the variables.  

 

 
Teams 

 

 Barcelona FC 𝑋1 = 1 ∧ 𝑌1 = 1 ∨  𝑋1 = 1 ∧ 𝑌2 = 1 ∨  𝑋4 = 2 ∧ 𝑌10 = 1 

 Real Madrid 𝑋2 = 2 ∧ 𝑌5 = 1 ∨  𝑋4 = 1 ∧ 𝑌10 = 1  

 Manchester United 𝑋2 = 1 ∧ 𝑌5 = 1  

 Sporting Lisbon 𝑋2 = 3 ∧ 𝑌5 = 1 ∨  𝑋4 = 3 ∧ 𝑌10 = 1 

Figure 4 C-table example 

 

Lineage is a powerful technique used in ProbDMS because of a very important and essential closure 

property (1): the answer to a query over a c-table can always be represented as another c-table, using 



11 
 

the same hidden variables. We illustrate this property on the database in Figure 1, where each tuple 

has a very simple lineage (just one variable). Consider now the SQL query in Figure 5(a), which finds 

the team affiliations of all people who played in “Champions League”. The answer to this query equals 

exactly the c-table shown in Figure 4.  

 

Query evaluation 

 

Query evaluation is one of the hardest technical challenge in a probabilistic data management system. 

Several approaches exist for dealing with query evaluation and probabilistic inference on the lineage 

expression. One way is to separate them, another approach is to integrate the probabilistic deduction 

process with the query computation step. The advantage of the latter is that it allows to successfully 

use standard data management techniques to optimize the probabilistic inference (1).  

Certain queries can be evaluated on a probabilistic database by pushing the probabilistic inference 

part completely inside the query plan. Hence, for these queries the output probabilities are computed 

during query processing. Queries allowing this are called safe queries, and the plan that calculates 

the resulting probabilities correctly is a safe plan (1).  

In relational queries users specify what they want. The system translates the query into relational 

algebra. The resulting expression is called a relational plan and represents how the query is evaluated. 

Any safe plan allows probabilities to be computed in the relational algebra, by extending its operators 

to manipulate probabilities (15). The simplest way is to assume that all tuples are independent: a join 

of two tuples computes the new probability as  𝑝1𝑝2, and a duplicate elimination that replaces n tuples 

with one tuple computes the output probability using formula  

1 −  (1 −  𝑝1)  · · ·  (1 − 𝑝𝑛) 

A safe plan is a plan in which all these operations are correct. The query optimizer ensures the 

correctness, by using a static analysis on the plan.  
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Example 5. Let us illustrate with the queries and plans in Figure 5. 

 
SELECT x.Team, confidence() 
FROM Players x, Championships y 
WHERE x.Name = y.Name 
and y.championship = ’Champions League’ 
GROUP BY x.Team 

Figure 5 (a) 

 

 

Figure 5 (b) 
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SELECT x.Team, 1-prod(1-x.P*y.P) 
FROM Players x,  
(SELECT Name, 1-(1-prod(P)) 
FROM Championships 
WHERE championship = ’Champions League’ 
GROUP BY Name) y 
WHERE x.Name = y.Name 
GROUP BY x.Team 

Figure 5 (c) 

 

 

 

Figure 5 (d) 

Figure 5: A SQL query on the data in Figure 1 returning the teams of all players who participated in 

“Champions League”. The query is written in MayBMS syntax: conf() is an aggregate operator 

returning the resulting probability. The figure shows an unsafe plan in (b) and a safe plan in (d), and 

also shows the computation of the output probability of Barcelona FC: assuming there is a single 

player Messi in this team. The safe plan in pure SQL is shown in (c). 

Any modern relational database engine will translate the query into the logical plan (b). But this plan 

is not safe, because the operation ∏ 𝑇𝑒𝑎𝑚 combines correlating tuples, so the resulting probabilities 

will be incorrect. The figure illustrates this for the output value Barcelona FC: the output probability 

is 

1 −  (1 −  𝑝1
1 𝑞1)(1 −  𝑝1

1 𝑞2) 
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However, the lineage of Barcelona FC is  

𝑋1 = 1 ∧ 𝑌1 = 1 ∨  𝑋1 = 1 ∧ 𝑌2 = 1 ∨  𝑋4 = 2 ∧ 𝑌10 = 1,  

so the correct probability is  

𝑝1
1 (1 −  (1 −  𝑞1)(1 − 𝑞2)). 

Now let us consider the plan shown in (d), which does an early projection and duplicate elimination 

on Championships. It is logically equal to the plan in (b) logically: this is demonstrated for the same 

output value, Barcelona FC. However, even if plans (b) and (d) are logically equivalent, they are not 

equivalent in the probabilities computation. Safety is an essential property in query processing on 

probabilistic databases: because of this, query optimizer needs to search not just for a plan with lowest 

cost, but for one that is safe. A safe plan can be executed directly by a database engine with slight 

changes to the implementation of the relational operators (2). Alternatively, a safe plan can also be 

executed on a regular database engine (of course, for that it needs to be rewritten in pure SQL). Figure 

5 (c) shows the safe plan converted into SQL.  

When most of the time a safe plan combines calculation of the probabilities to the query plan, it has 

been shown that is it possible to separate them at runtime (16): the optimizer can choose any query 

plan (safe or not), and after, the probabilistic inference is handled using the information from the safe 

plan. This can result in significant execution speedup for many types of queries (1). 

 

Materialized views 

 

Using materialized views for answering queries is quite popular and powerful technique. Here is how 

it works: there is a number of materialized views, such as answers to previous queries, so the query is 

rewritten to use of these views, which improves performance. With probabilistic databases, 

materialized views can have a dramatic impact on query evaluation (1).   

However, there is an important issue in using materialized views to handle probabilistic data: the 

view’s output needs to be represented in some way. It is always possible to compute the lineage of all 

the tuples in the view, but this way we complicate the probabilistic inference. Instead, we want to use 

only the marginal tuple probabilities. For example, if all tuples are independent probabilistic events, 

so we only need the marginal probabilities; we can say in this case the view can be fully represented. 

Of course, generally, not all tuples are independent, but we always can partition the tuples into 

independent blocks. Furthermore, there will always be the best partition. This is called partial 

representation. Note that the correlation between safe/unsafe views and 

representable/unrepresentable views is not defined: examples exist for all combinations (17). 

 

Aggregating uncertain data 

 

There are two forms of aggregates in SQL: value aggregates (e.g. for each company return the sum of 

the profits in all its units), and predicate aggregates (e.g. find the companies having the sum of profit 
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greater than 1 million euros). Both types are very useful in probabilistic databases. The first type 

represents an expected value, and the second type of aggregates uses HAVING clause (2).  

Most aggregates can be easily calculated. The complexities of computing sum and count, for example, 

are the same as the complexities of finding the result of the exact same query without the aggregate 

function (18). Complexity of min and max are same as of the queries with the aggregates replaced by 

projections with removing columns (18). Average, however, is one of the more difficult aggregates, 

but it is an important aggregate function for analysis of imprecise data, since it computes the average 

expectation value. It is hard to calculate even on one table: its expected value is not sum / count(*) of 

expected values. Some techniques and algorithms have been introduced for aggregates computation 

(including predicates) (1) which we will not discuss in this report. 
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MayBMS - an uncertain database management system 

 

Before we start the introduction of MayBMS system, let us briefly list its “colleagues”. Research on 

probabilistic databases is about 30 years old (judging by the first books in this domain).  Today there 

is a lot of interest, mainly driven by the demand from a variety of applications.  However, despite this 

long history and recent interest, currently there are no complete and usable probabilistic database 

system, the core reason being the computational challenge of combining relational queries with 

probabilities. 

