

Université Libre de Bruxelles.

École Polytechnique.

Erasmus Mundus Master’s Programme

in Information Technologies for Business

Intelligence (IT4BI).

Course: Advanced Databases (INFO-H-415).

Lecturer: Esteban Zimányi.

Teaching Assistant: Stefan Eppe.

Neo4j: A Graph Database

Authors:

Maximiliano Ariel López

Miruna Mironescu

First Semester – 2013-2014

 2

Contents
Introduction ... 3

Background Information ... 3

What is a Graph? ... 3

Some Applications of Graph Databases .. 3

Getting into Graph Databases ... 4

Comparison with Other Kinds of Databases ... 5

Querying graphs: Cypher Query Language .. 7

Performance .. 8

Clustering and Load Balancing ... 9

A Practical Example .. 10

Conceptual Model ... 10

Relational Logical Model .. 11

Our Test Dataset .. 11

Running Queries .. 12

Query examples ... 12

Experimenting with Neo4j .. 16

Installing Neo4J ... 16

Windows .. 16

Linux ... 16

Mac .. 17

Populating the Database .. 17

Code Samples .. 17

Discussion ... 19

Conclusion ... 20

 3

Introduction

The purpose of this project is to investigate Graph Databases, summarise their key concepts and

share a high-level and objective picture about them by means of this report. The ultimate goal is

to bring about awareness, reflection and debate about this topic among our colleagues.

After going through some background theoretical information, we will illustrate the technical

side of this kind of databases by providing a concrete practical example. In particular, we will

work with Neo4j, which is an open-source implementation written in Java.

Beyond any shadow of a doubt, the real world is rich and interrelated. Companies developing

Graph Databases take pride in the fact that their products can manage and query highly

connected data. They claim that graphs are really useful when it comes to modelling a broad

range of business domains, ranging from chain-supply markets to human interconnections

–among many others–, thus covering numerous fields (science, government, business, etc.).

That being said, we have started our investigation under the hypothesis that Graph Databases

outperform other technologies when relationships are a key component of the model. We would

like to test the aforesaid reasoning on the basis of our findings.

Background Information

What is a Graph?

Informally, a graph may be defined as a collection of vertices and edges. In a more formal

manner, it can be described as a set of nodes and relationships that are interconnected. Entities

are referred to as nodes. The ways in which nodes relate to each other define relationships.

Some Applications of Graph Databases

As it was noted in the previous paragraphs, graphs are particularly ubiquitous in the real world.

Both abstract and material objects can be related with each other. For instance, as far as the

world of business is concerned, a report published by Gartner states that there are five graphs

that need to be leveraged so as to obtain a sustainable competitive advantage: the social graph,

the intent graph, the consumption graph, the interest graph and the mobile graph.
1

Another very good example of data that can be represented via graphs is Twitter‟s data. Entities

(represented by circles) are users, who are connected by “Follows” relationships. Let us not

forget that Twitter‟s real graph is composed of millions of interconnected users.

1
 Ray Valdes (2012). The Competitive Dynamics of the Consumer Web: Five Graphs Deliver a Sustainable

Advantage. Gartner Group. Stamford, United States.

 4

The following chart
2
 summarises some representative implementations and applications of

Graph Databases:

Getting into Graph Databases3

A Graph Database is an online database management system with Create, Read, Update and

Delete (CRUD) methods that expose a graph data model. This kind of database is built to be

used with OLTP systems so they are optimised with respect to transactional integrity and

availability.

Graph compute engines are a key component of Graph Databases. They are designed to identify

clusters in data, or answer questions such as “how many relationships, on average, does everyone

in a social network have?”. In order to perform these global calculations, the processing of large

datasets of information in batch needs to be highly optimized. From this point of view, they are

similar to other batch analysis technology –such as data mining or OLAP–, that are found in

other databases.

Beyond any shadow of a doubt, there must be a sufficiently good reason to replace a

well-established and well-understood data platform (i.e. relational databases). As far as graph

databases are concerned, this motivation comes from an important set of use cases and data

patterns whose performance improves by one or two orders of magnitude and whose latency is

much lower compared to batch processing of aggregates. To sum it up, a performance benefit

can be easily seen. Besides this, the technology provides a mode of delivery which is more

aligned with agile software delivery practices.

