
	

ADVANCED	DATABASES	

	

	

TERM	PROJECT	

	

STREAM	DATA	PLATFORMS	–	APACHE	KAFKA	

	

	

	

KANATOV,	KARİM	

ZEYBEK,	ALİ	BAHADIR	

	

	

	

TABLE	OF	CONTENTS	

	

	

• Abstract	

• Introduction	

• Stream	Processing,	Messaging,	Data	Warehouse	

• Use	Cases	

• Complex	Event	Processing	

• Apache	Kafka	

o Quick	Start	

o How	to	put	data	into	Kafka	

o How	to	get	data	from	Kafka	

o Design	

• Application	–	Converting	a	traditional	RDBMS	to	Stream	of	

Changes	using	Kafka	

• Application	–	Development	&	Running	

• Conclusion	

	

	

	

	

	

	

	

	

	

	

ABSTRACT	

	

	 Throughout	 this	 paper,	 one	 of	 the	 emerging	 concepts	 in	 the	 database	 world	 –	

Stream	Data	Platforms	and	what	 are	 they	useful	 for	will	 be	discussed.	Moreover,	Apache	

Kafka	 –	 a	 publish/subscribe	 messaging	 rethought	 –	 will	 be	 demonstrated	 to	 better	

understand	specific	use	cases	of	Stream	Data	Platforms.	

	

	

	

	

	

	

	

	

	

	

INTRODUCTION	

	

60	seconds.	Let	us	think	for	a	while	what	might	happen	on	internet	within	that	short	

period	of	 time.	According	 to	DOMO1,	each	minute	of	every	day	 the	 following	happens	on	

the	Internet:	

	

● 347,222	Tweets	sent!	

● More	than	300	Hours	of	content	uploaded	to	YouTube!	

● Up	to	2	Billion	photos	liked	in	Instagram.	

● 4.1	BILLION	Facebook	user	likes	posts!	

● Amazon	receives	4,310	unique	visitors.	

● Apple	users	download	51,000	apps	

	

All	of	these	happen	only	within	one	minute.		

According	 to	 Gartner’s,	 Inc.	 forecasts	 from	 20142,	 we	 will	 have	 around	 5	 billion	

connected	 things	 (Internet	 of	 Things)	 used	 in	 2015.	 In	 other	 words,	 those	 things	 will	

generate	 more	 data	 and	 the	 data	 will	 be	 streamed	 in	 real	 time.	 More	 interestingly,	 the	

majority	 of	 data	 that	 is	 used	 in	 internet	 today	 are	 created	 by	 individual	 users	 via	 social	

media.	It	is	never	ending	feed	of	information.		

Globally	3.2	billion	people	are	using	the	Internet	by	end	2015,	of	which	2	billion	are	

from	developing	countries3,	which	 is	45%	of	worldwide	population.	 It	means	 there	will	be	

more	 data	 in	 coming	 years.	 Those	 data	 will	 grow	 exponentially	 and	 will	 require	 to	 be	

processed	in	real	time.		

																																																													
1 https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/
2	https://www.gartner.com/newsroom/id/2905717	
3 https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf	

Now	 let	 us	 switch	 the	 topic	 to	 a	 different	 perspective.	 In	 most	 of	 the	 traditional	

business	applications,	 there	are	certain	changes	of	events	that	are	needed	to	be	captured	

and	act	accordingly.	Even	a	 simple	 shopping	site	has	different	events	 such	as	user	 login	–	

add	to	the	cart	–	payment	–	shipment	–	etc.	The	question	here	is	that	how	much	of	those	

event	changes	can	be	captured?		

Normally,	what	most	of	 the	applications	using	 traditional	RDBMS’s	 is	 changing	 the	

state	 of	 corresponding	 entry	 in	 the	 relation	 to	 the	 most	 up-to-date	 value.	 However,	

underlying	procedures	that	builds	up	to	the	final	state	are	usually	overridden.		

Stream	Data	Platform,	is	basically	good	for	two	main	concepts:	

• Data	 Integration:	 The	 stream	 data	 platform	 captures	 streams	 of	

events	or	data	changes	and	feeds	these	to	other	data	systems	such	as	

relational	 databases,	 key-value	 stores,	 Hadoop,	 or	 the	 data	

warehouse.	

• Stream	 Processing:	 It	 enables	 continuous,	 real-time	 processing	 and	

transformation	 of	 these	 streams	 and	 makes	 the	 results	 available	

system-wide.	

	

The	demand	 for	 stream	processing	 is	 increasing	a	 lot	 these	days.	Often	processing	

huge	volumes	of	data	is	not	enough.	Data	has	to	be	processed	fast,	so	that	a	firm	can	react	

to	 changing	business	 conditions	 in	 real	 time.	 This	 is	 required	 for	 trading,	 fraud	detection,	

system	monitoring,	and	many	other	examples.		

Generally,	 gathering	 the	 data	 depends	 on	 the	 data	 sources.	 Events	 coming	 from	

databases,	machine-generated	logs,	and	even	sensors	need	to	be	cleaned,	schematized	and	

forwarded	to	a	central	place.		

Secondly,	one	of	the	main	goals	on	development	of	Kafka	was	collecting	the	streams	

in	 one	 central	 place.	 So,	 brokers	 collect	 stream	 of	 data,	 log	 and	 buffer	 them	 in	 a	 fault	

tolerant	 manner,	 as	 well	 as	 distribute	 them	 among	 the	 various	 consumers	 that	 are	

interested	 in	 the	 streams	 of	 data.	 Finally,	 analysing	 the	 stream	 of	 data,	 which	 can	 be	

performed	well	using	other	Apache	solutions	like	Samza	or	Storm.	

This	paper	is	consisted	of	basic	understanding	of	the	stream	processing	and	the	role	

of	Kafka	on	it.	We	will	discuss	not	only	theoretical,	but	also	will	have	a	look	at	practical	use	

of	existing	solution.	

Further	 we	 will	 discuss	 the	 use	 of	 Kafka	 in	 detail.	 We	 will	 look	 at	 configuration,	

design	choice	and	implementation	of	Kafka.	Also,	the	use	of	Kafka	in	stream	processing	will	

be	discussed	in	detail.	

