
UNIVERSITÉ LIBRE DE BRUXELLES

Academic year 2015 - 2016

INFO-H-415 : Project Report – eXist-db
Raphael DUHEN

Abstract

This main goal of this report is to give a detailed study of XML databases and their use in the

applying of eXist-db. This report will first describe the theoy related to XML databases and

the theory related to relational databases, then it will look in detail in the creation, the use and

the managmenent of eXist-db. This second part will take a look at the flexibility of eXist-db

(how easy it is to migrate from SQL, how easy it is tomigrate to SQL, ...). Finally, the report

will present several benchmarks, allowing a comparison between a relational database (MySQL

in this case) and an XML database.

Keywords : databases, XML databases, relational databases, MySQL, eXist-db.

CONTENTS

Contents

1 Introduction 3

1.1 Introduction . 3

1.2 Introduction to relational databases . 4

1.2.1 General concept . 4

1.2.2 Limitation . 5

1.3 Introduction to XML databases . 7

2 Integration of eXist-db 10

2.1 Introduction . 10

2.2 Import of a relational database in eXist-db . 10

2.2.1 From MySQL to XML . 12

2.2.2 From XML to eXist-db . 14

2.2.3 Conclusion : MySQL to XML database 14

2.3 Import of a XML database in MySQL . 15

2.3.1 XML file to MySQL . 15

2.3.2 Conclusion : XML database to MySQL 17

2.4 eXist-db and web semantic . 18

2.4.1 The web semantic . 18

2.4.2 eXist-db support . 18

2.4.3 Not supported by eXist-db . 19

3 Benchmarks 20

3.1 Creation of the databases . 21

3.1.1 Parsing of the file . 21

3.1.2 Creation of the MySQL database . 21

3.1.3 Creation of the eXist-db database . 23

3.2 First Query : search an edge in function of its ID 23

3.2.1 SQL Request . 23

3.2.2 XQuery . 23

3.2.3 Results . 24

3.3 Second Query : search all reachable destination (level 2) 25

3.3.1 SQL Request . 25

3.3.2 XQuery . 25

3.3.3 Results . 25

3.4 Third Query : search all reachable destination (level 3) 27

3.4.1 SQL Request . 27

3.4.2 XQuery . 27

3.5 Conclusion . 27

eXist-db 1

CONTENTS

4 Conclusion 29

A XML file generated by the mysqldump command 31

B Python script for parsing from Google file to XML format 35

C Benchmark code 37

C.1 Main file . 37

C.2 Mysql file . 39

C.3 eXist file . 41

C.4 Benchmark program output . 43

eXist-db 2

1. Introduction

1 Introduction

1.1 Introduction

As part of the course of INFO-H-415 - Advanced database, we have been asked to choose a

database type and to develop a report allowing to understand its opeation and its particularity.

In this context, I’ll describe the advantages and the disadvantages of the chosen database in

comparison with another type of database.

My choice was the XML database, and I’ll use eXist-db in order to make the comparison

with the other type of database. Here are the main reason why I’ve chosen eXist-db over other

XML database :

• It’s a NoSQL database, and one important thing as NoSQL database that supports XML

files and JSon files, which are two types of data format files widely used in the world.

• It’s an open source project, meaning that that the code is free, making it easy to get and

to make tests on at low costs.

• It’s pretty well documented on its official website, making the learning quick and easy

• It supports a lot of the XML databases technologies

• It supports a lot of API’s

Now that I’vs described my motivations and my choice, here’s how the report will be divided

:

1. Introduction to the two database types I’ll compare

2. Further study eXist-db

3. Actual comparison with benchmarks, and the different used queries.

eXist-db 3

1. Introduction

1.2 Introduction to relational databases

1.2.1 General concept

This kind of database has been wildely used during the 80’s and is still wildely used today.

MySQL, PostgreSQL and SQLite are such type of databases. This type odf database use SQL

to make the queries. The paradigm of this type of database is the relational model : all datas

are represented in terms of tuples, grouped into relations. A good way to represent this relation

is by using a table :

Figure 1.1: Exemple of relational table

Or, in a more concrete way, here’s an example of how we could represent a set of computers

with their main characteristics :

ID Processor RAM Storage Graphics card chip

1 intel i7 8Go 1To GeForce 950

2 intel i3 4Go 360Go Radeon R9

3 AMD K8 16Go 2To GeForce 980

Table 1.1: Exemple of relational table

The relation presented here could be resumed as a composition relation and a sentence that

could resume this composition relation is, for example : ”the computer 1 is composed by an

intel i7, 8Go of RAM, 1To of 1To storage capacity and a GeForce 950 Graphic card chip”. Note

that the ID needs to be unique in the table because it represents the computer in an unique

way.