 There are several products specializing in probabilistic database management. Most of them are 

ongoing university researching projects, such as (2): 

 The MayBMS project at Cornell University: will be discussed in details in this section; 

 The MystiQ project at the University of Washington: lacks sufficient documentation. The goal 

of the project is to develop efficient query processing techniques for finding answers in large 

probabilistic databases; 

 The Orion project at Purdue University: provides built-in support for uncertainty at the 

database level (extension of PostgreSQL engine); 

 The Trio project at Stanford University:  based on an extended relational model called 

ULDBs, and supports a SQL-based query language called TriQL; 

 The BayesStore project at the University of California, Berkeley: again, lacks sufficient 

documentation;  Represents model and evidence data as relational tables; implements 

inference algorithms efficiently in SQL; adds probabilistic relational operators to the query 

engine; optimizes queries with both relational and inference operators; 

 The PrDB project at the University of Maryland, College Park: based on the notion of "shared 

factors", supports a declarative SQL-like language for specifying uncertain data and the 

correlations among them; Also supports exact and approximate evaluation of a wide range of 

queries including inference queries, SQL queries, and decision-support queries.  

In this report we chose MayBMS system to illustrate the capabilities of probabilistic databases. This 

is an open-source project, one of the most popular products today, with clear goals and comprehensive 

documentation. MayBMS SQL syntax is based on PostgreSQL (with some additions), which makes 

it basically ready-to-use for anyone who is familiar with SQL. 

 

MayBMS project 

 

MayBMS is a state-of-the-art probabilistic database management system that has been built as an 

extension of Postgres, an open-source relational database management system (9) (the source code is 

available under the BSD license at http://maybms.sourceforge.net). 

http://maybms.sourceforge.net/
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The system has been under development since 2005 at Cornell University. While the development has 

been carried out in an academic environment, the creators have always aimed to build a robust, 

scalable system that can be reliably used in real applications. 

Main goals of the MayBMS project (19): 

 Create a scalable probabilistic DBMS: representation and storage mechanisms; 

 Query and data manipulation language (like SQL) for probabilistic databases; 

 Efficient query processing techniques; 

 Updates and concurrency control; 

 Database APIs for uncertain data; 

 Deploy in modern and new data management applications; 

MayBMS is a complete probabilistic database management system that supports a powerful, 

compositional query language. In summary, MayBMS currently has the following features: 

 Full support of all features of PostgreSQL 8.3.3, including unrestricted query functionality, 

query optimization, APIs, updates, concurrency control and recovery, etc. 

 Essentially no performance loss on PostgreSQL 8.3.3 functionality: After parsing a query or 

DML statement, a fast syntactic check is made to decide whether the statement uses the 

extended functionality: if not, the executed code is exactly the code of PostgreSQL 8.3.3. 

 Support for efficiently creating and updating probabilistic databases. 

 A powerful query and update language for processing uncertain data that extends SQL with a 

number of language constructs. 

 State-of-the-art efficient techniques for exact and approximate probabilistic inference. 

 

Relational algebra 

 

The query algebra of MayBMS - probabilistic worldset algebra (probabilistic WSA) - consists of a 

number of commands in addition to regular database (SQL) operations. Here we list the operations 

with definitions and supporting examples.  

1. The operations of relational algebra are selection σ, projection π, product ×, union ∪, 

difference −, and attribute renaming ρ. These operations are executed for each possible world 

separately and independently. Selection conditions are Boolean combinations of atomic 

conditions. Arithmetic expressions may occur in atomic conditions and in the arguments of π 

and ρ. For example,  

𝜌𝐴 + 𝐵 → 𝐶(𝑅) 
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in each world calculates the sum of A and B values of each tuple of R and saves them in a new 

attribute C (2). 

2. Conf - the operation for calculating tuple confidence, i.e. it computes, for each possible tuple, 

the sum of the weights of the possible worlds in which it occurs (19).  

Syntax: 

conf(R) 

Semantics on probabilistic database W: 

[[𝑐𝑜𝑛𝑓(𝑅𝑙)]](𝑊): =  { ⧼ 𝑅1, . . . , 𝑅𝑘, 𝑆, 𝑝 ⧽ | ⧼ 𝑅1, . . . , 𝑅𝑘 , 𝑝 ⧽ ∈ 𝑊} 

where, 𝑃 ∌  𝑠𝑐ℎ(𝑅𝑙), and 

𝑆 =  {⧼ 𝑡, 𝑃 ∶  𝑃𝑟[ �⃗⃗⃗� ∈  𝑅𝑙]⧽|  �⃗⃗⃗�  ∈  ⋃ 𝑅𝑙
𝑖

𝑖

 },   

with schema 𝑠𝑐ℎ(𝑆)  =  𝑠𝑐ℎ(𝑅𝑙)  ∪  {𝑃}. 

The result of 𝑐𝑜𝑛𝑓(𝑅𝑙) - relation S - is the same in all possible worlds, which means it is a 

certain relation. By the definition of probabilistic databases used in MayBMS, each possible 

world has probability more than 0. Hence, conf does not return tuples with zero probability. 

Example 6. On a simple example of probabilistic database consisting of 3 possible worlds: 

 

𝑅1 𝐴 𝐵  

 𝑎 𝑏 𝑝 = 0.3  

  𝑏 𝑐  

 

𝑅2 𝐴 𝐵  

 𝑎 𝑏 𝑝 = 0.2  

  𝑐 𝑑  

 

𝑅3 𝐴 𝐵  

 𝑎 𝑐 𝑝 = 0.5  

  𝑐 𝑑  
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𝑐𝑜𝑛𝑓(𝑅) results in 

 

𝑐𝑜𝑛𝑓(𝑅) 𝐴 𝐵 𝑃 

 𝑎 𝑏 0.5  

  𝑎 𝑐 0.5  

 𝑏 𝑐 0.3 

 𝑐 𝑑 0.7 

 

Moreover, there are two more operations that can be expressed using conf - the possible/certain 

tuples: 

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒(𝑅) ∶= 𝜋𝑠𝑐ℎ(𝑅)(𝜎𝐶𝑜𝑛𝑓>0(𝑐𝑜𝑛𝑓(𝑅))) 

𝑐𝑒𝑟𝑡𝑎𝑖𝑛(𝑅) ∶= 𝜋𝑠𝑐ℎ(𝑅)(𝜎𝐶𝑜𝑛𝑓=1(𝑐𝑜𝑛𝑓(𝑅))) 

3. Repair-key - an uncertainty-introducing operation, which can be thought of as sampling a 

maximum repair of a key for a relation. Repairing a key of a relation R means to compute (as 

possible worlds) all subset-maximal relations obtainable from R by removing tuples such that 

a key constraint is satisfied (9). MayBMS uses this operation as a method for constructing 

probabilistic databases, with probabilities computed from the weights attached to the tuples of 

R. 

By definition, relation Rʹ is a maximal repair of a functional dependency (fd) for relation R if 

Rʹ is a maximal subset of R which satisfies that functional dependency, i.e., a subset 𝑅ʹ ⊆  𝑅 

that satisfies the fd such that there is no relation 𝑅ʹʹ with 𝑅ʹ ⊂  𝑅ʹʹ ⊆  𝑅 that satisfies the fd 

(2). 