	

STREAM	PROCESSING,	MESSAGING,	DATA	WAREHOUSE	

Data	 Warehouses	 are	 well	 known	 for	 storing	 and	 analysing	 the	 structured	 data.	

Running	simple	query	on	top	of	terabytes	of	data	is	enough	to	get	any	historical	data	within	

seconds.		

However	 the	 ETL	 processes	 often	 take	 too	 long.	 As	 business	 grows,	 shareholders	

want	 to	 query	 up-to-date	 information,	 since	 information	 from	 the	 day	 before	 is	 not	

sufficient	enough	to	make	precise	decisions.	This	is	where	stream	processing	comes	in	and	

feeds	all	new	data	into	the	Data	Warehouse	immediately.		

	

	

Figure	1.	Stream	Data	Platform	architecture	build	around	Kafka	

The	problem	of	most	big	companies	 is	the	use	of	different	data	systems:	relational	

OLTP	databases,	Hadoop,	Teradata,	a	search	system,	monitoring	systems,	OLAP	stores	and	

so	on.	Therefore,	each	of	these	systems	needs	reliable	feeds	of	data.		

One	of	the	main	problems	that	Kafka	solves	is	transportation	of	data	between	those	

systems.	Once	 the	data	 is	 in	Kafka,	 consumers	 can	do	whatever	 is	needed.	Reliability	and	

low	latency	is	the	key	advantages	of	using	Kafka.	

	

	

	

,	

	

	

USE	CASES

	

One	 of	 the	 first	 commercial	 uses	 of	 stream	 processing	 was	 found	 in	 the	 finance	

industry,	as	 stock	exchanges	moved	 from	floor-based	 trading	 to	electronic	 trading.	Today,	

we	can	confidently	say	it	is	used	almost	in	every	industry	-	anywhere	where	stream	of	data	

are	 generated.	 The	 Internet	 of	 Things	 will	 increase	 volume,	 variety	 and	 velocity	 of	 data,	

leading	to	a	dramatic	increase	in	the	applications	for	stream	processing	technologies.	

Kafka	has	 been	developed	by	 LinkedIn	 engineering	 team;	 so,	 it	was	 the	 first	 place	

where	the	concept	and	real	abilities	of	the	system	have	been	tested.	As	Kafka	founder,	Jay	

Kreps,	states	the	existing	monolithic,	centralized	database	began	facing	its	limits	and	there	

was	a	need	to	start	the	transition	to	a	portfolio	of	specialized	distributed	systems4.	So,	Kafka	

was	built	to	serve	as	a	central	repository	of	data	stream.	The	most	interesting	is	that	indeed	

engineers	underestimate	the	power	of	log	and	most	of	the	time	we	do	not	accept	logs	as	an	

innovation	even	though	it	has	been	around	as	long	as	computer.	

Kafka	can	serve	as	a	message	broker,	web	activity	tracker,	log	aggregation	solutions.	

Nowadays	 all	 the	 stream	 processing	 solution	 such	 as	 Apache	 Storm	 and	 Samza	 goes	

together	with	Kafka	as	messaging	stream	and	are	well	implemented	with	each	other.	

Kafka	 lets	 us	 see	 the	 data	 not	 as	 a	 data	 itself	 but	 accept	 the	 data	 as	 a	 stream	of	

events.	For	instance,	retail	has	events	such	as	logistic,	sales,	orders,	refunds	and	so	on.	Web	

sites	 have	 streams	of	 clicks,	 impressions,	 searches,	 and	 so	on.	 Big	 software	 systems	have	

streams	of	 requests,	errors,	machine	metrics,	and	 logs.	So,	 the	 idea	behind	all	of	 that	are	

collecting,	 storing	 and	 the	 use	 of	 all	 those	 events	 for	 better	 understanding	 of	 users,	

customers’	behaviour.	

Most	 of	 the	 e-commerce	 websites	 do	 not	 only	 want	 to	 know	 the	 final	 result	 of	

customer	purchase,	but	also	 they	would	 like	 to	 see	 the	 logical	path	of	user	 choice,	which	

could	 be	 perceived	 as	 stream	 of	 events.	 Those	 streams	 of	 events	 help	 the	 company	 to	

improve	their	service	and	price	policy	while	it	is	also	good	for	marketing	purpose.		

																																																													
4https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-
should-know-about-real-time-datas-unifying	

Thus,	much	of	what	people	refer	to	when	they	talk	about	"big	data"	is	really	the	act	

of	capturing	these	events	that	previously	weren't	recorded	anywhere	and	putting	them	to	

use	 for	 analysis,	 optimization,	 and	 decision	 making.	 In	 some	 sense	 these	 events	 are	 the	

other	half	of	the	story	the	database	tables	don't	tell:	they	are	the	story	of	what	the	business	

did.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

COMPLEX	EVENT	PROCESSING	

Kafka	 is	well	known	as	a	system	for	high-throughput	reliable	event	streams.	So,	on	

the	 processing	 side	 most	 of	 the	 time	 developers	 choose	 some	 stream	 processing	

frameworks	like	Samza,	Storm	or	Spark	Streaming.	

On	 other	 hand,	 there	 is	 also	 some	work	 on	 high-level	 query	 languages	 for	 stream	

processing,	 and	Complex	 Event	 Processing	 is	 especially	worth	mentioning.	 It	 originated	 in	

1990s	 research	 on	 event-driven	 simulation,	 and	 most	 CEP	 products	 are	 commercial,	

expensive	 enterprise	 software.	 Esper	 is	 the	 only	 free	 and	 open	 source	 solution,	 but	 it	 is	

limited	to	running	on	a	single	machine.	