eXist-db 4

1. Introduction

1.2.2 Limitation

The relational model has shown some weaknesses in the recent years, because, mainly of two

different causes :

• The complexity of realising some databases, even some common one. To demonstrate this

complexity, let’s takeour previous example an enrich it with the possibility of detailled

graphic card description and the possibility for a PC to have multiple graphic card. We

will then have a special table for the PC which we already have, a table for the graphic

card specification and a table for the correspondance PC/Graphic card.

ID Processor RAM Storage

1 intel i7 8Go 1To

2 intel i3 4Go 360Go

3 AMD K8 16Go 2To

ID PC ID card

1 1

1 2

2 3

3 2

ID card Chip Card VRAM

1 GeForce 950 4Go

2 GeForce 980 4Go

3 Radeon R9 2Go

Table 1.2: From left to right : PC table, correspondance PC/Graphic card table and Graphic

card table

This is still an easy example, but the problematic of interactivity of datas in the recent

years has become a real problem, leading to a lot of time spent on mapping code and

relational databases.

• The complexity of several operations combined with the still growing amount of data

stored. Several queries for example multiple join operations (combination of two tables,

see below), even though really optimised, can lead to a long processing time in table with

a lot of data.

Figure 1.2: Example of an inner join operation on the ID card from the correspondance table

and the ID card from the graphic card table

eXist-db 5

1. Introduction

ID PC ID card ID card Chip card VRAM

1 1 1 GeForce 950 4Go

1 2 2 GeForce 980 4Go

2 3 3 Radeon R9 2Go

3 2 2 GeForce 980 4Go

Table 1.3: Result of the previous inner join operation

Those problems have led to the development of new database types that work with relational

databases, or replace then totally.

eXist-db 6

1. Introduction

1.3 Introduction to XML databases

The XML databases is one of the response found to the problem of complexity of implementa-

tion by allowing data to be specified, and sometimes stored, in XML format. XML databases

are thus a type of document-oriented databases, which implies that XML databases are a cat-

egory of NoSQL database.

Here’s an example of such a database in the XML format 1 :

Code 1.1: XML database example

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE dblp SYSTEM "dblp.dtd">

<dblp>

<article mdate="2011-01-11" key="journals/acta/Saxena96">

<author>Sanjeev Saxena</author>

<title>Parallel Integer Sorting and Simulation Amongst CRCW Models.</title>

<year>1996</year>

</article>

<article mdate="2011-01-11" key="journals/acta/Simon83">

<author>Hans-Ulrich Simon</author>

<title>Pattern Matching in Trees and Nets.</title>

<year>1983</year>

</article>

<article mdate="2011-01-11" key="journals/acta/GoodmanS83">

<author>Nathan Goodman</author>

<author>Oded Shmueli</author>

<title>NP-complete Problems Simplified on Tree Schemas.</title>

<year>1983</year>

</article>

</dblp>

The data structure produced by this XML will be a tree, each node of the tree being at-

tributes or elements of the XML file, and the attributes of the XML elements being the leaves

of the tree.

The role of the database will be to browse the tree in order to find the information relative to

the query.

1Reduced version of the dblp database : http://dblp.uni-trier.de/

eXist-db 7

http://dblp.uni-trier.de/

1. Introduction

The corresponding tree to the previous XML File is the following (for readability reason,

the attributes are represented by a @ followed by the name of their field, instead of their real

value) :

Figure 1.3: Tree corresponding to the previous XML file

We can directly notice that this type of database solves the problem of underlying the diffi-

culty of database creation desribed section 1.2.2. Indeed, there’s no problem of multiple table

for a relation anymore.