Let  𝐴⃗⃗⃗⃗ , 𝐵 ∈ 𝑠𝑐ℎ(𝑅𝑙). For each possible world ⧼ 𝑅1, . . . , 𝑅𝑘, 𝑝 ⧽  ∈ W, let column B of R contain 

only numerical values greater than 0. Finally, let 𝑅𝑙 satisfy the functional dependency 

(𝑠𝑐ℎ(𝑅𝑙) − 𝐵) → 𝑠𝑐ℎ(𝑅𝑙). Then, 

[[𝑟𝑒𝑝𝑎𝑖𝑟 − 𝑘𝑒𝑦 𝐴⃗⃗⃗⃗  @ 𝐵(𝑅𝑙)]] (𝑊) ≔ { ⧼ 𝑅1, . . . , 𝑅𝑘, 𝜋𝑠𝑐ℎ(𝑅𝑙)−𝐵(ˆ𝑅𝑙), ˆ𝑝  ⧽  | ⧼ 𝑅1, . . . , 𝑅𝑘, 𝑝  ⧽

∈ 𝑊, ˆR l is a maximal repair of fd  𝐴⃗⃗⃗⃗ → sch(𝑅𝑙),

ˆp =  p ∗  ∏
 �⃗⃗⃗�. 𝐵

∑  �⃗⃗⃗�. 𝐵 𝑠⃗⃗⃗ ∈R𝑙:  𝑠⃗⃗⃗. 𝐴⃗⃗⃗⃗ =  �⃗⃗⃗�. 𝐴⃗⃗⃗⃗
 �⃗⃗⃗� ∈ ˆR𝑙

 }. 

This operation represents a powerful way of constructing probabilistic databases from 

complete relations. 

Additionally, there is another operation introduced that uses repair-key (19): power-world-

set operation. Let 𝐴 ∌ 𝑠𝑐ℎ(𝑅), then 
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𝑝𝑤𝑠(𝑅) ∶=  𝜋𝑠𝑐ℎ(𝑅) (𝜎𝐴=1 (𝑟𝑒𝑝𝑎𝑖𝑟 − 𝑘𝑒𝑦𝑠𝑐ℎ(𝑅)@𝑃(𝑅 × 𝜌𝐴({0, 1}) × 𝜌𝑃({1})))).  

Each world is a subset of R, and the set of worlds created is called the powerset of R. 

Example 7. Let us consider the example with tossing a coin. To introduce some different 

probabilities let us say it is a biased coin. For an experiment we will throw the coin twice. We 

start with a certain database: 

𝑅 𝑇𝑜𝑠𝑠 𝐹𝑎𝑐𝑒 𝐹𝑃𝑟𝑜𝑏 

 1 𝐻 0.4  

  1 𝑇 0.6  

 2 𝐻 0.4  

 2 𝑇 0.6  

 

that represents the possible outcomes of tossing the coin twice. We turn this into a probabilistic 

database that represents this information using alternative possible worlds for the four 

outcomes using the query 𝑆 ∶=  𝑟𝑒𝑝𝑎𝑖𝑟 − 𝑘𝑒𝑦𝑇𝑜𝑠𝑠@𝐹𝑃𝑟𝑜𝑏(𝑅): 

 

𝑈𝑅 𝑉 → 𝐷 𝑇𝑜𝑠𝑠 𝐹𝑎𝑐𝑒 𝐹𝑃𝑟𝑜𝑏 

 1 → 𝐻  1 𝐻 0.4  

  1 → 𝑇  1 𝑇 0.6  

 2 → 𝐻  2 𝐻 0.4  

 2 → 𝑇  2 𝑇 0.6  

 

𝑊 𝑉 𝐷 𝑃 

 1 𝐻 0.4  

  1 𝑇 0.6  

 2 𝐻 0.4  

 2 𝑇 0.6  
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The resulting possible worlds are:  

𝑆1 𝑇𝑜𝑠𝑠 𝐹𝑎𝑐𝑒 𝐹𝑃𝑟𝑜𝑏 

 1 𝐻 0.4  

  2 𝐻 0.4  

 

𝑆2 𝑇𝑜𝑠𝑠 𝐹𝑎𝑐𝑒 𝐹𝑃𝑟𝑜𝑏 

 1 𝐻 0.4  

  2 𝑇 0.6  

 

𝑆3 𝑇𝑜𝑠𝑠 𝐹𝑎𝑐𝑒 𝐹𝑃𝑟𝑜𝑏 

 1 𝑇 0.6  

  2 𝐻 0.4  

 

𝑆4 𝑇𝑜𝑠𝑠 𝐹𝑎𝑐𝑒 𝐹𝑃𝑟𝑜𝑏 

 1 𝑇 0.6  

  2 𝑇 0.6  

 

with probabilities 𝑝1 =  𝑝 ∗  
0.4

0.4+0.6
∗

0.4

0.4+0.6
 =  0.16, 𝑝2 = 𝑝3 = 0.24, and 𝑝4 = 0.36.  

4. Choice-of operation: introduces uncertainty like the repair-key operation, but can only cause 

a polynomial, rather than exponential, increase of the number of possible worlds (9). 

Semantics: 

𝑐ℎ𝑜𝑖𝑐𝑒 − 𝑜𝑓 𝐴⃗⃗⃗⃗ @𝐵(𝑅) =  R ⋈ repair − key∅@B (𝜋 𝐴⃗⃗⃗⃗ ,𝐵(R)). 

R must satisfy the functional dependency 𝑅 ∶   𝐴⃗⃗⃗⃗  →  𝐵 and the B values must be real numbers 

greater than 0.  

Example 8. For a probabilistic database R: 

𝑅1 𝐴 𝐵 𝐶  

 𝑎 1 𝑐  

  𝑎 1 𝑑 𝑃𝑟 = 0.5  (𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑜𝑓   

 𝑏 3 𝑒 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑙𝑑𝑠) 
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Operation 𝑐ℎ𝑜𝑖𝑐𝑒 − 𝑜𝑓 𝐴⃗⃗⃗⃗ @𝐵(𝑅) produces the following worlds (for  

𝑅1): 

𝑆1.1 𝐴 𝐵 𝐶  

 𝑎 1 𝑐  

  𝑎 1 𝑑 𝑃𝑟 = 0.5 ∗
1

4
=

1

8
  

 

𝑆1.2 𝐴 𝐵 𝐶  

  𝑏  3 𝑒 𝑃𝑟 = 0.5 ∗
3

4
=

3

8
  

 

5. Assert operation: takes a Boolean positive relational algebra query φ in SQL syntax as an 

argument, i.e., a select-from-where-union query without aggregation and conditions the 

database using this constraint φ. Conceptually, it removes all the possible worlds in which 

φ evaluates to false and renormalizes the probabilities so that they sum up to one again (9).  

Semantics: 

[[𝑎𝑠𝑠𝑒𝑟𝑡(𝜑)]](𝑊) ≔  {(𝑅1, . . . , 𝑅𝑘,
𝑝

𝑝0
)| (𝑅1, . . . , 𝑅𝑘 , 𝑝) ∈ 𝑊,  

(𝑅1, . . . , 𝑅𝑘)  ⊨ 𝜑, 𝑝0 = ∑ 𝑝(𝑅´1,… ,𝑅´𝑘,𝑝) ∈ W,(𝑅´1,… ,𝑅´𝑘) ⊨𝜑  }.  