Graph Databases easily deal with connected data and they perform better than relational

databases and NOSQL stores. Unlike relational data, where join-intensive queries decrease

performance (especially if we are dealing with large data sets) the graph database performance

tends to remain relatively constant, despite growing amounts of data. This is due to the fact that

queries are restricted to a segment of the graph. The immediate result is that the execution time

for each query is only proportional to the size of the graph segment concerned by the query and

not to the total size of it.

2
 Ian Robinson, Jim Webber and Emil Eifrem (2013). Graph Databases. p. 7. O‟Reilly Media Inc., California.

3
 Ibidem. p. 5-9.

 5

Data models need to evolve at the same time as the rest of the application. The technology must

be aligned with today‟s software delivery practices, which are iterative and incremental. There

are ways to perform system maintenance, updates and deployments on graph databases with ease

and security. We must also remind users of the free-schema nature of the graph data model. The

Application Programming Interface (API) and the query language allow users to evolve an

application in a controlled manner.

Graph Databases allow schema and structure to come into view together with our growing

understanding of the problem space, so they are not forced to be imposed upfront (especially if

the data is intricate or the shape of it is rather unknown).

Graphs are additive by nature. In any moment in time we can add new nodes and relationships

to our graph model. They are added to an existing structure without disturbing current functional

queries or application functionality. Hence, we have positive effect in the developer‟s

performance and in the project risk. Due to graph flexibility, the model does not need to be

listed in detail well in advance (which may become problematic when dealing with changing

internal conditions like business requirements). This also means that there are few migrations

performed. In consequence, a developer deals with less maintenance overhead issues and the

risk is reduced.

Comparison with Other Kinds of Databases4

Relational databases struggle to make connections between the ad hoc or exceptional

relationships that depict the real world. The relationships within a relational database are more

likely used in order to make links between tables. Also, relational databases do not disambiguate

the semantics of relationships that connect entities, nor do they qualify their weights and

strengths. It must also be mentioned that, the relational model becomes burden with large table

joins if the dataset becomes more complex and less uniform.

Another problem may also lie in the fact that the relational databases are full of constraints (e.g.

null check constraints) thus again burdening large table joins. Sparse tables still undergo check

constraints, despite the presence of a schema, before the joins are created. Notice a large amount

of wasted space.

The increase in connectedness is reflected into the relational world into a larger number of joins,

which may impede performance and might make it difficult for developers to evolve an existing

database in response to changing business needs.

Foreign keys were constructed solely with the purpose of making the database work thus adding

an additional complexity, when compared to the graph database. Several expensive joins may be

needed in order to find the result of a query, hence bringing about high costs. The reciprocal

queries are also expensive.

Besides, indexes may also be considered as an alternative, but they do not handle recursive

queries that well (e.g. “Which customer bought this product who also bought that product?”).

In contrast, most NOSQL databases –document-orientated, column-orientated or key-value

oriented– store sets of disconnected documents/values/columns, which make it difficult to

4
 Ibidem 1. p. 10-14.

 6

connect data. A well-known strategy in order to add relationships to such store is to embed an

aggregate‟s identifier inside the field belonging to another aggregate (effectively including

foreign keys). But this requires joining aggregates at the application level, which soon becomes

particularly expensive.

It is tempting to think that aggregate stores are functionality as good as the graph databases with

respect to connected data. Yet, it is not true, because aggregate stores do not maintain

consistency of connected data. They neither support what is known as index-free adjacency,

whereby elements contain direct links to their neighbours. For connected data problems, as a

result, aggregate stores must use inherently latent methods in order to create and query

relationships outside the data model.

While previous examples have dealt with implicitly connected data, a user may infer semantic

dependencies between entities, but the data models (as well as the databases themselves) are

blind to these connections. In order to compensate, our applications has to create a network on

the basis of a flat, disconnected data and afterwards deal with any latent writes or slow queries

across a denormalized store that arises.

The goal is to obtain a cohesive picture of the whole along with the connection between

elements. In contrast to what we have seen so far, connected data is stored as connected data.

Whenever there are connections on the domain, there are connections in the data.