With	CEP,	queries	or	rules	that	match	certain	patterns	in	the	events	are	written.	In	

other	words,	 CEP	 is	 about	 detecting	 and	 selecting	 the	 interesting	 events	 (and	only	 them)	

from	multiple	 sources,	 finding	 their	 relationships	 and	 deducing	 new	 data	 from	 them	 and	

their	 relationships.	 The	 goal	 of	 complex	event	processing	 is	 to	 identify	meaningful	 events	

(such	as	opportunities	or	threats)	and	respond	to	them	as	quickly	as	possible	

They	are	comparable	to	SQL	queries	(which	describe	what	results	you	want	to	return	

from	a	 database),	 except	 that	 the	CEP	 engine	 continually	 searches	 the	 stream	 for	 sets	 of	

events	 that	match	 the	 query	 and	 notifies	 you	 (generates	 a	 "complex	 event")	whenever	 a	

match	 is	 found.	 This	 is	 useful	 for	 fraud	 detection	 or	 monitoring	 business	 processes,	 for	

example.	

For	use	cases	that	can	be	easily	described	in	terms	of	a	CEP	query	language,	such	a	

high-level	language	is	much	more	convenient	than	a	low-level	event	processing	API.	On	the	

other	hand,	a	 low-level	API	gives	you	more	 freedom,	allowing	you	 to	do	a	wider	 range	of	

things	than	a	query	language	would	let	you	do.	Also,	by	focussing	their	efforts	on	scalability	

and	fault	 tolerance,	stream	processing	frameworks	provide	a	solid	 foundation	upon	which	

query	languages	can	be	built.	

Nowadays,	 as	 CEP	 is	 supposed	 to	 be	 one	 of	 the	 main	 topic	 in	 IT	 industry,	 many	

vendors	offer	CEP	solutions.	Many	of	the	CEP	tools	on	the	market	allow	the	creation	of	real-

time,	 event-driven	 applications.	 These	 applications	 might	 consumes	 data	 from	 multiple	

external	sources,	but	they	can	also	consume	data	from	traditional	database	sources.		

Most	 of	 these	 products	 include	 a	 graphical	 event	 flow	 language	 and	 support	 SQL.	

Key	 commercial	 vendors	 in	 this	 space	 are	 IBM	 with	 IBM	 Operational	 Decision	 Manager,	

Informatica	with	RulePoint,	Oracle	with	 its	Complex	Event	Processing	Solution,	Microsoft’s	

StreamInsights,	 and	 SAS	 DataFlux	 Event	 Stream	 Processing	 Engine,	 and	 TIBCO’s	 CEP.	

Numerous	start-ups	are	emerging	in	this	market.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

APACHE	KAFKA	

A	Kafka	cluster	can	accept	tens	of	millions	of	writes	per-second	and	persist	them	for	

days,	months,	or	indefinitely.	Each	write	is	replicated	over	multiple	nodes	for	fault-tolerance	

and	a	Kafka	cluster	can	support	 thousands	of	concurrent	readers	and	writers.	This	 journal	

acts	as	the	subscription	mechanism	for	other	systems	to	feed	off	of.	The	Kafka	cluster	can	

expand	dynamically	to	handle	greater	load	or	retain	more	data.	

Kafka	is	a	distributed,	partitioned,	replicated	commit	log	service5.	In	other	words,	it	

is	publish-subscribe	messaging	 implemented	as	a	distributed	commit	 log	suitable	not	only	

for	 online,	 but	 also	 for	 offline	 message	 consumption.	 In	 general	 Kafka	 is	 made	 of	 three	

levels:	

● Producers	-	the	processes	that	publish	messages	to	a	Kafka	topic.		

● Broker	-	is	Kafka	cluster	consisting	of	one	or	more	servers.		

● Consumers	-	the	processes	that	subscribe	to	topics	and	process	the	feed	of	published	

messages.	

Kafka	maintains	 feeds	of	messages	 in	categories	called	topics.	For	each	topic	Kafka	

maintains	 at	 least	 one	partition	block.	 Partition	block	 contains	messages	 in	 unchangeable	

sequence	 and	 each	 message	 is	 continually	 appended	 to	 a	 commit	 log.	 Each	 message	 is	

identified	by	unique	sequence	of	ID	called	offset.	All	published	messages	are	retained	in	the	

Kafka	cluster	for	a	configured	period	of	time,	after	that	those	messages	will	be	discarded	t	

free	up	the	space.		

	Partitions	contain	messages	that	are	replicated	over	multiple	servers,	which	 intern	

form	Kafka	broker.	This	is	done	for	a	fault	tolerance.		Every	partition	has	one	server	acting	as	

a	 leader,	 the	 rest	 of	 them	 as	 followers.	 Reader	 handles	 all	 read/write	 requests	 for	 the	

partition.	The	follower	passively	replicates	the	 leader.	 If	 the	 leader	server	 fails,	one	of	the	

follower	servers	becomes	a	leader	by	default	making	the	broker	more	resilient	against	host	

failures.		

																																																													
5 https://kafka.apache.org/documentation.html#messages	

In	 the	 consumer	 side,	 the	message	 can	 be	 broadcasted	 to	 all	 consumers	 or	 each	

message	can	be	read	one	by	one	from	the	server.		

	

QUICK	START	

• Download	the	Code	&	Un-Tar	it	

Code	Source:		

https://www.apache.org/dyn/closer.cgi?path=/kafka/0.9.0.0/kafka_2.

11-0.9.0.0.tgz	

	 	 Un-Tar:		

 >	tar	-xzf	kafka_2.11-0.9.0.0.tgz	

	 	 >	cd	kafka_2.11-0.9.0.0	

	

• Start	the	Server	

Kafka	uses	ZooKeeper	so	you	need	to	first	start	a	ZooKeeper	server	if	

you	don't	already	have	one.	You	can	use	the	convenience	script	packaged	

with	Kafka	to	get	a	quick-and-dirty	single-node	ZooKeeper	instance.	