If the condition is such that the operation would delete all possible worlds when executed, it 

fails with an error (and leaves the database untouched). Example of the assert operation is 

presented in the following sections. 

 

Representation model 

 

Here we describe the method for representing and storing probabilistic data in MayBMS. Let us start 

with a motivating example. 

Example 9. Network marketing for cosmetics and perfume companies involves a huge amount of 

manually filled in forms: the employees have to spend a lot of time “on the streets” collecting future 

clients’ data, such as names, phone numbers and product preferences. The data in these forms 

afterwards has to be put into a database. It can be done automatically or manually, but neither the 

person doing the job or the program are able recognize handwriting 100% correctly. Therefore, 

uncertainty may be introduced into the database for some of the answers. Figure 6 shows the example 

of a form and three filled in forms for a perfume selling company.  
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Perfumes campaign form 

  

Name:  

Mobile Number:   

Preferable Perfumes Brands: (1)  Gucci              □ (2) Dior                        □ 

 (3) Calvin Klein    □ (4) Dolce & Gabbana   □ 

Figure 6 (a) 

 

Figure 6 (b) 

 

Figure 6 (c) 

 

Figure 6 (d) 
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Each form consists of the name, phone number (for calling the potential client later) and preference 

in the brands of perfume. The first person, ANAS ALBASSIT, have not checked any perfume brands. 

The second person – WARD TAYA – checked “Gucci” at first, but then changed his choice to “Dior”, 

however, it could also be the opposite. The phone numbers can also be interpreted differently (and we 

assume that there cannot be two people with the same phone numbers). Since all three people live in 

Brussels and are clients of the same mobile operator, all numbers starting with 0485 007, but the 

ending parts must vary. As can be seen from the Figure 6, ANAS’ number could be ending on 185 or 

785, KATYA’s may either be 185 or 186, and WARD’s number looks like both 186 and 188. 

In an SQL database uncertainty can be managed using null values (9). But in this case, we lose 

information about the possible values. And obviously, it is not possible to express correlations, i.e. 

with null values we cannot ensure that two people will not have the same phone number. In our 

example, we can exclude the case that ANAS and KATYA both have the number ending on 185, also 

KATYA and WARD cannot have 186 at the same time. Finally, by using null values it is impossible 

to store probabilities for the possible worlds. 

This example shows us three desired features of the representation system (2): expressiveness - the 

power to represent probabilistic databases, succinctness - space-efficient storage of the uncertain data, 

and efficient real-world query processing. 

MayBMS uses a relational representation system called U-relational databases, which is based on 

probabilistic versions of the conditional tables (c-tables) mentioned in above sections. Conditional 

tables are a relational representation system that uses “labeled null values” or “variables”, i.e. null 

values with a name. The name makes it possible to use the same variable x in several fields of a 

database, indicating that the value of x is unknown but must be the same in all those fields in which x 

occurs. Tables with variables are also known as v-tables (2). 

C-tables are v-tables extended by a column that holds a local condition: each tuple of a c-table has a 

Boolean condition consisting of AND, OR, and NOT combinations of atomic conditions. Each atomic 

condition can be of two forms: 𝑥 =  𝐶  or  𝑥 =  𝑦, where C is a constant and x and y are variables.  

Conditional tables are a so-called “strong representation system”: the set of worlds defining the result 

of a query in each possible world that is a conditional table can again be represented by a conditional 

table (9). 

In the model used by MayBMS, probabilistic databases are finite sets of possible worlds with 

probability weights attached to them. So each variable can be considered a finite random variable. 

Additionally, it is assumed without loss of generality that each atomic condition only compares a 

variable to a constant: 𝑥 =  𝐶 (9). 

If the initial c-table has each local condition as a conjunction of no more than k atomic conditions, 

then a query on this database will give us a c-table in which each local condition is a conjunction of 

no more than k´ conditions, where k´ only depends on k and the query (not on the data). If k is small, 

it is reasonable to actually hard-wire it in the schema, and represent local conditions by k pairs of 

columns storing conditions 𝑥 =  𝐶. In the current implementation of the MayBMS system random 

variables are assumed independent (2).  
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Example 10. The tables in Figure 7 is a U-relational database for the marketing campaign from 

Example 9, probabilities added for the alternative values of different fields (table W). 

𝑈𝑅[𝑀𝑁] 𝑉 → 𝐷 𝑇𝐼𝐷 𝑀𝑁 

 𝑥 → 1  𝑡1  048500185  

  𝑥 → 2  𝑡1  048500785  

 𝑦 → 1  𝑡2  048500185  

 𝑦 → 2  𝑡2  048500186  

 𝑧 → 1  𝑡3  048500186  

 𝑧 → 2  𝑡3  048500188  

Figure 7 (a) 

 

UR[N] TID N 

 t1  ANAS ALBASSIT  

 t2  KATYA KRASNASHCHOK  

 t3  WARD TAYA  

Figure 7 (b) 

𝑈𝑅[𝑃𝑃𝐵] 𝑉 → 𝐷 𝑇𝐼𝐷 𝑃𝑃𝐵 

 𝑢 → 1  𝑡1  1  

  𝑢 → 2  𝑡1  2  

 𝑢 → 3  𝑡1  3  

 𝑢 → 4  𝑡1  4  

 𝑤 → 1  𝑡2  2  

 𝑣 → 1  𝑡3  1  

 𝑣 → 2  𝑡3  2  

Figure 7 (c) 
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𝑊 𝑉 → 𝐷 𝑃 

 𝑥 → 1  0.4  

 𝑥 → 2  0.6  

 𝑦 → 1  0.7  

 𝑦 → 2  0.3  

 𝑧 → 1  0.9  

 𝑧 → 2  0.1  

 𝑢 → 1  0.25  

  𝑢 → 2  0.25  

 𝑢 → 3  0.25  

 𝑢 → 4  0.25  

 𝑤 → 1  1  

 𝑣 → 1  0.2  

 𝑣 → 2  0.8  

Figure 7 (d) 

A U-relational database is constructed as a set of independent random variables with finite domains 

(in our example they are x, y, z, u, v and w), plus a set of U-relations, and a ternary table W (“the 

world-table”) for representing distributions of probabilities. For each variable, the W table stores 

which values it can take and with what probability. The schema of each U-relation is a set of pairs 

(𝑉𝑖, 𝐷𝑖) representing variable assignments plus a set of value columns for representing the data values 

of tuples (9). 

U-relational databases are a complete representation system for (finite) probabilistic databases. Hence, 

this form can be used to represent any probabilistic database. Starting from an initial database, the 

result of the query on this database can again be represented as a U-relational database. It is implied 

that any correlation among tuples also can be represented the same way, despite the fact that currently 

the random variables constructing those correlations are considered independent (9). 

 

Query language 

 

The query language of MayBMS is based on SQL. In terms of U-relations traditional relational tables 

are a special case: they are called typed-certain (t-certain) tables. Tables that are not t-certain are called 

uncertain (2). Semantically, we can say that 

𝑐𝑒𝑟𝑡(𝑅)  =  𝜋𝑠𝑐ℎ(𝑅)(𝜎𝑃=1(𝑐𝑜𝑛𝑓(𝑅))). 
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In MayBMS, on t-certain tables full SQL is supported. For uncertain tables, there are some restrictions 

because of the specifics of the probabilistic databases. In particular, MayBMS does not support 

aggregates like sum or count on uncertain relations, the reason being that these aggregates will 

produce exponentially many different numerical results in the various possible worlds, and there is no 

way to efficiently represent these results. However, MayBMS has its own set of aggregations 

especially for uncertain tables, such as expected sums and counts - esum and ecount. Moreover, the 

conf operation is also an aggregate. All aggregates on uncertain tables produce t-certain tables (9). 