A social network is a popular example of a densely connected semi-structured network. The

connections (friend, colleague, family, etc.) between the entities (people) do not exhibit

uniformity across the domain –the domain is semi-structured–. This example is just one example

of data that cannot be captured by a one-size-fits-all schema or conveniently split across

disconnected aggregates. The network is very complex; it has grown in size (6 degrees of

friends away) and it is very rich in expressiveness. The flexibility of the model allows adding

new nodes and new relationships without compromising the existing network or migrating data

because the original data and its intent remain the same.

The graph renders a rich picture of the network. Relationships can be easily deduced (see

practical section for examples of graphs) as well as the entities that take part in them.

Relationships in graphs naturally form paths. Querying the graphs or analysing them in any way

implies following paths. The graph model is therefore a fundamentally path-orientated one. The

majority of the path-based graphs database operations are highly aligned with the way in which

the data is laid out, making them extremely efficient. A study conducted by Partnet and Vukotic,

whose results are displayed in Neo4j in Action book, states that the graph database is

substantially quicker for connected data than a relational store.

Their experiment is based precisely on the social network similar to the one written above. The

aforementioned authors seek to find friends-of-friends in a social network, to a maximum depth

of 5. The idea is to find a path that connects any randomly chosen 2 persons, a path that is at

most 5 persons long. If the social network comprises one million people each having

approximately 50 friends, the results strongly suggests that graph databases are the best choice

for connected data.

If we were to consider a length of 2 persons between randomly chosen people, then both the

relational model and the graph model are good candidates. Despite the fact that Neo4j runs in

 7

2/3 the time of a relational one, an end user would barely see the difference in milliseconds

between the two approaches. If the length is increased to 3 persons, then the difference is

noticeable. The relational model would need approximately 30 seconds to complete,

unacceptable for an online system. At variance with that, Neo4j needs approximately one sixth

of a second, which is clearly suitable for an online system.

The depth 4 is problematic, since the database exhibits crippling latency, making it almost

useless for an online system (1543 seconds). Neo4j still renders results that are good enough for

an online system (1.35 seconds). At depth 5 the relational database is overwhelmed taking it too

long to complete (the query was stopped before completion). Neo4j, nevertheless, returns a result

in 2 seconds.

The social network is an example to illustrate how different technologies deal with connected

data, but can we always use this? In real life, we do not need to compute such remote friends.

Nonetheless, we can substitute the social network with any other domain and the results will be

similar in terms of time, performance and modelling, among other aspects. Bear in mind the fact

that graphs are additive, and you can think about joining other graphs to your already created

graph in order to establish connection to other domains.

Querying graphs: Cypher Query Language5

Cypher is a database expressive and compact query language. It is primarily used in Neo4j,

although it can also be used to programmatically describe graphs in a precise manner due to its

close affinity to graphs. It is easy to learn and understand since it follows the way humans

intuitively describe graphs using diagrams. In addition, it can be used as a starting point to learn

other graph query languages (e.g. SPARQL, Gremlin, etc.).

Cypher makes it possible for the user (or the application running on the user‟s behalf) to query

the database in order to find specific patterns. The items we wish to find can easily be drawn by

hand as they are graphs. For example, if we wish to find a person “a” that knows a person “b”

that knows a person “c”, we can easily identity the nodes of the graphs as being “a”,” b”, “c” and

the relationship described by “knows”.

The query is as follows: (a)-[: knows] -> (b)-[: knows] -> (c)

This pattern describes a path which connects “a” to “b” and “b” to “c”. As can be seen, Cypher

patterns follow very natural from the way humans draw graphs on the whiteboard. Like most

common query languages, Cypher is composed of clauses. A very simple query consists of a

START followed by a MATCH and a RETURN clause.

START – specifies one or more starting points – nodes or relationships – in a graph, which are

obtained via index lookup (starting points are rarely accessed via IDs).