	 	 					>	bin/zookeeper-server-start.sh	config/zookeeper.properties	

	 	 						

	 	 Now	start	the	Kafka	server:	

	

	 	 				>	bin/kafka-server-start.sh	config/server.properties	

	

• Create	a	Topic	

Create	a	topic	named	"test"	with	a	single	partition	and	only	one	replica:	

	

	 	 >	bin/kafka-topics.sh	--create	--zookeeper	localhost:2181		

	 	 --replication-factor	1	--partitions	1	--topic	test	

	

We	can	now	see	that	topic	if	we	run	the	list	topic	command:	

	

	 	 	 >	bin/kafka-topics.sh	--list	--zookeeper	localhost:2181	

	 	 	 test	

	

Alternatively,	instead	of	manually	creating	topics	you	can	also	configure	your	

brokers	to	auto-create	topics	when	a	non-existent	topic	is	published	to.	

	

• Send	Messages	

Kafka	 comes	with	 a	 command	 line	 client	 that	will	 take	 input	 from	 a	 file	 or	

from	standard	input	and	send	it	out	as	messages	to	the	Kafka	cluster.	By	default	each	

line	will	be	sent	as	a	separate	message.	

Run	the	producer	and	then	type	a	few	messages	into	the	console	to	send	to	

the	server.	

	 	 >	bin/kafka-console-producer.sh	--broker-list	localhost:9092	--topic	test	

	

	 	 	 Hello	Kafka	

	 	 	 This	is	an	event	that	is	streamed…	

	

• Consume	Messages	

Kafka	also	has	a	command	line	consumer	that	will	dump	out	messages	to	

standard	output.	

	 	

	 	 >	bin/kafka-console-consumer.sh	--zookeeper	localhost:2181	--topic	

test	--from-beginning	

	 	 	 Hello	Kafka	

	 	 	 This	is	an	event	that	is	streamed…	

If	you	have	each	of	the	above	commands	running	in	a	different	terminal	then	

you	should	now	be	able	to	type	messages	into	the	producer	terminal	and	see	them	

appear	in	the	consumer	terminal.	

All	of	the	command	line	tools	have	additional	options;	running	the	command	with	no	

arguments	will	display	usage	information	documenting	them	in	more	detail.	

	

• Setting	Up	a	Multi-Broker	Cluster	

So	 far	we	have	been	 running	against	a	 single	broker,	but	 that's	no	 fun.	 For	

Kafka,	 a	 single	broker	 is	 just	 a	 cluster	of	 size	one,	 so	nothing	much	 changes	other	

than	starting	a	few	more	broker	instances.	But	just	to	get	feel	for	it,	let's	expand	our	

cluster	to	three	nodes	(still	all	on	our	local	machine).	

First	we	make	a	config	file	for	each	of	the	brokers:	

	 	 >	cp	config/server.properties	config/server-1.properties	

	 	 >	cp	config/server.properties	config/server-2.properties	

	

Now	edit	these	new	files	and	set	the	following	properties:	

	

	 	 config/server-1.properties:	

					 	 broker.id=1	

					 	 port=9093	

					 	 log.dir=/tmp/kafka-logs-1	

	

	 	 config/server-2.properties:	

					 	 broker.id=2	

					 	 port=9094	

					 	 log.dir=/tmp/kafka-logs-2	

	

The	broker.id	property	 is	 the	 unique	 and	 permanent	 name	of	 each	 node	 in	

the	 cluster.	We	 have	 to	 override	 the	 port	 and	 log	 directory	 only	 because	 we	 are	

running	 these	all	 on	 the	 same	machine	and	we	want	 to	 keep	 the	brokers	 from	all	

trying	to	register	on	the	same	port	or	overwrite	each	other’s’	data.	

We	already	have	Zookeeper	and	our	single	node	started,	so	we	just	need	to	

start	the	two	new	nodes:	

	 	 >	bin/kafka-server-start.sh	config/server-1.properties	&	

	 	 >	bin/kafka-server-start.sh	config/server-2.properties	&	

	

Now	create	a	new	topic	with	a	replication	factor	of	three:	

	

	 	 >	bin/kafka-topics.sh	--create	--zookeeper	localhost:2181		

	 	 --replication-factor	3	--partitions	1	--topic	my-replicated-topic	

	

Okay	but	now	that	we	have	a	cluster	how	can	we	know	which	broker	is	doing	

what?	To	see	that	run	the	"describe	topics"	command:	

	

	 	 >	bin/kafka-topics.sh	--describe	--zookeeper	localhost:2181	--topic		

	 	 my-replicated-topic	

	

	 	 	 Topic:my-replicated-topic	 PartitionCount:1	

	 	 	 ReplicationFactor:3	 Configs:	

	 	 	 Topic:	my-replicated-topic	 Partition:	0	 Leader:	1	

	 	 	 Replicas:	1,2,0	 Isr:	1,2,0	

	

Here	 is	 an	 explanation	 of	 output.	 The	 first	 line	 gives	 a	 summary	 of	 all	 the	

partitions,	each	additional	line	gives	information	about	one	partition.	Since	we	have	

only	one	partition	for	this	topic	there	is	only	one	line.	

• "leader"	 is	 the	 node	 responsible	 for	 all	 reads	 and	 writes	 for	 the	 given	

partition.	Each	node	will	be	the	leader	for	a	randomly	selected	portion	of	

the	partitions.	

• "replicas"	 is	 the	 list	 of	 nodes	 that	 replicate	 the	 log	 for	 this	 partition	

regardless	 of	whether	 they	 are	 the	 leader	 or	 even	 if	 they	 are	 currently	

alive.	

• "isr"	 is	 the	set	of	"in-sync"	replicas.	This	 is	 the	subset	of	 the	replicas	 list	

that	is	currently	alive	and	caught-up	to	the	leader.	

Note	 that	 in	 this	example	node	1	 is	 the	 leader	 for	 the	only	partition	of	 the	

topic.	

We	 can	 run	 the	 same	 command	 on	 the	 original	 topic	 we	 created	 to	 see	

where	it	is:	

	 	 >	bin/kafka-topics.sh	--describe	--zookeeper	localhost:2181	--topic	test	

	

	 	 	 Topic:test	 PartitionCount:1	

	 	 	 ReplicationFactor:1	 Configs:	

	 	 	 	 Topic:	test	 Partition:	0	 Leader:	0		

	 	 	 	 Replicas:	0	 Isr:	0	

	

So	there	is	no	surprise	there—the	original	topic	has	no	replicas	and	is	on	

server	0,	the	only	server	in	our	cluster	when	we	created	it.	