The MayBMS query language is built from uncertain and t-certain queries. The uncertain queries are 

those that produce a possibly uncertain relation - a U-relation, and t-certain queries produce traditional 

database tables – t-certain tables. 

The basic operations in MayBMS are: 

1. Repair-key: 

repair key <attributes> in 
(<t-certain-query> | <t-certain-
relation>) 
[ weight by <expression> ]  
 

The repair-key operation turns a t-certain-query (or a t-certain-relation) into the set of worlds 

consisting of all possible maximal repairs of key attributes. The <expression> is used for 

weighting the newly created alternative repairs. The value of <expression> cannot be 

negative. Without the weight by clause, a uniform probability distribution is assumed: if there 

are n tuples with the same key, each of them is associated with a probability 1/n. The tuples 

with the zero probability are not included in the resulting possible worlds. Repair-key can be 

placed wherever a select statement is allowed in SQL (note that repair-key is a query, rather 

than an update statement) (2).  

2. Pick-tuples: 

pick tuples from 
<t-certain-query> | <t-certain-relation> 
[independently] 
[with probability <expression>]; 
 

The pick-tuples selects a subset of the tuples of t-certain query or relation. For the 

<expression> only values in (0,1] are accepted. If <expression> is missing every tuple in a 

possible world has the probability 0.5. Tuples with resulting probability 0 are ignored. The 

operation can be placed wherever a select statement is allowed (2). 

3. Possible: 

select possible <attributes> from <query> 
| <relation>; 
 

This operation selects the set of tuples that appear in at least one possible world. This 

construct is a shortcut for the query which selects all distinct tuples with confidence greater 

than zero. 
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4. Confidence and approximate aggregates: 

Here is the summary of the aggregation functions introduced by MayBMS: 

 argmax: 

argmax(<argument-attribute>, <value-
attribute>) 
 

outputs all the argument-attribute values in the current group (determined by the 

group-by) whose tuples have a maximum value-attribute value within the group. 

Can be used on all relations and queries (9). 

 conf: 

select <attribute | conf()> [, ...] 
from <query> | <relation> 
group by <attributes>; 
 

computes for each possible distinct tuple that occurs in an uncertain relation in at 

least one possible world, the sum of the probabilities of the worlds in which it 

occurs. Can only be used on a uncertain query and the output is a t-certain relation. 

 tconf: 

select <attribute | tconf()> [, ...] 
from <query> | <relation>; 
 

for each possible tuple computes the sum of the probabilities of the worlds where it 

appears. It is different from conf: it does not eliminate duplicates. Can only be used 

on a t-uncertain query and the output is a t-certain relation. 

 aconf(ε, δ): 

select <attribute | aconf(<epsilon>, 
<delta>)> [, ...] 
from <query> | <relation> 
group by <attributes>; 
 

computes for each possible distinct tuples of the target list that occurs in at least one 

possible world, the approximate sum of the probabilities of the worlds in which it 

occurs. If p is the exact conf and ˆp is the approximate sum (aconf), the 

approximation has the property: 

Pr[|𝑝 −  ˆ𝑝| ≥  𝜀 ∗  𝑝] ≤ 𝛿. 

 esum and ecount: 

select <attribute | esum(<attribute>) | 
ecount()> [, ...] 
from <query> | <relation> 
group by <attributes>; 
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these aggregates compute expected sums and counts across groups of tuples. Esum 

and ecount can only be used on a t-uncertain query and the output of the query is a 

t-certain relation (2). 

5. Updates. MayBMS supports the usual schema alteration and update statements of SQL (2), 

such as: 

 insertions of the form 

insert into <uncertain-table> 
(<uncertain-query>); 
 

 DDL operations such as 

create table <uncertain-table> as 
(<uncertain-query>); 
 

 deletions 

delete from <uncertain-table> where 
<condition>; 
 

6. Conditioning operation assert:  

Example 11. Consider the four possible worlds for the R[MN] (mobile number) relation of 

the perfume marketing campaign example. 

 

𝑅1 𝑇𝐼𝐷 𝑀𝑁 

 𝑡1 048500185 

 𝑡2 048500185 

 

𝑅2 𝑇𝐼𝐷 𝑀𝑁 

 𝑡1 048500185 

 𝑡2 048500186 

 

𝑅3 𝑇𝐼𝐷 𝑀𝑁 

 𝑡1 048500785 

 𝑡2 048500185 
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𝑅4 𝑇𝐼𝐷 𝑀𝑁 

 𝑡1 048500785 

 𝑡2 048500186 

 

To assert the functional dependency R: MN → TID = Q (Boolean) (i.e. no two people can 

have the same phone number), we execute assert(Q): the operation will delete the first world 

and renormalize the probabilities so they sum up to 1.  

As we can see from this example, assert operation can apply a set of constraints to a 

probabilistic database and return cleaned, “more certain” database. 
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Case Study. “LinkedIn”- like social network 

 

As we all know, IT4BI is more than a master's degree program. It gathers the best students the world 

over and put them together to make a group of elites and seize out the best of themselves.  

This year two people of this group have met and added one each another on LinkedIn, those two are 

Katya and Anas. Since they are connected now on this social network, their old networks are 

connected now in a way or another. After calculating how likely one in Katya's network can be 

connected to one in Anas's network based on their skills, their previous or current jobs, their previous 

or current universities and schools or even the places they have been to in the same periods like 

conferences or meeting or workshops, we got the best 12 people from each one's network to be 

candidates to recommend them to one each another in the future. The full code of the case study can 

be found in the accompanying text file. 

 

Figure 8 
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In addition, we can get these two groups (Figure 8) and make some experiments on them. First, as we 

realize easily most of the people in the two groups are from Syria or Belarus the countries which Anas 

and Katya came from, respectively. This gives us the chance to ask some questions like 

1) What is the probability to find a Belarusian in this group connected to a Syrian, and vice versa? 

We can as well ask more interesting questions like: 

2) What is the probability to find three people connected in the resulted graph and they are from 

different nationalities? 

Let us start with the first question and to answer this simple question we need to create a table of the 

people inside this graph 

 

create table Person (ID integer, varchar name, nationality varchar); 

 

insert into Person values (1, 'Sami','SY'); 

insert into Person values (2, 'Eias','SY'); 

insert into Person values (3, 'Alaa','SY'); 

insert into Person values (4, 'Ghazal','SY'); 

insert into Person values (5, 'Rami','SY'); 

insert into Person values (6, 'Jad','SY'); 

insert into Person values (7, 'Ricardo','CL'); 

insert into Person values (8, 'Nacho','AR'); 

insert into Person values (9, 'Bakari','IN'); 

insert into Person values (10, 'Jack','US'); 

insert into Person values (11, 'Samuel','US'); 

insert into Person values (12, 'Finn','DE'); 

insert into Person values (13, 'Tanya','BY'); 

insert into Person values (14, 'Elena','BY'); 

insert into Person values (15, 'Polina','BY'); 

insert into Person values (16, 'Olga','BY'); 

insert into Person values (17, 'Alex','BY'); 

insert into Person values (18, 'Vlad','BY'); 

insert into Person values (19, 'Sasha','US'); 

insert into Person values (20, 'Pavel','BR'); 

insert into Person values (21, 'Marik','ES'); 

insert into Person values (22, 'Viktor','VE'); 

insert into Person values (23, 'Anton','BY'); 

insert into Person values (24, 'Tyler','FR'); 
 

 

Then we need to create a table that defines the probability that connects each one to another and in 

this example we assume that we have a complete graph which means a table of C(24,23)*2 tuples. 