MATCH – it makes use of the relationships

RETURN – returns nodes and relationships that match the criteria

WHERE – acts as a filter pattern for matching results

5
 Ibidem 1. p. 27-30.

 8

CREATE or CREATE UNIQUE – creates (unique) nodes and relationships

DELETE – removes nodes, relationships or properties

SET – sets property values

UNION – merges results from two or more queries

 WITH – chains subsequent query results and pipelines results

Query example: START a = node: user (name= „Michael‟)

 MATCH (a)-[: knows] -> (b)-[: knows] -> (c)

 RETURN b, c

First of all, the starting locations –the anchor points in the real graph to which some parts of the

pattern are bound to– can be identified in 2 ways, but one way (namely the index) is the most

commonly used. The START clause specifies exactly the starting location using indexes. Here,

the index is user and it is looking for a node with the property name whose value is Michael.

The return value is bound to the identifier which we use throughout the query. The path

described in the MATCH clause comprises 3 nodes, one is bound to the identifier a. Therefore,

our query is anchored to a specific point in the graph, the real node in the graph named Michael.

The query looks for all possible matches of b,c in the graph which it will finally return in the

WHERE clause.

Performance6

There are three main methods to improve performance in Graph Databases:

 Increase the percentage of store that is mapped into the file system cache.

 Increase the object cache (the cache has been known to significantly increase over the past

years, from 2 GB to 200 GB).

As far as cache is concerned, the user can

easily conclude that more RAM is needed. It

is always a cost versus performance trade-off.

The first criterion to check is whether there is a

one-on-one mapping between the size of the

store files in the file system cache and the size

of the disk. Graph objects in the object cache

may be up to 10 times larger than their own

on-disk representation. Therefore, we can

conclude that allocating RAM to the object

cache is far more expensive per graph element

than allocating it to the file system cache.

The second criterion is related to the location of the object cache. For example, if the graph

database uses an on-heap cache (e.g. Neo4j) it means that increasing the size of the cache

requires allocating more heaps. The user must bear in mind the fact that most modern Java

6
 Ibidem 1. p. 94-96.

 9

Virtual Machines do not cope well with heaps larger than 8 GB. Garbage collection may impact

the performance of our application if that size is surpassed.

The sweet spot for any performance versus cost trade-off lies around the point where the entire

store files can be mapped to RAM while maintaining a moderate size object cache. In many

cases, heaps of 4 or 8 GB are used although a smaller heap can actually improve performance by

mitigating expensive garbage collection impact.

It is advisable to know the size of the graph beforehand in order to determine how much RAM

needs to be allocated to the heap. Therefore, some developers chose to build a representative

dataset early in their application so they will gain insight to the resource requirements (e.g.

RAM). If the graph cannot fit entirely in memory, the developer might consider cache sharing.

When optimizing a graph database solution for performance, there are a few guidelines that must

be considered: 1) the file system cache should be used as much as possible and (if possible) we

should entirely map our store files into the cache 2) the Java Virtual Machine heap should be

tuned 3) the user might want to consider using fast disks (e.g. enterprise flash disks or SSDs).

Clustering and Load Balancing7

Neo4j clusters for high availability and horizontal read scaling using master-slave replication.

Even though it would be possible to perform write operations through slaves, the slave being

written would need to synchronise the new information with the master in a synchronous way

(i.e. before returning to the client).

In high write load scenarios, writes may be buffered by using queues. This regulates traffic and

reduces contention at the same time that it allows maintenance without refusing client requests.

It is also possible to install multi-region clusters in multiple data centres and on cloud platforms

such as Amazon Web Services. Therefore, client requests can be serviced by the portion of the

cluster that is geographically closer. This may sometimes introduce latency and disrupt the

coordination protocol but it is possible to counteract this effect by configuring slave-only

databases (e.g. disabling the master re-election process).

As far as Load Balancing is concerned, we should

consider that Neo4j does not include a native load

balancer so it relies on the load-balancing capabilities

of the network infrastructure so as to help maximise

throughput and reduce latency.

As writes need to pass through the master instance, load

balancers need to be configured to direct write traffic to

the master, whereas read operations can be balanced

across the entire cluster. In a web-based application,

the HTTP method is often sufficient to distinguish

writes (POST, PUT or DELETE) from reads (GET).

7
 Ibidem 1. p. 78-82.

 10

When running in server mode, Neo4j either exposes a Uniform Resource Identifier (URI) that

indicates whether that instance is currently the master or determines what the master is. Load

balancers can poll this URI at intervals of time to determine where to route traffic.