Let's	publish	a	few	messages	to	our	new	topic:	

	 	 >	bin/kafka-console-producer.sh	--broker-list	localhost:9092	–topic	

	 	 my-replicated-topic	

	

	 	 	 Who	is	listening	to	this	

	 	 	 May	the	force	be	with	you	

	

Now	let's	consume	these	messages:	

	

	 	 >	bin/kafka-console-consumer.sh	--zookeeper	localhost:2181		

	 	 --from-beginning	--topic	my-replicated-topic	

	

	 	 	 Who	is	listening	to	this	

	 	 	 May	the	force	be	with	you	

	

Now	let's	test	out	fault-tolerance.	Broker	1	was	acting	as	the	leader	so	let's	

kill	it:	

	

	 	 >	ps	|	grep	server-1.properties	

	 	 	 7564	ttys002				0:15.91		

	 	 >	kill	-9	7564	

	

Leadership	has	switched	to	one	of	the	slaves	and	node	1	is	no	longer	in	the	

in-sync	replica	set:	

	

	 	 >	bin/kafka-topics.sh	--describe	--zookeeper	localhost:2181	--topic		

	 	 my-replicated-topic	

	

	 	 	 Topic:my-replicated-topic	 PartitionCount:1	

	 	 	 ReplicationFactor:3	 Configs:	

	 	 	 	 Topic:	my-replicated-topic	 Partition:	0	 	

	 	 	 	 Leader:	2		Replicas:	1,2,0		Isr:	2,0	

	

But	the	messages	are	still	be	available	for	consumption	even	though	the	

leader	that	took	the	writes	originally	is	down:	

	

	 	 >	bin/kafka-console-consumer.sh	--zookeeper	localhost:2181		

	 	 --from-beginning	--topic	my-replicated-topic	

	

	 	 	 Who	is	listening	to	this	

	 	 	 May	the	force	be	with	you	

	

	

	

HOW	TO	PUT	DATA	INTO	KAFKA	

• Producer	API	in	the	org.apache.kafka.clients	package	

This	client	is	production	tested	and	generally	both	fast	and	fully	featured.	

You	 can	 use	 this	 client	 by	 adding	 a	 dependency	 on	 the	 client	 jar	 using	 the	

following	 example	 maven	 co-ordinates	 (you	 can	 change	 the	 version	 numbers	

with	new	releases):	

	 	 <dependency>	

	 	 				<groupId>org.apache.kafka</groupId>	

	 	 				<artifactId>kafka-clients</artifactId>	

	 	 				<version>0.9.0.0</version>	

	 	 </dependency>	

	

• Kafka	Connect	in	the	org.apache.kafka.connect	

Kafka	Connect	is	a	tool	 included	with	Kafka	that	imports	and	exports	

data	to	Kafka.	It	is	an	extensible	tool	that	runs	connectors,	which	implement	

the	 custom	 logic	 for	 interacting	 with	 an	 external	 system.	 Kafka	 Connect	

allows	developers	to	write	custom	producer	-	SOURCE	procedures	in	Java	and	

run	 it	 with	 Kafka	 Connect.	 How	 it	 is	 done	 is	more	 deeply	 explained	 in	 the	

example	application.	

	

	

	

	

HOW	TO	GET	DATA	FROM	KAFKA	

	

• Consumer	API	in	org.apache.kafka.clients	

This	 client	 enables	 developers	 to	 write	 personalized	 consumers	 in	

Java,	that	connects	to	Kafka	cluster,	listens	to	a	topic	and	retrieves	messages.	

However,	 both	 Producer	&	 Consumer	API’s	 seems	 to	 be	more	 complicated	

and	 confusing	 than	 Kafka	 Connect	 which	 is	 the	 better	 version	 of	

importing/exporting	data.	

• Kafka	Clients	

There	are	various	numbers	of	Kafka	Clients	 for	consuming	data	with	

different	programming	languages	written	as	open-source	projects	by	others.	

Kafka	 project	 lists	 them	 on	 their	 clients	 web	 page	

(https://cwiki.apache.org/confluence/display/KAFKA/Clients).	 Some	 of	 them	

include:	

Python	

.NET	

Node.js	

HTTP	REST,	etc.	

Among	 them,	 Node.js	 seems	 to	 be	 interesting	 since	 Node.js	 is	

designed	to	be	a	data-driven	web	framework	and	would	be	nice	to	integrate	

Kafka	as	a	communication	middleware	between	a	Node.js	applications.	

• Kafka	Connect	

Kafka	Connect	is	a	tool	 included	with	Kafka	that	imports	and	exports	

data	to	Kafka.	It	is	an	extensible	tool	that	runs	connectors,	which	implement	

the	 custom	 logic	 for	 interacting	 with	 an	 external	 system.	 Kafka	 Connect	

allows	developers	 to	write	 custom	consumer	 -	 SINK	procedures	 in	 Java	and	

run	 it	 with	 Kafka	 Connect.	 How	 it	 is	 done	 is	more	 deeply	 explained	 in	 the	

example	application.	

DESIGN	

• Persistency	

Kafka	stores	and	caches	its	messages	mostly	in	the	filesystem.	Instead	

of	 the	 common	 sense	 that	 is	 disk	 operations	 are	 very	 slow	 compared	 to	

memory	operations	–	which	 is	actually	not	false	–	 it	 is	still	depends	on	how	

those	operations	are	done	and	how	the	disk	structure	 is	designed.	Random	

accesses	are	indeed	very	slow.	On	the	other	hand,	throughput	of	hard	drives	

has	been	diverging	from	the	latency	of	a	disk	seek	for	the	last	decade.	