For example, here’s one of the possible result our previous database described in section 1.2.2

could look like if we translated it in the XML format, if we suppose that the database name is

pcs :

Code 1.2: Possible XML result

<pcs>

<pc id="1">

<processor>intel i7</processor>

<RAM>8Go</RAM>

<storage>1To</storage>

<graphic_card>

<chip_card>GeForce 950</chip_card>

<VRAM>4Go</VRAM>

</graphic_card>

<graphic_card>

<chip_card>GeForce 980</chip_card>

<VRAM>4Go</VRAM>

</graphic_card>

</pc>

<pc id="2">

<processor>intel i3</processor>

<RAM>4Go</RAM>

eXist-db 8

1. Introduction

<storage>360Go</storage>

<graphic_card>

<chip_card>Radeon R9</chip_card>

<VRAM>2Go</VRAM>

</graphic_card>

</pc>

<pc id="3">

<processor>AMD K8</processor>

<RAM>16Go</RAM>

<storage>2To</storage>

<graphic_card>

<chip_card>GeForce 980</chip_card>

<VRAM>4Go</VRAM>

</graphic_card>

</pc>

</pcs>

eXist-db 9

2. Integration of eXist-db

2 Integration of eXist-db

2.1 Introduction

This section will have as main goal to take a closer look at the flexibility of the eXist-db

database. In this context, I will detail :

• The complexity relative to the migration from a relational database to a XML database.

• The complexity relative to the migration from a XML database to a relational database.

• The langages allowing the use eXist-db.

2.2 Import of a relational database in eXist-db

As explained earlier, relational databases stores data under the form of tables.

In our project, I will use MySQL database to make the comparisons. MySQL uses the SQL lan-

guage to make its queries. SQL (Standard Query Language) is the most wildely used language

for the exploitation of databases, which implies that it is supported by most of the DBMS at

this date.

In order to make a migration from a relational database (MySQL) to XML database (eX-

ist), we will need to create a database. In order to make this migration possible on as much

relational database, we will need an example as wide as possible, containing the different type

of relationships a relational database can offer.

Those different relations are :

• one-to-one relation

• one-to-many

• many-to-many

eXist-db 10

2. Integration of eXist-db

Here’s the database created in order to implement those realtionships :

Figure 2.1: Diagram corresponding to our example of relational database

Here are the relationship in more details :

• many-to-many relation :

– An actor acts in one or several movies

– A movie has one or several actors acting in it

• one-to-many relation :

– A distributor ditributes one or several movies

– A film is distributed by one distributor

Remarks :

• We can notice that the one-to-one relation is not implemented because its treatment in a

relation database is the same as a one-to-many relation, i.e by a foreign-key attribute in

the relation representing the entity whose maximal cardinality in R is 1.

• In practice, the relation presented between the Distributors and the Movies could be

solved by adding a column in the Movies database containing the name of the distributor.

The database presented here is for demonstration purpose only.

eXist-db 11

2. Integration of eXist-db

An example of this database could be filled is the following :

id distributor name

1 New Line Cinema

2 20th Century Fox

id actor name

1 Elja Wood

2 Christopher Lee

3 Ewan McGregor

id relation id actor id movie

1 1 2

2 2 1

3 2 2

4 3 1

id movie name id distributor

1 Star Wars II 2

2 The Lord of the Rings 1

Table 2.1: Filled database, top-left : the Distributors table, top-right : the Actors table,

bottom left : the table resulting from the many-many relation between Actors and Movies,

bottom-right : the Movies table with the id distributor column resulting from the one-to-many

relation between Distributors and Movies

2.2.1 From MySQL to XML

An easy way to export a MySQL database to a eXist-db database is by converting the database

to a XML file, any XML file being a potential database for a XML database.

This export from MySQL to XML can be easily achieved with the following command on

a UNIX system:

Code 2.1: MySQL to XML command

mysqldump --xml $database_name [$table_name] > $save_file_name.xml

or

Code 2.2: Other MySQL to XML command

mysqldump -X $database_name [$table_name] > $save_file_name.xml

Where $name are variables, and more precisely :

• $database name is the name of the database we want to convert in XML.

• $table name (optional) is the name of the table we want to convert in XML.

• $save file is the name of the XML file representing the database.

eXist-db 12

2. Integration of eXist-db

The result of those commands have the following format :

Code 2.3: Mysqldump xml return format

<?xml version="1.0"?>

<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<database name=$(database name)>

<table_structure name=$(name of the table)>

<field Field=$(name of the column) Type=$(type of the column) Null=$("YES" /

"NO") Key=$(is the column a key (empty if not key)" Extra=$(extra info about

column)" Comment="" />

<field Field=$(name of another column) ... />

<key Table=$(name of the table) Non_unique="0" Key_name=$(type of key)

Seq_in_index="1" Column_name=$(name of the key column) Collation="A"

Cardinality="3" Null="" Index_type="BTREE" Comment="" Index_comment="" />

<options Name=$(name of the table) Engine=$(engine type) Version="10"

Row_format="Compact" Rows=$(number of rows) Avg_row_length="5461"

Data_length="16384" Max_data_length="0" Index_length="0" Data_free="9437184"

Auto_increment="4" Create_time=$(date and hour of creation)

Collation="latin1_swedish_ci" Create_options="" Comment="" />

</table_structure>

<table_data name=$(name of the table)>

<row>

<field name=$(name of the first column)>$(value)</field>

<field name=$(name of the second column)>$(value)</field>

</row>

<row>

<field name=$(name of the first column)>$(value)</field>

<field name=$(name of the second column)>$(value)</field>

</row>

.