The number 2 means that for each relation between two people there's a probability that they are 

connected (𝑝) and another one (𝑞 =  1 − 𝑝) that there not connected. 

So we start with creating a table of probabilities called 𝐹𝑂𝐹 and then fill it with the data with a 

condition(𝐼𝐷1 <  𝐼𝐷2). 
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 create table FOF (ID1 integer, ID2 integer, bit integer, p real); 

 

 insert into FOF values (1, 2,1,0.02); 

 insert into FOF values (1, 3,1,0.12); 

 ... 

 insert into FOF values (8, 17,1,0.07); 

 insert into FOF values (8, 18,1,0.07); 

 insert into FOF values (8, 19,1,0.07); 

 insert into FOF values (8, 20,1,0.07); 

 insert into FOF values (8, 21,1,0.07); 

 ... 

 insert into FOF values (11, 15,1,0.33); 

 insert into FOF values (11, 16,1,0.33); 

 insert into FOF values (11, 17,1,0.33); 

 insert into FOF values (11, 18,1,0.33); 

 insert into FOF values (11, 19,1,0.33); 

 insert into FOF values (11, 20,1,0.23); 

 ... 

 insert into FOF values (21, 24,1,0.04); 

 insert into FOF values (22, 23,1,0.04); 

 insert into FOF values (22, 24,1,0.04); 

 insert into FOF values (23, 24,1,0.04); 

  

 

Then we insert the inverse of this table to get the full graph 

 
 

 insert into FOF select ID2 as ID1, ID1 as ID2, bit, p from FOF; 

  

 

And finally insert the probability of not connecting (𝑞 = 1 − 𝑝) 

 
 

 insert into FOF select ID1, ID2, 0 as bit, 1-p as p from FOF; 

  

 

Now we apply the function ′𝑟𝑒𝑝𝑎𝑖𝑟 𝑘𝑒𝑦′ on ′𝐼𝐷1′ and ′𝐼𝐷2′ weighted by the probability ′𝑃′ to add to 

our information a probabilistic meaning   

 
 

 create table FOFP as repair key ID1,ID2 in FOF weight by p; 

  

 

We delete then the probability of not being connected because we will not need this in the next queries 

so we raise the efficiency of the operations 

 
 

 delete from FOFP where bit=0; 
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After all, the resulted table will have the shape of 

 
 

 select id1,id2,p from FOFP; 

 

 

   id1 |  id2 |   p  | _v0  | _d0  | _p0  

 ------+------+------+------+------+------ 

    1  |   2  | 0.02 | 1824 | 4627 | 0.02 

    1  |   3  | 0.12 | 1825 | 4611 | 0.12 

    1  |   4  | 0.08 | 1826 | 4034 | 0.08 

    1  |   5  | 0.13 | 1827 | 4709 | 0.13 

    1  |   6  | 0.02 | 1828 | 3882 | 0.02 

    1  |   7  | 0.02 | 1829 | 4597 | 0.02 

    1  |   8  | 0.02 | 1830 | 4479 | 0.02 

    1  |   9  | 0.02 | 1831 | 4573 | 0.02 

    1  |  10  | 0.02 | 1832 | 4644 | 0.02 

    1  |  11  | 0.03 | 1833 | 3977 | 0.03 

    1  |  12  | 0.03 | 1834 | 4451 | 0.03 

    1  |  13  | 0.03 | 1835 | 4412 | 0.03 

    1  |  14  | 0.03 | 1836 | 3978 | 0.03 

    1  |  15  | 0.03 | 1837 | 3873 | 0.03 

    1  |  16  | 0.03 | 1838 | 3708 | 0.03 

    1  |  17  | 0.03 | 1839 | 4510 | 0.03 

    1  |  18  | 0.03 | 1840 | 4427 | 0.03 

    1  |  19  | 0.03 | 1841 | 3947 | 0.03 

    1  |  20  | 0.03 | 1842 | 4224 | 0.03 

    1  |  21  | 0.03 | 1843 | 3715 | 0.03 

    1  |  22  | 0.03 | 1844 | 3651 | 0.03 

    1  |  23  | 0.03 | 1845 | 4160 | 0.03 

  ... ... 

  ... ... 

   23  |  20  | 0.04 | 2349 | 4373 | 0.04 

   24  |  20  | 0.04 | 2372 | 3846 | 0.04 

   22  |  21  | 0.04 | 2327 | 4702 | 0.04 

   23  |  21  | 0.04 | 2350 | 3632 | 0.04 

   24  |  21  | 0.04 | 2373 | 4684 | 0.04 

   23  |  22  | 0.04 | 2351 | 3757 | 0.04 

   24  |  22  | 0.04 | 2374 | 4457 | 0.04 

   24  |  23  | 0.04 | 2375 | 3918 | 0.04 

 (552 rows) 

 

 

Now we start with the first query: 

 

1- What is the probability to find a Belarusian in this group connected to at least one Syrian? 

 
 

 select conf() from Person p1,Person p2, FOFP a1, FOFP a2   

 where p1.ID=a1.ID1 and p2.ID=a2.ID1  

    and a1.ID1=a2.ID2 

    and p1.nationality='BY' and p2.nationality='SY'; 
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And the result will be: 

    
 

   conf 

 --------- 

  0.72466 

 (1 row) 

 

 

2- What is the probability to find a Syrian in this group connected to at least one Belarusian? 

 
 

 select conf() from Person p1,Person p2, FOFP a1, FOFP a2   

 where p1.ID=a1.ID1 and p2.ID=a2.ID1  

    and a1.ID1=a2.ID2 

    and p1.nationality='SY' and p2.nationality='BY'; 

 

 

The result in this case: 

 
 

   conf 

 --------- 

  0.652152 

 (1 row) 

 

    

3-  What is the probability to find three people connected in the resulted graph and they are from 

different nationalities? 

 
 

 select conf() from Person p1,Person p2 , Person p3, 

                         FOFP a1, FOFP a2, FOFP a3   

 where p1.ID=a1.ID1 and p2.ID=a2.ID1 and p3.ID=a3.ID1 and 

    a1.ID1=a2.ID2 and a2.ID1=a3.ID2 and a3.ID1=a1.ID2 

    and p1.nationality<>p2.nationality  

              and p2.nationality<>p3.nationality  

              and p3.nationality<>p1.nationality; 

 

 

And the result is: 

 
 

   conf 

 ---------- 

  0.531145 

 (1 row) 
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An even more efficient implementation uses the approximated confidence (𝑎𝑐𝑜𝑛𝑓(𝑎, 𝑏)) instead of 

the accurate one (𝑐𝑜𝑛𝑓) that deviates from the correct probability 𝑝 by more than 𝑎, 𝑝 is less than 𝑏. 

All this since the number of tuples is big and it needs much time to calculate it, despite that the 

approximated one gives almost the right answers in much less time. 