As	a	 result,	 the	performance	of	 linear	writes	on	a	JBOD	configuration	

with	 six	 7200rpm	 SATA	 RAID-5	 array	 is	 about	 600MB/sec	 but	 the	

performance	of	random	writes	 is	only	about	100k/sec—a	difference	of	over	

6000X.	 These	 linear	 reads	 and	writes	 are	 the	most	 predictable	 of	 all	 usage	

patterns	 which	 are	 heavily	 optimized	 by	 the	 operating	 system.	 A	 modern	

operating	 system	 provides	 read-ahead	 and	 write-behind	 techniques	 that	

prefetching	data	in	large	block	multiples	and	group	smaller	logical	writes	into	

large	physical	writes.	

This	 suggests	 a	design	which	 is	 very	 simple:	 rather	 than	maintain	as	

much	as	possible	 in-memory	and	flush	 it	all	out	to	the	filesystem	in	a	panic	

when	a	program	runs	out	of	space,	Kafka	inverts	that.	All	data	is	immediately	

written	 to	a	persistent	 log	on	 the	 filesystem	without	necessarily	 flushing	 to	

disk.	 In	 effect	 this	 just	 means	 that	 it	 is	 transferred	 into	 the	 kernel's	 page	

cache.	

Mostly,	a	BTree	or	other	general-purpose	access	data	 structures	are	

being	 used	 as	 the	 persistent	 data	 structure	 in	 the	messaging	 systems.	 This	

structure	 has	 the	 advantage	 of	 all	 the	 operations	 are	 being	 O(1)	 and	 I/O	

operations	do	not	block	each	other.	

• Efficiency	

Since	one	of	the	primary	use	cases	of	Kafka	is	to	handle	web	activity	

data	 such	as	 click	 sourcing	–	which	are	 in	huge	amounts	–,	each	page	view	

may	produce	dozens	of	writes.	By	being	very	fast,	Kafka	helps	ensure	that	it	

does	not	tip-over	under	load	before	the	application.	This	is	a	pretty	important	

property	 since	 one	 of	 the	 Kafka’s	 aims	 is	 to	 become	 a	 centralized	 hub	 to	

serve	 to	 dozens	 or	 hundreds	 of	 applications	 on	 a	 centralized	 cluster	 as	

changes	in	usage	patterns	are	close	to	daily-occurrence.	

	In	general,	other	than	disk	access	cost,	there	are	two	common	causes	

of	inefficiency	in	this	type	of	system,	that	are	too	many	small	I/O	operations	

and	excessive	byte	copying.	

To	avoid	lots	of	small	I/O	operations,	Kafka	abstracts	group	messages	

around	a	message	set	abstraction.	Hence	allowing	network	requests	to	group	

messages	 together	 and	 amortize	 the	 overhead	 of	 the	 network	 roundtrip.	

Even	with	this	 little	optimization,	results	 in	a	speed	up	of	the	whole	system	

an	undeniable	amount.		

Moreover,	most	 of	 the	 data	 transferred	 from	page	 cache	 of	 the	OS	

which	 serves	 very	 fast	 and	 eliminates	 the	 cost	 of	 copying	 data	 to	memory	

first.	 	Secondly,	transfer	of	data	from	page	cache	to	sockets,	which	are	then	

published	to	the	outside	world,	done	by	sendfile	system	call	which	is	a	highly	

optimized	code	path	for	transferring	data	to	sockets.	

Taking	 all	 of	 those	 into	 consideration,	 Kafka	 does	 a	 lot	 of	

improvements	 under	 the	 hood	 to	 become	 one	 of	 the	 messaging	 systems	

available	on	the	market.	

	

	

	

• Log	Compaction	

Log	compaction	ensures	that	Kafka	will	always	retain	at	least	the	last	

known	value	 for	each	message	key	within	 the	 log	of	data	 for	a	 single	 topic	

partition.	 It	 addresses	use	 cases	 and	 scenarios	 such	as	 restoring	 state	 after	

application	 crashes	 or	 system	 failure,	 or	 reloading	 caches	 after	 application	

restarts	during	operational	maintenance.	

Log	compaction	gives	us	a	more	granular	retention	mechanism	so	that	

we	are	guaranteed	to	retain	at	least	the	last	update	for	each	primary	key.	By	

doing	this	we	guarantee	that	the	log	contains	a	full	snapshot	of	the	final	value	

for	 every	 key	 not	 just	 keys	 that	 changed	 recently.	 This	means	 downstream	

consumers	 can	 restore	 their	 own	 state	 off	 this	 topic	 without	 us	 having	 to	

retain	a	complete	log	of	all	changes.	

Log	 compaction	 is	 a	 mechanism	 to	 give	 finer-grained	 per-record	

retention,	rather	than	the	coarser-grained	time-based	retention.	The	 idea	 is	

to	selectively	remove	records	where	we	have	a	more	recent	update	with	the	

same	primary	 key.	 This	way	 the	 log	 is	 guaranteed	 to	 have	 at	 least	 the	 last	

state	for	each	key.		

This	retention	policy	can	be	set	per-topic,	so	a	single	cluster	can	have	

some	 topics	 where	 retention	 is	 enforced	 by	 size	 or	 time	 and	 other	 topics	

where	retention	is	enforced	by	compaction.		

	

,	

	

	

	

	

APPLICATION	–	Converting	a	traditional	RDBMS		

to	Stream	of	Changes	Using	Kafka	

	 In	 order	 to	 demonstrate	 the	 use	 of	 Apache	 Kafka,	 we	 have	 took	 into	 account	 an	

OLTP	system,	specifically	the	one	given	as	an	assignment	in	the	Data	Warehouses	course	–	

ING	 Bank.	 This	 database	 contains	 Customer	 and	 Account	 information	 that	 are	 versioned	

when	 loaded	 into	 the	Data	Warehouse.	 Traditionally,	 snapshot	 of	 a	 database	 is	 captured	

periodically	and	given	 to	 the	ETL	procedure.	Customer	and	Account	changes	are	captured	

through	a	‘lastupdated’	field	which	represents	when	the	last	change	happened	to	a	specific	

entry.	What	is	missing	in	this	scenario	is,	only	the	latest	update	during	the	snapshot	period	

is	 taken	 into	consideration.	Moreover,	 for	every	snapshot,	all	of	 the	database’s	content	 is	

copied	and	then	changed	entries	are	extracted	from	it.		