.

.

</table_data>

<table_structure name=$(name of an other table)>

.

.

.

</database>

The words between paranthesis are preceded by a ”$” symbol are variables, which won’t be

detailled here1.

1The result of the command Code 2.1 or Code 2.2 on the table 2.1 database is noted in the appendix Code

A

eXist-db 13

2. Integration of eXist-db

The result is indeed a XML file, but it is much less human-readable than the XML files we

have seen previously (Code 1.1 or Code 1.2).

Unfortunately there’s no easy way to transcript a MySQL database in a human-readable type

we have seen before. The only way is by creating scripts parsing the generated thanks to the

Code 2.1 or the Code 2.2 command, and combining it. An other way would be by creating a

script browsing the MySQL database itself and store the datas in a format known XML file.

Those solutions are both time-consuming both by the implementation time needed for the

creation of the parser and by the resources (in memory and time) required to compute the

corresponding XML file.

2.2.2 From XML to eXist-db

This part will describe how to use an XML file exported from a MySQL database as described

in the section 2.2.1, to create an eXist-db database.

Because the base of a XML database is a XML file, the only thing we will need to do is

configure the eXist-db engine in order to make it use the XML file previously generated. This

operation can be achieved with the following operation :

• Start the eXist engine

• Start the eXide

• In the file option, select ”Manage”

• Import the XML file

We can now execute XQuery on the file previously generated.

Here’s an example of such a command that will select all the actors name, if we suppose

the imported file is in the path ”/db/apps/test/moviesFromMySQL.xml” :

Code 2.4: Simple Xquery with eXist-db

xquery version "3.0";

doc("/db/apps/test/moviesFromMySQL.xml")//table_data[@name="Actors"]/row/field[@name="name"]

2.2.3 Conclusion : MySQL to XML database

The conclusion of a migration from MySQL to a XML database is that it is relatvely easy,

thanks to a good use mysqldump. However, it is important to note that the output format of

this command won’t give a good human-readable XML file, and that in order to get such a file,

we will need further parsing and recomposing operations.

eXist-db 14

2. Integration of eXist-db

2.3 Import of a XML database in MySQL

This part will detail how to migrate from a XML database to a MySQL database.

The part concerning how to get a XML file from a XML database is trivial, the basis of a

XML database being a XML file (or a list of XML files). So we’re going to skip it in order to

take a closer look at the part concerning how to use a XML file in order to generate a MySQL

database.

2.3.1 XML file to MySQL

The import of a XML database into MySQL can be done thanks to the LOAD XML com-

mand. There are several ways of importing XML files with different formats. We will first take

a look at the full command, and then detail how to use it in a concrete way .

The command is :

Code 2.5: Full syntax of a Load XML command

LOAD XML [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE ’file_name’

[REPLACE | IGNORE]

INTO TABLE [db_name.]tbl_name

[CHARACTER SET charset_name]

[ROWS IDENTIFIED BY ’<tagname>’]

[IGNORE number {LINES | ROWS}]

[(field_name_or_user_var,...)]

[SET col_name = expr,...]

Here are the details of the clauses2 :

• If we use LOW PRIORITY, the execution of the LOAD DATA statement is delayed

until no other clients are reading from the table.

• The LOCAL keyword affects where the file is expected to be found.

• The REPLACE and IGNORE keywords control handling of input rows that duplicate

existing rows on unique key values.

• CHARACTER SET specifies the encoding used

• ROWS INDENTIFIED BY <tagname> allows to change the default element considered

to be equivalent to a database row (<row> by default).

• IGNORE number LINES — ROWS causes the first number rows in the XML file to be

skipped.

2More details at https://dev.mysql.com/doc/refman/5.5/en/load-xml.html

eXist-db 15

https://dev.mysql.com/doc/refman/5.5/en/load-xml.html

2. Integration of eXist-db

• (field name or user var,...) is a comma-separated list of one or more XML fields or user

variables. The name of a user variable used for this purpose must match the name of a

field from the XML file, prefixed with @. Field names can be used to select only desired

fields.