From a cache perspective, queries will naturally

run faster when the portions of the graph needed

to satisfy them reside in the filesystem cache or

in the object cache, namely when they are stored

in main memory. Cache sharding consists of

routing each request to a database instance in a

cluster where the portion of the graph necessary

to satisfy that request is likely already in main

memory. If most queries are graph-local queries,

meaning they start from one or more specific

points in the graph, and traverse the surrounding

subgraphs, then a mechanism that consistently routes queries beginning from the same set of

start points to the same database instance will increase the likelihood of each query hitting a

warm cache. The strategy used to implement consistent routing will vary according to domain.

A Practical Example

Conceptual Model

Broadly speaking, we will work on a database that models some features of the world of

academic writing.

We will therefore collect information about papers, their authors (including their affiliation to

universities and research groups) along with the references among the different papers, as the

following diagram depicts:

 11

Relational Logical Model

On account of the fact that we would like to compare query expressivity power between Graph

Databases and the traditional Relational Databases, we have also implemented the conceptual

model described above in Microsoft SQL Server. The underlying logical model is depicted in

the following diagram:

Our Test Dataset

To build our example database, we extracted from DBLP
8
 a sample of 25.000 papers

representing more than 18.000 authors. We also manually created 5 universities and 10

research groups.

Afterwards, relationships were randomly created according to the cardinalities described as

follows:

 An author belongs in 1 or 2 research groups (representing about 27.000 “belongs in”

relationships).

 An author studied at 1 or 2 universities (representing about 27.000 “studied at”

relationships).

 An author works at most in 2 universities (representing about 18.000 “works for”

relationships).

8
“The DBLP Computer Science Bibliography”. University of Trier, Germany. Version retrieved on 01/12/2013 from

http://dblp.uni-trier.de/xml/dblp.xml.

http://dblp.uni-trier.de/xml/dblp.xml

 12

 A paper references 10 to 30 other papers (representing about 500.000 “references”

relationships).

In order to import this information into the database, we programmed a custom batch import

application in Java. Even though we initially analysed the chance of reusing the generic Batch

Import Program developed by Max de Marzi
9
, we eventually decided to create our own version

in order to allow random relationships creation. In addition, our custom code does not only take

care of creating nodes and relationships in Neo4j database but it also inserts the relevant records

to a relational database in Microsoft SQL Server for comparison purposes.

Some code excerpts will be illustrated in Code samples section of this document but the full

source code can be downloaded from https://code.google.com/p/neo4j-batch-insert-example. It

uses Neo4j
10

 and Log4j
11

 JAR libraries, as well as Microsoft SQL Server JDBC driver
12

.

Running Queries

In order to run queries, we need to open a web browser and go to

http://localhost:7474/webadmin/. Then, the “Data browser” tab allows us to write Cypher

queries and see results:

Query examples

We have written 7 different queries in Cypher and SQL in order to compare the expressivity

power of both platforms under different scenarios. Queries and results are shown as follows:

1) Count the number of authors that studied at each university:

START u=node(*)

MATCH (u)<-[:STUDIED_AT]-(a)

RETURN u.name, count(*)

SELECT u.name, count(*)

FROM University u, StudiedAt s

WHERE u.university_id = s.university_id

GROUP BY u.name

9
 “Batch Importer – Part 1”. Max de Marzi. Retrieved from http://maxdemarzi.com/2012/02/28/batch-importer-

part-1 on October 23, 2013.
10

 Jar files included in “lib” folder of file “neo4j-community-2.0.0-windows.zip”, downloaded from

http://www.neo4j.org/download.
11

 Jar file “log4j-1.2.17.jar”, downloaded from http://logging.apache.org/log4j/1.2/download.html.
12

 Jar file “sqljdbc4.jar”, downloaded from http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx.

https://code.google.com/p/neo4j-batch-insert-example
http://localhost:7474/webadmin/
http://maxdemarzi.com/2012/02/28/batch-importer-part-1
http://maxdemarzi.com/2012/02/28/batch-importer-part-1
http://www.neo4j.org/download
http://logging.apache.org/log4j/1.2/download.html
http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx

 13

2) Get the name of authors that studied at “Université Libre de Bruxelles”:

START u=node:universities(name="Université Libre

de Bruxelles")

MATCH (u)<-[:STUDIED_AT]-(a)