Instead,	we	have	developed	a	Kafka	Connect	Source	Task	 that	periodically	–	which	

can	 be	 very	 small	 –	 checks	 for	 changed	 entries	 and	 puts	 them	 into	 apache	 Kafka	 as	 a	

message	 for	 consumption.	 By	 doing	 so,	 we	 guarantee	 that	 only	 the	 changed	 entries	 are	

processed	while	loading	to	database	with	more	granular	change	history.	This	Kafka	Connect	

Source	Task	run	by	Kafka	Connect	with	specific	configurations	results	in	the	ease	of	all	the	

ETL	process.	

	

MORE	ON	KAFKA	CONNECT	

Kafka	 Connect	 is	 a	 tool	 for	 scalably	 and	 reliably	 streaming	 data	 between	 Apache	

Kafka	 and	other	 systems.	 It	makes	 it	 simple	 to	 quickly	 define	 connectors	 that	move	 large	

collections	 of	 data	 into	 and	 out	 of	 Kafka.	 Kafka	 Connect	 can	 ingest	 entire	 databases	 or	

collect	metrics	from	all	your	application	servers	into	Kafka	topics,	making	the	data	available	

for	stream	processing	with	low	latency.	An	export	job	can	deliver	data	from	Kafka	topics	into	

secondary	 storage	 and	 query	 systems	 or	 into	 batch	 systems	 for	 offline	 analysis.	 Kafka	

Connect	features	include:		

• A	 common	 framework	 for	 Kafka	 connectors	 -	 Kafka	 Connect	 standardizes	

integration	 of	 other	 data	 systems	 with	 Kafka,	 simplifying	 connector	 development,	

deployment,	and	management	

• Distributed	and	standalone	modes	 -	scale	up	to	a	 large,	centrally	managed	service	

supporting	an	entire	organization	or	scale	down	to	development,	testing,	and	small	

production	deployments	

• REST	interface	-	submit	and	manage	connectors	to	your	Kafka	Connect	cluster	via	an	

easy	to	use	REST	API	

• Automatic	offset	management	-	with	just	a	little	information	from	connectors,	Kafka	

Connect	 can	 manage	 the	 offset	 commit	 process	 automatically	 so	 connector	

developers	 do	 not	 need	 to	 worry	 about	 this	 error	 prone	 part	 of	 connector	

development	

• Distributed	and	scalable	by	default	-	Kafka	Connect	builds	on	the	existing		

• Streaming/batch	integration	-	leveraging	Kafka's	existing	capabilities,	Kafka	Connect	

is	an	ideal	solution	for	bridging	streaming	and	batch	data	systems	

Running	Kafka	Connect	

Kafka	 Connect	 currently	 supports	 two	 modes	 of	 execution:	 standalone	 (single	

process)	and	distributed.	In	standalone	mode	all	work	is	performed	in	a	single	process.	This	

configuration	is	simpler	to	setup	and	get	started	with	and	may	be	useful	in	situations	where	

only	one	worker	makes	sense	(e.g.	collecting	log	files),	but	it	does	not	benefit	from	some	of	

the	 features	of	Kafka	Connect	 such	as	 fault	 tolerance.	You	can	 start	a	 standalone	process	

with	the	following	command:		

	 >	bin/connect-standalone.sh	config/connect-standalone.properties	

connector1.properties	[connector2.properties	...]	

	

The	first	parameter	is	the	configuration	for	the	worker.	This	includes	settings	such	as	

the	 Kafka	 connection	 parameters,	 serialization	 format,	 and	 how	 frequently	 to	 commit	

offsets.	The	provided	example	should	work	well	with	a	local	cluster	running	with	the	default	

configuration	 provided	 by	 config/server.properties.	 It	 will	 require	 tweaking	 to	 use	with	 a	

different	configuration	or	production	deployment.	The	remaining	parameters	are	connector	

configuration	 files.	 You	may	 include	 as	many	 as	 you	want,	 but	 all	will	 execute	within	 the	

same	process	(on	different	threads).		

Connectors	And	Tasks	

To	 copy	data	between	Kafka	and	another	 system,	users	 create	a	Connector	 for	 the	

system	 they	 want	 to	 pull	 data	 from	 or	 push	 data	 to.	 Connectors	 come	 in	 two	 flavors:	

SourceConnectors	import	data	from	another	system	(e.g.	JDBCSourceConnector	would	import	a	

relational	database	into	Kafka)	and	SinkConnectors	export	data	(e.g.	HDFSSinkConnector	would	

export	 the	contents	of	a	Kafka	 topic	 to	an	HDFS	 file).	Connectors	do	not	perform	any	data	

copying	themselves:	their	configuration	describes	the	data	to	be	copied,	and	the	Connector	

is	responsible	for	breaking	that	job	into	a	set	of	Tasks	that	can	be	distributed	to	workers.		

These	Tasks	also	come	in	two	corresponding	flavors:	SourceTaskand	SinkTask.	With	an	

assignment	 in	hand,	each	Task	must	copy	 its	subset	of	 the	data	to	or	 from	Kafka.	 In	Kafka	

Connect,	 it	 should	 always	 be	 possible	 to	 frame	 these	 assignments	 as	 a	 set	 of	 input	 and	

output	 streams	consisting	of	 records	with	consistent	 schemas.	Sometimes	 this	mapping	 is	

obvious:	 each	 file	 in	 a	 set	 of	 log	 files	 can	 be	 considered	 a	 stream	with	 each	 parsed	 line	

forming	 a	 record	 using	 the	 same	 schema	 and	offsets	 stored	 as	 byte	 offsets	 in	 the	 file.	 In	

other	 cases	 it	may	 require	more	 effort	 to	map	 to	 this	model:	 a	 JDBC	 connector	 can	map	

each	table	to	a	stream,	but	the	offset	is	less	clear.	One	possible	mapping	uses	a	timestamp	

column	 to	 generate	 queries	 incrementally	 returning	 new	 data,	 and	 the	 last	 queried	

timestamp	can	be	used	as	the	offset.	