• SET allows to perform transformations on user variables before assigning the result to

columns.

Those clauses allow a pretty good flexibility on the data importing. About the file format,

there are 3 main types recogneized :

• Column names are the name attributes of <field> tags, and values are the contents of

these tags :

Code 2.6: First accepted XML format

<row>

<field name=’column1’>value1</field>

<field name=’column2’>value2</field>

</row>

This is a look-like format from what we have seen at Code 2.3.

• Column names as attributes and column values as attribute values :

Code 2.7: First accepted XML format

<row column1="value1" column2="value2" .../>

• Column names as tags and column values as the content of these tags :

Code 2.8: First accepted XML format

<row>

<column1>value1</column1>

<column2>value2</column2>

</row>

Although there’s one big disadvantage : these commands require the MySQL database and

all the structure of the database to be already done (the tables need to be created).

Here’s an example of a command Code2.5 on the database Table2.1 :

Code 2.9: Example of load xml command

LOAD XML INFILE "MoreMovies.xml"

INTO TABLE Movie.Movies;

with ”MoreMovies.xml” as following :

eXist-db 16

2. Integration of eXist-db

Code 2.10: MoreMovies.xml file

<?xml version="1.0"?>

<table_data name="Movies">

<row>

<field name="id_movie">3</field>

<field name="name">Snakes on a Plane</field>

<field name="id_distributor">2</field>

</row>

<row>

<field name="id_movie">4</field>

<field name="name">Avatar</field>

<field name="id_distributor">1</field>

</row>

</table_data>

Gives indeed the expected result :

id movie name id distributor

1 Star Wars II 2

2 The Lors of the Rings 1

3 Snakes on a Plane 2

4 Avatar 1

Table 2.2: Example of Code 2.9 with Code 2.10 on the Movie table from database 2.1

2.3.2 Conclusion : XML database to MySQL

We can say that, once the database has been created, the filling of this database with a XML

file with a close format to the one of the database is pretty quick to setup.

Otherwise, the process can be longer to adapt the XML file to make it compatible with the

database structure.

eXist-db 17

2. Integration of eXist-db

2.4 eXist-db and web semantic

In this section we will talk about integration of eXist-db in applications. In order to do that,

we will need to explain

• What is the standard of communication on the internet (necessary to make the commu-

nication with the database possible on the internet)

• How does eXist-db supports this standard

• What are the elements not supported yet

2.4.1 The web semantic

The web semantic is an enterprise trying to méthodes for the exchange of datas on the internet.

It tries to find an answer to the following problem : how to organize datas so that the content

of a web, originally designed for humans, can also be treated by computers ?

W3C will then try to structure informations so that both humans and computers can interp-

trepret the datas online.

2.4.2 eXist-db support

As seen before, W3C implies a lot of standards on how to be able to browse datas.

Here are the W3C standards supported by W3C :

• XPath : query language for selecting nodes from an XML document.

• XQuery : query and functional programming language that queries and transforms col-

lections of structured and unstructured data, usually in the form of XML, text and with

vendor-specific extensions for other data formats (JSON, binary, etc.)

• XSLT : language for transforming XML documents into other XML documents,[1] or

other formats such as HTML for web pages, plain text or into XSL Formatting Objects

• XSL-FO : markup language for XML document formatting which is most often used to

generate PDF

• webDAV : extension of HTTP that allows clients to perform remote Web content author-

ing operations.

• SOAP : protocol specification for exchanging structured information in the implementa-

tion of web services in computer networks.

• XInclude : generic mechanism for merging XML documents

• XProc : W3C Recommendation to define an XML transformation language to define

XML Pipelines.

We can see that eXist-db provides a lot of W3C features making it a good engine to use

when creating a web application.

eXist-db 18

2. Integration of eXist-db

2.4.3 Not supported by eXist-db

Although the strong support of W3C standards, there are several remarks to be done about its

support :

• EXpath is not supported by eXist-db.

• XQuery 1.0 is supported at 99.4% by eXist-db, meanwhile XQuery 3.0 is not fully sup-

ported (no data available on how much is supported)

eXist-db 19

3. Benchmarks

3 Benchmarks
In this chapter, we will lookat some benchmarks to be able to make a good comparison between

MySQL and eXist-db in term of performances.