Let us then apply 𝑎𝑐𝑜𝑛𝑓(.05, .05) 

 
 

 select aconf(.05,.05) from Person p1,Person p2 , Person p3,  

                                 FOFP a1, FOFP a2, FOFP a3   

 where p1.ID=a1.ID1 and p2.ID=a2.ID1 and p3.ID=a3.ID1 and 

    a1.ID1=a2.ID2 and a2.ID1=a3.ID2 and a3.ID1=a1.ID2 

    and p1.nationality<>p2.nationality  

              and p2.nationality<>p3.nationality  

              and p3.nationality<>p1.nationality; 

 

 

And the result will be, in this case: 

 
 

   aconf 

 ---------- 

  0.532031 

 (1 row) 

 

 

Now let us assume that Katya and Anas decided create a new startup and they decided to rely on one 

team of developers to help them. This team should be located in Syria or in Belarus so they can 

communicate easier in terms of geography and languages. 

So they started by gathering the skills they need to establish the startup which are: 

 
 

 1, Java 

 2, PHP 

 3, Symfony 

 4, C# 

 5, MySQL 

 6, Android  

 7, IOS 

 8, AJAX 

 9, XML 

 10, MVC 

  

 

And then they decided each on 5 of their friends 
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 Katya's Belarusian Team: 

 

 1, Tanya 

 2, Elena 

 3, Polina 

 4, Olga 

 5, Alex 

 

 

 Anas's Syrian Team: 

 

 1, Sami 

 2, Eias 

 3, Alaa 

 4, Ghazal 

 5, Rami 

  

 

Again, we got the profiles of those people on LinkedIn and we collected their skills. 

Now let us assume that they invited both teams, they want for sure (certain probability) to collect the 

skills that they can get from each team if we know that most probably one member of each suggested 

team will not be able to work with them, and based on that choose the more suitable team to represent 

the startup. 

To get this information we start by creating the tables we need: 

 
 

 create table Skill (ID integer, skill varchar ); 

 

 insert into Skill values (1, 'Java'); 

 insert into Skill values (2, 'PHP'); 

 insert into Skill values (3, 'Symfony'); 

 insert into Skill values (4, 'C#'); 

 insert into Skill values (5, 'MySQL'); 

 insert into Skill values (6, 'Android');  

 insert into Skill values (7, 'IOS'); 

 insert into Skill values (8, 'AJAX'); 

 insert into Skill values (9, 'XML'); 

 insert into Skill values (10, 'MVC'); 

  

 

And 

 
 

 create table Person_Skill (PID integer, SID integer); 

 

 insert into Person_Skill values (1, 1); 

 insert into Person_Skill values (1, 4); 

 insert into Person_Skill values (1, 5); 

 insert into Person_Skill values (1, 3); 

 insert into Person_Skill values (5, 5); 

 ... 

 insert into Person_Skill values (13, 6); 

 insert into Person_Skill values (14, 7); 

 insert into Person_Skill values (15, 8); 

 ... 

 insert into Person_Skill values (4, 7); 

 insert into Person_Skill values (3, 8); 

 insert into Person_Skill values (2, 9); 

 insert into Person_Skill values (13, 10); 
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Then we create a helper table that contains for each one of the selected people and their nationality; 

 
 

 Create table PP as select distinct P.ID,P.nationality 

 from Person_Skill PS, Person P 

 where PS.PID=P.ID; 

   

 

We start theoretically by choosing the country which we want to represent us like this 
 

𝑈 = 𝑐ℎ𝑜𝑖𝑐𝑒_𝑜𝑓𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦  ( 𝑃𝑃 ) 

 
That will distribute the data inside the table 𝑆𝑆 into two worlds each one contains the data in 𝑃𝑆 that 

is related to one of the countries (𝑆𝑌, 𝐵𝑌). 

Now let us assume that one of the people in each group leaves the team 

 

𝑉 = 𝜋1.𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦,2.𝑃𝐼𝐷(𝑐ℎ𝑜𝑖𝑐𝑒_𝑜𝑓𝑃𝐼𝐷  (𝑈)⨝1.𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦=2.𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦∧1.𝑃𝐼𝐷≠2.𝑃𝐼𝐷𝑃𝑃 

 

That will distributes the data again into a number of worlds And each one contains 4 people from 

different countries which means. 

(5 (𝑜𝑛𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑆𝑦𝑟𝑖𝑎𝑛 𝑙𝑒𝑎𝑣𝑒𝑠) + 5 (𝑜𝑛𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐵𝑒𝑙𝑎𝑟𝑢𝑠𝑖𝑎𝑛 𝑙𝑒𝑎𝑣𝑒𝑠) = 10 𝑤𝑜𝑟𝑙𝑑𝑠) 
The first two relations could be represented in one query  

 
 

 create table RemainingPeople as 

 select PP.nationality, PP.ID 

 from PP, 

 (repair key dummy 

 in (select 1 as dummy, * from PP)) Choice 

 where PP.nationality = Choice.nationality 

 and PP.ID <> Choice.ID; 

   
 

And the resulted table will be 
 

 

  nationality | id | _v0  | _d0  | _p0 

 -------------+----+------+------+----- 

  SY          |  1 | 2387 | 4942 | 0.1 

  SY          |  1 | 2387 | 4941 | 0.1 

  SY          |  1 | 2387 | 4943 | 0.1 

  SY          |  1 | 2387 | 4940 | 0.1 

  SY          |  2 | 2387 | 4942 | 0.1 

      ... 

  BY          | 16 | 2387 | 4946 | 0.1 

  BY          | 17 | 2387 | 4944 | 0.1 

  BY          | 17 | 2387 | 4947 | 0.1 

  BY          | 17 | 2387 | 4949 | 0.1 

  BY          | 17 | 2387 | 4946 | 0.1 

 (40 rows)  
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Where _𝑑0 represents the 𝑤𝑜𝑟𝑙𝑑 𝐼𝐷 and hence it has 10 distinct values each one with a probability 

of 0.1.  

Now let us compute the skills that we would gain in that case which are: 

 

𝑊 = 𝜋𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 𝑎𝑠 𝑡𝑒𝑎𝑚,𝑠𝑘𝑖𝑙𝑙  ( 𝑉 ⨝ 𝑃𝑃 ⨝ 𝑃𝑒𝑟𝑠𝑜𝑛_𝑆𝑘𝑖𝑙𝑙 )  

 

And this is the query that represents this operation 

 
 

 create table SkillsAcquired as 

 select Q1.nationality as team, Q1.skill, p1, p2, p1/p2 as p 

 from (select R.nationality, S.skill, conf() as p1 

  from RemainingPeople  R, Person_skill PS, Skill S 

  where PS.SID=S.ID and R.ID = PS.PID 

  group by R.nationality, S.skill) Q1, 

  (select nationality, conf() as p2 

  from RemainingPeople  

  group by nationality) Q2 

 where Q1.nationality = Q2.nationality; 

  

 

At this moment if we wanted to choose the skills that we obtain for certain we apply 

 

𝐶 = 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑒𝑎𝑚,𝑠𝑘𝑖𝑙𝑙  ( 𝑊 )  

 
  

 select team, skill from SkillsAcquired where p=1; 

  

 team  |  skill 

 ------+--------- 

  BY   | AJAX 

  BY   | Android 

  BY   | IOS 

  BY   | Java 

  BY   | MVC 

  BY   | PHP 

  BY   | Symfony 

  BY   | XML 

  SY   | AJAX 

  SY   | Android 

  SY   | C# 

  SY   | IOS 

  SY   | MVC 

  SY   | MySQL 

  SY   | XML 

 (15 rows) 

 

 

Hence, we choose the first team to be our representative since we do not need to spend much money 

to acquire the incomplete skills list. 