RETURN a.name

ORDER BY a.name

SELECT a.name

FROM University u, StudiedAt s, Author a

WHERE u.university_id = s.university_id

AND s.author_id = a.author_id

AND u.name = 'Université Libre de Bruxelles'

ORDER BY a.name

3) Count how many papers were written by each author working at “Politehnica University

Bucharest”:

START u=node:universities(name="Politehnica

University Bucharest")

MATCH (u)<-[:WORKS_FOR]-(a)-[:WROTE]->(p)

RETURN a.name, count(p.title)

ORDER BY a.name

SELECT a.name, count(*)

FROM University u, WorksFor w,

 Author a, Wrote wr

WHERE u.university_id = w.university_id

AND w.author_id = a.author_id

AND u.name = 'Politehnica University Bucharest'

AND wr.author_id = a.author_id

GROUP BY a.name

ORDER BY a.name

 14

4) Get the number of references to papers written by someone who studied at ULB grouped

by the year of publication of the article that references the paper:

START u1=node:universities(name='Université

Libre de Bruxelles')

MATCH a1-[:STUDIED_AT]->u1,

 a1-[:WROTE]->p1,

 p2-[:REFERENCES]->p1

RETURN p2.publication_year, count(p2.title)

ORDER BY p2.publication_year

SELECT p.publication_year, count(*)

FROM University u, StudiedAt s, Wrote wr,

 Reference r, Paper p

WHERE u.university_id = s.university_id

AND u.name = 'Université Libre de Bruxelles'

AND s.author_id = wr.author_id

AND r.paper_id_referenced = wr.paper_id

AND p.paper_id = r.paper_id

GROUP BY p.publication_year

5) For all papers written by people who studied at “Universidad de Buenos Aires”, count the

number of references to articles from authors who studied at ULB:

START u1=node:universities(name='Universidad de

Buenos Aires'),

u2=node:universities(name='Université Libre de

Bruxelles')

MATCH a1-[:STUDIED_AT]->u1,

 a2-[:STUDIED_AT]->u2,

 a1-[:WROTE]->p1,

 a2-[:WROTE]->p2,

 p1-[:REFERENCES]->p2

RETURN count(*)

SELECT count(*)

FROM University u, University u2,

 StudiedAt s, StudiedAt s2,

 Wrote wr, Wrote wr2,

 Reference r

WHERE u.university_id = s.university_id

AND u.name = 'Universidad de Buenos Aires'

AND u2.name = 'Université Libre de Bruxelles'

AND s.author_id = wr.author_id

AND wr.paper_id = r.paper_id

AND u2.university_id = s2.university_id

AND s2.author_id = wr2.author_id

AND wr2.paper_id = r.paper_id_referenced

 15

6) Author David Robson has referenced other authors. Those referenced authors, in turn,

have referenced third parties. The papers written by such third parties might be of interest

for David Robson for further reading, so he would like to retrieve them as well as the name

of their respective authors.

START a1=node:authors(name='David Robson')

MATCH a1-[:WROTE]->p1,

 a2-[:WROTE]->p2,

 a3-[:WROTE]->p3,

 p1-[:REFERENCES]->p2,

 p2-[:REFERENCES]->p3

WHERE a3.name <> a1.name

RETURN distinct p3.title, a3.name

ORDER BY p3.title

SELECT distinct p3.title, a3.name

FROM Author a1, Author a3,

 Wrote w1, Wrote w3,

 Reference r1, Reference r2,

 Paper p3

WHERE a1.name = 'David Robson'

AND a1.author_id = w1.author_id

AND w1.paper_id = r1.paper_id

AND r1.paper_id_referenced = r2.paper_id

AND r2.paper_id_referenced = w3.paper_id

AND w3.author_id = a3.author_id

AND a1.author_id <> a3.author_id

AND w3.paper_id = p3.paper_id

ORDER BY p3.title

7) For all papers written by author Michael L. Heytens, we will obtain first and second level

outgoing references:

START a1=node:authors(name='Michael L. Heytens')

MATCH a1-[:WROTE]->p1,

m=p1-[:REFERENCES*1..2]->p2

RETURN length(m), count(*)

SELECT 1, COUNT(*)