	 Application	Development	&	Running	

	 While	 developing	 the	 application,	 we	 have	 only	 turned	 Customer	 relation	

into	 stream	 for	 testing	 purposes.	 For	 this	 task,	 two	 java	 classes	 have	 been	 implemented	

namely,	 ‘SourceJDBCConnectorCustomer.java’	 &	 ‘SourceJDBCTaskCustomer.java’	 that	

implements	 ‘SourceConnector’	 and	 ‘SourceTask’	 interfaces	 of	 Kafka	 Connect	 package.	 As	

the	 nature	 of	 SourceConnector	 interface,	 ‘SourceJDBCConnectorCustomer.java’	 class	 have	

the	corresponding	task	configurations	and	deals	with	task	partitioning	for	multiple	threads.	

In	 our	 application,	 only	 one	 SourceTask	 thread	 will	 be	 run.	 In	 the	

‘SourceJDBCTaskCustomer.java’,	 poll()	 function	 continuously	 checks	 for	 customer	 changes	

by	 checking	 the	 ‘lastupdated’	 column	 with	 check	 interval.	 For	 every	 run	 of	 poll,	 check	

interval	 is	 incremented	as	desired.	 Then,	 all	 the	 changes	 in	 the	 customer	 relation	are	put	

into	 Kafka	 topic	 ‘customer-pipe’.	 One	 thing	 to	 note	 here	 is	 that,	 while	 putting	 data	 into	

Kafka	through	custom	Kafka	Connect	Source	Connector	and	Source	Task,	there	are	only	few	

possible	schema	options	such	as	Boolean,	String,	 Integer.	 In	order	to	ease	consumption	of	

the	 messages	 –	 database	 events,	 customer	 changes	 in	 this	 case	 –	 custom	 Schema	

corresponding	 to	 the	 Customer	 Relation	 Schema	 has	 been	 generated.	 Currently,	 every	

message	 in	 this	 topic	 is	 type	of	 this	 Schema.	Below,	 is	 the	 screenshot	 of	 Kafka	 consumer	

client,	listening	to	the	topic	‘customer-pipe’.		

	

	

	 In	 order	 to	 run	 custom	 Kafka	 Connect	 Source	 Connector	 and	 Source	 Task,	

project	 should	 be	 built	 and	 its	 ‘.jar’	 file	 should	 be	 put	 into	 to	 Kafka’s	 libs	 folder	with	 the	

dependency	folders	included.	Moreover,	in	order	to	run	the	Connector,	Configuration	file	is	

placed	into	the	Kafka’s	‘config’	folder	and	specified	while	running	the	Kafka	Connect	through	

terminal.		

	

	

Configuration	file	and	its	content	are	as	follows:	

• name=etl-source-branch	---	Name	of	the	configuration	class	

• connector.class=kafkaconnectetl.SourceJDBCConnectorCustomer	---	Name	of	

the	Source	Connector	Class	

• tasks.max=1	---	Maximum	number	of	task	threads	that	should	be	run	in	

parallel	

• driver=org.postgresql.Driver	---	Name	of	the	driver	

• db=jdbc:postgresql://localhost/ING_OLTP	---	Database	Adress	

• dbuser=postgres	---	Database	User	Name	

• dbpassword=postgrespassword	---	Database	Password	

• topic=customer-pipe	---	Which	topic	to	publish	

Among	 those	 configurations,	 name,	 connector.class,	 tasks.max	 and	 topic	 are	

necessary.	 Other	 configurations	 are	 for	 ease	 of	 readability	 of	 implementation	 and	 used	

internally	by	Source	Connector	and	Source	Task	classes,	not	by	Kafka.	

	 By	doing	such,	we	have	just	put	Customer	table	changes	into	a	stream	in	Kafka	topic.	

These	messages	can	be	easily	used	by	any	custom	Kafka	Connect	classes	 that	 implements	

Sink	 Connector	 and	 Sink	 Task.	Moreover,	 those	 can	 be	 put	 into	 different	 targets	 such	 as	

HDFS,	 OLAP	 system,	 Key-Value	 storage,	 etc.	Moreover,	 since	 the	 Schema	 that	 is	 used	 by	

Source	Task	class	can	be	modified	to	hold	some	extra	values,	 it	 is	possible	to	pre	calculate	

some	ETL	procedures	before	putting	them	into	Kafka	or	any	scenario	can	be	 implemented	

internally.	 Source	 code	 for	 ‘SourceJDBCConnectorCustomer.java’	 and	

‘SourceJDBCTaskCustomer.java’	are	included	with	the	report.	

	

	

	

	

	

CONCLUSION	

Stream	 processing	 is	 required	 when	 data	 has	 to	 be	 processed	 fast	 and	 /	 or	

continuously,	i.e.	reactions	have	to	be	computed	and	initiated	in	real	time.	This	requirement	

is	coming	more	and	more	into	every	vertical.	Many	different	frameworks	and	products	are	

available	on	the	market	already,	however	the	number	of	mature	solutions	with	good	tools	

and	commercial	 support	 is	 small	 today.	Apache	Storm	 is	a	good,	open	source	 framework;	

however	 custom	 coding	 is	 required	 due	 to	 a	 lack	 of	 development	 tools	 and	 there’s	 no	

commercial	support	right	now.		

Products	 such	 as	 IBM	 InfoSphere	 Streams	 or	 TIBCO	 StreamBase	 offer	 complete	

products,	which	close	this	gap.	You	definitely	have	to	try	out	the	different	products,	as	the	

websites	do	not	 show	you	how	 they	differ	 regarding	ease	of	use,	 rapid	development	and	

debugging,	 and	 real-time	 streaming	 analytics	 and	 monitoring.	 Stream	 processing	

complements	other	technologies	such	as	a	DWH	and	Hadoop	in	a	big	data	architecture	-	this	

is	not	an	"either/or"	question.		

Stream	 processing	 has	 a	 great	 future	 and	 will	 become	 very	 important for most

companies. Big Data and Internet of Things are huge drivers of change.	