However, it is worth looking at the auxiliary table SkillAcquired: 
  



40 
 

 

  team |  skill  | p1  | p2  |  p 

 ------+---------+-----+-----+----- 

  BY   | AJAX    | 0.5 | 0.5 |   1 

  BY   | Android | 0.5 | 0.5 |   1 

  BY   | IOS     | 0.5 | 0.5 |   1 

  BY   | Java    | 0.5 | 0.5 |   1 

  BY   | MVC     | 0.5 | 0.5 |   1 

  BY   | PHP     | 0.5 | 0.5 |   1 

  BY   | Symfony | 0.5 | 0.5 |   1 

  BY   | XML     | 0.5 | 0.5 |   1 

  SY   | AJAX    | 0.5 | 0.5 |   1 

  SY   | Android | 0.5 | 0.5 |   1 

  SY   | C#      | 0.5 | 0.5 |   1 

  SY   | IOS     | 0.5 | 0.5 |   1 

  SY   | Java    | 0.4 | 0.5 | 0.8 

  SY   | MVC     | 0.5 | 0.5 |   1 

  SY   | MySQL   | 0.5 | 0.5 |   1 

  SY   | PHP     | 0.4 | 0.5 | 0.8 

  SY   | Symfony | 0.4 | 0.5 | 0.8 

  SY   | XML     | 0.5 | 0.5 |   1 

 (18 rows) 

  

 

This table contains the tuples (𝑥, 𝑦, 𝑝1, 𝑝2, 𝑝) such that: 

 

 𝑥 is a team or a nationality; 

 𝑦 is a skill; 

 𝑝1 is the probability that the chosen country is 𝑥 and the skill 𝑦 is gained; 

 𝑝2 is the probability that 𝑥 is the chosen team; 

 𝑝 =  𝑝1/𝑝2 is the probability that skill 𝑦 is gained if team 𝑥 is chosen 
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Conclusion 
 

A lot of applications can use imprecise data and therefore, probabilistic databases and the system for 

managing uncertain data. This brings the benefit of not having to clean the data, which can be a 

complicated, long and expensive process that still cannot guarantee a 100% correctness of the results. 

Moreover, probabilistic databases can be used successfully in data mining for finding correlations 

between various kinds of data, and in decision support and forecasting – for better predictions based 

on probabilities of different events.  

But the difficulty of the problem of probabilistic inference resulted in the fact that currently there are 

no complete and efficient system exists for managing uncertain data. Various ongoing projects 

continuously try to achieve this goal in practice, supported by an increasing number of theoretical 

researches conducted in this area. Wide range of books, research papers and magazine articles has 

been written about probabilistic (or more generally, uncertain) data, each of them targeting different 

angles of this complex field: representation systems, query evaluation, user interface etc. 

Most of those papers stick to the relational model for representing probabilistic data, but there are 

some that try to go beyond relational databases and introduce alternative ways of managing uncertain 

data, for example semistructured probabilistic databases (20) (which, to be completely fair, are XML 

extensions over the same relational databases). 

Judging by the increasing interest in probabilistic data research, we can expect that in near future there 

may be new exciting discoveries in terms of solutions for the complexity and representation issues, 

which may not completely eliminate the problem, but will definitely (or, with a certain probability) 

lead to the development of new management systems, more efficient and ready to be deployed in large 

serious applications. And, consequently, real applications will bring more and more research 

possibilities. 

In this report, we presented a state of the art overview of probabilistic databases, described various 

ways of data representation and executing queries. Also we provided a review of the probabilistic 

database management system we used for the case study – MayBMS – one of the most full, updated 

and documented systems out there, and, to our knowledge, having the most potential for development. 

In addition to that, we constructed a number of examples illustrating various theoretical concepts of 

probabilistic databases and possibilities of the chosen system: information extraction example, data 

cleaning (perfume marketing campaign) etc. Finally, we created a case study based on the social 

network like “LinkedIn” to show that probabilistic data can be successfully used in decision support 

and data analysis. 
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Appendix A. The code for data cleaning example (“perfume marketing campaign”) 

 

  

  

 --create initial table with initial data 

 create table PerfumeFormI (ID integer, TN integer, p float); 

 insert into PerfumeFormI values (1, 0485007185, .4); 

 insert into PerfumeFormI values (1, 0485007785, .6); 

 insert into PerfumeFormI values (2, 0485007185, .7); 

 insert into PerfumeFormI values (2, 0485007186, .3); 

 insert into PerfumeFormI values (3, 0485007186, .9); 

 insert into PerfumeFormI values (3, 0485007188, .1); 

 

 --op(repair_key) 

 create table PerfumeForm as 

 repair key ID in PerfumeFormI weight by p; 

 

 --take a look at the initial data 

 select ID, TN, conf() as initial 

 from PerfumeForm 

 group by ID, TN; 

 

 --create the table containing the violations and their propabilities 

 create table violations as 

 select S1.TN 

 from PerfumeForm S1, PerfumeForm S2 

 where S1.ID < S2.ID and S1.TN = S2.TN; 

 

 --create a table that contains how likely each person has each initial 

        number                                                                                             

 create table ID_TN_Final as 

 select Q1.ID, Q1.ID, p1, p2, p3, cast((p1-p2)/(1-p3) as real) as posterior 

 from( select ID, TN, conf() as p1 

   from PerfumeForm 

   group by ID, TN ) Q1, 

  ((select TN, conf() as p2 

   from violations 

   group by TN) 

  union 

  ((select TN, 0 as p2 from PerfumeFormI) 

  except 

  (select possible TN, 0 as p2 from violations))) Q2, 

  (select a.ID, conf() as p3 

   from PerfumeForm a,violations b 

   where a.TN=b.TN 

   group by a.ID) Q3 

 where Q1.TN = Q2.TN and Q1.ID = Q3.ID; 

  

 --show the results 

 select * from ID_TN_Final; 

 

 

  



44 
 

Appendix B. Installing and running MayBMS system 

 

Installing MayBMS 

 

Installers for MayBMS are available for both Windows and Linux operating systems and can be 

downloaded at https://sourceforge.net/projects/maybms/. After you have obtained a copy of the installer, 

start it and follow the instructions. 

 

Running MayBMS 

 

After you have installed MayBMS, you can set up a database and start using it. Creating and accessing 

databases is the same as in PostgreSQL 8.3.3. Follow the links 
http://www.postgresql.org/docs/8.3/interactive/tutorial-createdb.html 
and 

http://www.postgresql.org/docs/8.3/interactive/tutorial-accessdb.html. 

 

Basically you have to go to the path where you installed MayBMS and consider running those 

instructions: 

1- Create new database 

Initdb -D mydbname 

2- Start the database 

Pg_cql start -D mydbname 

3- Start new session 

Psql template1 

4- Stop the database 

Pg_ctl stop -D mydbname 

 

https://sourceforge.net/projects/maybms/
http://www.postgresql.org/docs/8.3/interactive/tutorial-createdb.html
http://www.postgresql.org/docs/8.3/interactive/tutorial-accessdb.html