FROM Author a, Wrote w, Reference r

WHERE a.author_id = w.author_id

AND w.paper_id = r.paper_id

AND a.name = 'Michael L. Heytens'

 UNION

SELECT 2, COUNT(*)

FROM Reference r

WHERE r.paper_id IN

(SELECT r.paper_id_referenced

FROM Author a, Wrote w, Reference r

WHERE a.author_id = w.author_id

AND w.paper_id = r.paper_id

AND a.name = 'Michael L. Heytens')

 16

Experimenting with Neo4j

Installing Neo4J13

Neo4j can be run on any desktop or laptop computer. This option is available not only for

Windows but also for Linux and Mac.

A normal user would need a Java Virtual Machine installed on the computer before installing

Neo4j (with the exception of Windows OS). In addition, Java Development Kit (JDK) is

recommended.

We will further explain how to install Neo4j for each of the main operating

systems.

Windows

Provided the user has the corresponding administrative rights, Neo4j can be easily installed as a

windows service by following the steps described below:

1. Click on Start -> All programs -> Accessories

2. Right click on Command Prompt and chose “Run as Administrator”

3. Provide the necessary authorization and/or the Administrator password

4. Navigate to %NEO4J_HOME% (in other words, the directory where Neo4j was installed).

5. Run bin\Neo4j.bat install

In order to uninstall Neo4j, you need to run: bin\Neo4j.bat remove

Also, to query the status of the service, you need to run: bin\Neo4j.bat status

Run bin\Neo4j.bat start to start the service from the command prompt. Also, to stop the

service, run: bin\Neo4j.bat stop

Linux

Neo4j may participate in the normal startup/shutdown process of the computer. On most popular

Linux distributions, the following procedure is suggested:

1. cd $NEO4J_HOME (change directory to corresponding folder)

2. sudo ./bin/neo4j install (enter the corresponding password to gain super-user privileges)

3. service neo4j-service status (this command will indicate if the server is running)

4. service neo4j-service start (this command will start the server)

During installation, the option (to select the user Neo4j will run as) will eventually appear. A

username (by default: neo4j) must be provided. If the user account does not exist, it will be

created as a system account. The $NEO4J_HOME/data directory will be owned by that user.

There is a specific command to remove the server from the set of startup services. The

corresponding command is: service neo4j-service remove

13

 “Neo4j. The Graph Database”. Neo Technology, Inc., San Mateo, California. Version retrieved on 01/12/2013

from http://docs.neo4j.org/chunked/stable/server-installation.html

http://docs.neo4j.org/chunked/stable/server-installation.html

 17

It will also stop the server (if the server is running) and eventually remove it. Remember that, if

a new user account was previously created, upon uninstall you will be asked to remove it.

Mac

Using Homebrew, the following command is required in order to install Neo4j Server:

brew install neo4j && neo4j start

This will get a Neo4j instance running on http://localhost:7474. The installation files will be

found in /usr/local/Cellar/neo4j/community-{NEO4J_VERSION}/libexec/.

As a service, Neo4j can be installed as a Mac launched job by running these commands:

1. cd $NEO4J_HOME

2. ./bin/neo4j install

3. launchctl list | grep neo

(this will show the launched "org.neo4j.server.7474" job to run the Neo4j Server)

4. ./bin/neo4j status

(this will indicate whether the server is running or not)

5. launchctl stop org.neo4j.server.7474

(this command should stop the server)

6. launchctl start org.neo4j.server.7474

(this command should start the server again)

In order to remove the launchctl service, the user must issue the command: ./bin/neo4j remove

Populating the Database

Code Samples

 Connecting to the Database:

import org.neo4j.graphdb.GraphDatabaseService;

import org.neo4j.graphdb.factory.GraphDatabaseFactory;

[…]

String filePath = "c:\\users\\user1\\documents\\neo4j\\default.graphdb";

GraphDatabaseService graphDb = new GraphDatabaseFactory()

 .newEmbeddedDatabaseBuilder(filePath).newGraphDatabase();

 Creating Nodes, Relationships and Indexes:

import org.neo4j.graphdb.Transaction;

import org.neo4j.graphdb.Node;

import org.neo4j.graphdb.Relationship;

import org.neo4j.graphdb.DynamicRelationshipType;

http://localhost:7474/

 18

import org.neo4j.graphdb.index.Index;