In order to compare the performances of those two database engines, we need a relatively

big amount of data that we will store in the two types ofdatabase wewant to study the perfor-

mances. In order to do that, I’ve downloaded a file representing a graph used by Google during

Google Programming Contest of 20021.

This file contains 875713 nodes and 5105039 nodes. We won’t use all the datas provided, we

will only use a certain amount

The file format is described below :

Code 3.1: Format of the file used for the benchmarking

comment

origin_node destination_node

origin_node destination_node

.

.

.

The benchmarks will be performed on a computer running under Kubuntu with the following

hardware :

• Processor : Intel Core i7 4790 (3.6 GHz) - 4 cores - 8 threads - 8 MB cache - 64 bits ,

with a

• RAM : 8Go - DDR3 - 1866MHz - CL10

The language used to perform the benchmarks will be Java 1.7 and we will use the following

API’s :

• JDBC for the MySQL connectivity

• XML:DB for the eXist-db connectivity

1More details at http://snap.stanford.edu/data/web-Google.html

eXist-db 20

http://snap.stanford.edu/data/web-Google.html

3. Benchmarks

3.1 Creation of the databases

This section details how to create the 2 different types of database starting from the file provided

by Google (Code 3.1).

3.1.1 Parsing of the file

The first step of the database creation is to parse the data file. This action has been achieved

by using script I’ve programmed (the full code is provided in the appendix B.1).

Here are the main steps of the program :

• Opening the file

• Create an empty list that will contain the x first nodes (x being a paramater provided as

input at the beginning of the program)

• While we haven’t reached the end of the file and we haven’t added x nodes to the previous

list, we format the current line to one of the XML format accepted by MySQL (see 2.6,

2.7 or 2.8)

• return the list containing the x first nodes

The python script is used like this :

Code 3.2: Command used to parse the Google file (Code 3.1)

python converter.py $google_file_name $number_of_line_to_parse > $xml_ouput_file

• $ google file : name of the input file with the Google format

• $ number of line to parse : number of nodes to save (corresponds to the x variables

detailed above)

• $ xml ouput file : name of the file where the output will be written

In this report I’ve chosen to make 6 different benchmarks at 500, 1000, 1500, 2000, 2500

and 3000 first encountered nodes.

In order to have a good approximation of the computational time needed for each request and

each file, I will do the tests 3 times and compute the average time needed.

If further details are needed, the code is available in the appendix (??)

3.1.2 Creation of the MySQL database

First, we need to create the database and the tables needed in order to receive the datas parsed

at the previous step. In our case, we will only need one table, called Digraph, which will contain

all edges of the digraph corresponding to the data contained in the original Google file.

This table has only 3 attributes :

eXist-db 21

3. Benchmarks

• id node : unique id of the relation between the to nodes.

• origin : origin node

• destination : destination node

Here’s the SQL syntax used to create the database and the table.

Code 3.3: Creation of the MySQL database

CREATE DATABASE INFOH415;

USE INFOH415

CREATE TABLE Digraph (

id_node INT UNSIGNED NOT NULL AUTO_INCREMENT,

origin INT UNSIGNED NOT NULL,

destination INT UNSIGNED NOT NULL,

PRIMARY KEY(id_node),

UNIQUE(origin, destination)

) engine=innodb;

Now our database structure is ready, we can fill it with the data comming from the XML

file parsed at the previous step.

In order to do that, we will first need to move the XML files to /var/lib/mysql/$database name/

so that the mysql program will find then when using the loading command 2.

Code 3.4: Loading of the XML file

LOAD XML INFILE $file

INTO TABLE db_name.table_name;

Where $file is the name of the XML file to import.

The datas contained in the original google file have now been fully imported in the MySQL

database. In order to do the on all the files, we have two possibilities :

• Keep the table created at the previous step and add the new nodes by using the IGNORE

option usable with the LOAD command.

• Delete the content of the table with the command below and recreate it with the command

Code 3.4.

Code 3.5: Command deleting all the content in the Digraph table

DELETE FROM Digraph;

2The loading command has been detailed at Code2.5

eXist-db 22

3. Benchmarks

3.1.3 Creation of the eXist-db database

Because the database of eXist-db is a XML file, we can directly use the XML file created at

section 3.1.1

3.2 First Query : search an edge in function of its ID

The first query that will be performed is a simple one : it consists in searching an edge in

function of its unique id number (with a index on it in SQL).

3.2.1 SQL Request

The sql request in this case is trivial and requires a simple SELECT request with a WHERE

clause corresponding to the searched node id.