[…]

Transaction tx = graphDb.beginTx();

Node n1 = graphDb.createNode();

n1.setProperty("name", "Université Libre de Bruxelles");

n1.setProperty("city", "Bruxelles");

n1.setProperty("country", "Belgique");

n1.setProperty("type", "university");

Node n2 = graphDb.createNode();

n2.setProperty("name", "François Englert");

n2.setProperty("type", "author");

Relationship r1 = n2.createRelationshipTo(n1,

DynamicRelationshipType.withName("STUDIED_AT"));

r1.setProperty("graduation_date", "1955-06-30");

Relationship r2 = n2.createRelationshipTo(n1,

DynamicRelationshipType.withName("WORKS_FOR"));

r2.setProperty("from_date", "1961-09-01");

r2.setProperty("to_date", "1998-06-30");

Index<Node> i1 = graphDb.index().forNodes("indexOnAuthors");

i1.add(n, "name", n.getProperty("name"));

Index<Node> i2 = graphDb.index().forNodes("indexOnUniversities");

i2.add(n, "name", n.getProperty("name"));

i2.add(n, "city", n.getProperty("city"));

i2.add(n, "country", n.getProperty("country"));

tx.success();

tx.finish();

 19

Discussion

In the same vein as what happens with the transition between procedural programming and

object oriented languages, developing graph databases indisputably requires a mind-set change.

In fact, if graph databases were used according to the relational paradigm (e.g. modelling

relations as attributes of nodes) we would not be benefiting from their advantages.

Nevertheless, provided proper modelling takes place, great gains in terms of performance may be

obtained. As previously discussed, some studies –like the one performed by Partnet and

Vukotic– have shown that, when multiple-level indirect relationships are involved, relational

databases are not a viable solution because of their protracted runtimes. Under those

circumstances, there are compelling reasons to use Graph Databases.

Query expressivity may also turn out to be much better in Graph Databases. For instance, the

seventh query depicted in the examples section, clearly shows that a fairly short and intelligible

Cypher query can obtain the same results that a longer and slightly more cryptic query in SQL.

It might be worth mentioning that such case is only exploring a two-level relationship, whereas

this advantage would be considerably magnified if the number of levels rose.

That being said, we consider that there might be some aspects that still need to be refined. For

example, as far as stability or fault tolerance are concerned, we noticed that some queries can

easily make the database management system unstable. The only way to recover from this

scenario proved to be restarting the database service.

Furthermore, let us consider a query with a START clause that does not use indexes. In a

relational database, a lack of indexes brings about a full table scan. However, in a graph

database, there would be a full scan of the entire database because nodes are not grouped by

entity type. Ideally, the database management system should ensure stability by foreseeing and

successfully dealing with scenarios like these by offering, for instance, an option to cancel long

running queries or make them timeout.

On the other hand, we also noticed that coding is almost a must when it comes to batch inserting

records in a graph database. Even though there are other alternatives such as REST or Console

commands, the truth is that the latter can only be run one at a time whereas the former needs to

be restricted in terms of length (command sets should be 2 KB or 5 KB long at most). There is a

chance of running multiple Cypher insert commands in Linux by using the pipelining feature but

that does not work in Windows.

Therefore, at variance with SQL insertion scripts, which may sometimes be written by functional

analysts with no technical background, Graph Databases might pose other needs from a skillset

perspective.

 20

Conclusion

As a result of this project, we had our first exposure to the world of Graph Databases, which

differs significantly from what we were used to seeing in the traditional relational databases.

Particularly, the example we have built gave us the chance to explore and acquire hands-on

experience in some of the most important features of this type of databases. This will hopefully

provide with a good starting point to someone who is performing an initial evaluation of this

technology.

Over the course of this report, we discussed and illustrated some of the compelling reasons that

might drive a company to use Graph Databases. However, for the sake of objectiveness, we also

examined some of the improvement opportunities that this developing technology might have.

Taking everything into account, we consider that there are no significant reasons to contradict

the hypothesis we had at the time we started with our project. Indeed, Graph Databases seem to

outperform other technologies when relationships are a key component of the model.

§§§