Code 3.6: First SQL request for benchmarking

SELECT DISTINCT *

FROM Digraph

WHERE Digraph.id_node = 0;

3.2.2 XQuery

Code 3.7: First XQuery for benchmarking

collection("/db/apps/test/INFOH415/")/table_data[@name=500]/row[@id_edge=4]

eXist-db 23

3. Benchmarks

3.2.3 Results

Figure 3.1: Comparison beween the time of search of an element in function of its id in

eXist-db and MySQL

Legend :

• the X-axis represents the number of origin nodes contained in the database

• the Y-axis represents the time needed to search an element (in milisecond)

• The points A, B, C, D and F represent the collected data for MySQL

• The blue line joining the previously quoted points are the evolution of time in function

of the number of element for MySQL

• The points E, F, G, H and I represent the collected data for eXist-db

• The red line joining the previously quoted points are the evolution of time in function of

the number of element for MySQL

eXist-db 24

3. Benchmarks

We can clearly see that MySQL holds the high ground, which is not that astonishing, as

we know that MySQL puts an index on the column that serves as primary key for the table,

implying high performences, with a search time very low (always less than a milisecond), even

with a lot of datas.

EXist on the other has a growing time at almost each step, being even almost 120 time slower

than MySQL for the last test.

3.3 Second Query : search all reachable destination (level

2)

The goal of this request is to make all the paths possible with a distance of 2 (if we suppose

the edges all have a distance 1).

3.3.1 SQL Request

The search of all the paths of size 2 can easily be achieved by using an INNER JOIN3 with the

destination of an edge being equal to the origin of another edge.

Code 3.8: Second SQL request for benchmarking

SELECT DISTINCT *

FROM Digraph AS D1

INNER JOIN Digraph AS D2

ON D2.origin = D1.destination;

3.3.2 XQuery

Code 3.9: Second XQuery for benchmarking

collection("/db/apps/test/INFOH415/")/table_data[@name="500"]/row[@origin =

collection("/db/apps/test/INFOH415/result500.xml")/table_data[@name="500"]/row/@destination]

3.3.3 Results

Legend :

• the X-axis represents the number of origin nodes contained in the database

• the Y-axis represents the time needed to search an element (in milisecond)

• The points A, B, C, D and E represent the collected data for MySQL for the join operation

3An example of INNER JOIN is available at figure1.2

eXist-db 25

3. Benchmarks

• The blue line joining the previously quoted points are the evolution of time in function

of the number of element for MySQL

• The points G and H represent the collected data for eXist-db for the join operation

• The red line joining the previously quoted points are the evolution of time in function of

the number of element for eXist-db

• The points I, J, K, L and M represent the data collected for MySQL for the double join

operation (see 3.4 for more details)

• The black line joining the previously quoted points are the evolution of time in function

of the number of element for MySQL double join

We can see a huge gap in term of performances between eXist-db and MySQL. Indeed, let’s

take a closer look at each lines, comparing it two by two :

• Blue line and black line : we can see a pretty big difference here, which is not a surprise

as we knpw that the black line requires a join operation more than the blue line. This

shows that the join operation is a costly operation.

• Blue line and red line : this is where the gap in term of performance is huge, we can

indeed see that for the same request, there’s (for the smaller one) a difference factor of

almost 4162. Making the join operation in eXist-db almost unusable with a lot of datas

(the join operation with 3000 nodes taking up to 10 minutes).

• Black line and red line : this comparison allows to show even more the difference in term

of performances. Indeed, we can see that even with a double join on 3000 nodes, MySQL

stays faster than eXist-db with a simple join and only 500 nodes

eXist-db 26

3. Benchmarks

3.4 Third Query : search all reachable destination (level

3)

The idea here is to oblige the two engines to make a very costly request (a double join)

3.4.1 SQL Request

Code 3.10: Third SQL request for benchmarking

SELECT DISTINCT *

FROM Digraph AS D1

INNER JOIN (

Digraph AS D2

INNER JOIN Digraph AS D3

ON D2.destination = D3.origin

)

ON D2.origin = D1.destination;

3.4.2 XQuery

Code 3.11: Third XQuery for benchmarking

collection("/db/apps/test/INFOH415/")/table_data[@name="500"]/row[@destination =

collection("/db/apps/test/INFOH415/")/table_data[@name="500"]/row[@destination =

collection("/db/apps/test/INFOH415/")/table_data[@name="500"]/row/@origin]/@origin]

For practical reasons of computational time, the double join operation with eXist-db has

not been tested in this report (more details on the join operation in section 3.3.3).

The result for the double join operation with MySQL is available at the same section.

3.5 Conclusion

In conclusion, we can see that in term of pure performances, eXist-db is highly inferior to

MySQL concerning more complex operations (such as joins), with differences of computational

times being counted in tens of minutes in term for the same operations !

Although, there are some remarks to be done :

• MySQL and eXist-db did not use the same API to compute the results. This might imply

in term of performances.

eXist-db 27

3. Benchmarks

• During the benchmarking process, I’ve noted a very high CPU consumption when per-

forming the operations concerning the MySQL database (Up to 600% of the CPU usage

!). Meanwhile, eXist-db only used less calculation power (120% of the CPU max).

eXist-db 28

4. Conclusion

4 Conclusion
MySQL and eXist-db are two really different type of databases with advantages and disadvan-

tages, which could be summarized with the following list :

• Performances : in term of performances, MySQL clearly has the high ground, with a realy

fast time of execution

• Outlying deployment : in term of deployment, eXist-db clearly is much easier to use, the

only thing needed is a XML file. It is also much easier for returning result, XML being a

very used format with a lot of API available in order to treat the received XML result.

We can then say that if the database should be a highly used database with a lot of datas

interlying with each other, MySQL should be the preferred one.

If the database should be less used, but requires a high flexibility of the stored datas, or a

quick deployment, eXist-db should ne the preferred one.

eXist-db 29

BIBLIOGRAPHY

Bibliography
[1] Suciu Dan. On database theory and xml. http://xml.coverpages.org/SuciuDatabaseTheoryXML.pdf.

[2] eXist db. exist documentation. http://exist-db.org/exist/apps/doc/documentation.xml.

[3] eXist db. Xquery in exist-db. http://exist-db.org/exist/apps/doc/xquery.xml.

[4] Joshua W. Green. A comparison of the relative performance of xml and sql databases in

the context of the grid-safe project. 2008.

[5] MySQL. Load xml syntax. https://dev.mysql.com/doc/refman/5.5/en/load-xml.html.

[6] MySQL. Mysqldump. http://dev.mysql.com/doc/refman/5.7/en/mysqldump.html.

[7] Matthias Nicola. 5 reasons to use xml databases.

http://nativexmldatabase.com/2010/09/28/5-reasons-for-storing-xml-in-a-database/.

[8] Oracle. A relational database overview. https://docs.oracle.com/javase/tutorial/jdbc/overview/database.html.

[9] Elmasri Ramez and Navathe Shamkant B. Fundamentals ofDatabase Systems. Pearson

Education, Inc.

[10] Adam Retter and Erik Siegel. eXist. O’Reilly Media, Inc., 2014.

[11] Bloor Robin. The failure of relational database, the rise of object technology and the need

for the hybrid database. 2004.

[12] tutorialspoint. Jbdc simple example. http://www.tutorialspoint.com/jdbc/jdbc-sample-

code.htm.

[13] w3c. Xpath specifiactions. http://www.w3schools.com/xsl/xpath intro.asp.

[14] w3c. Xquery specifiactions. http://www.w3schools.com/xsl/xquery intro.asp.

eXist-db 30

A. XML file generated by the mysqldump command

A XML file generated by the mysql-

dump command

Code A.1: Result of the Code 2.1 or Code 2.2 command on the previously created database

<?xml version="1.0"?>

<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<database name="Movie">

<table_structure name="Actors">

<field Field="id_actor" Type="int(10) unsigned" Null="NO" Key="PRI"

Extra="auto_increment" Comment="" />

<field Field="name" Type="text" Null="NO" Key="" Extra="" Comment="" />

<key Table="Actors" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1"

Column_name="id_actor" Collation="A" Cardinality="3" Null=""

Index_type="BTREE" Comment="" Index_comment="" />

<options Name="Actors" Engine="InnoDB" Version="10" Row_format="Compact"

Rows="3" Avg_row_length="5461" Data_length="16384" Max_data_length="0"

Index_length="0" Data_free="9437184" Auto_increment="4"

Create_time="2015-12-12 13:40:28" Collation="latin1_swedish_ci"

Create_options="" Comment="" />

</table_structure>

<table_data name="Actors">

<row>

<field name="id_actor">1</field>

<field name="name">Elja Wood</field>

</row>

<row>

<field name="id_actor">2</field>

<field name="name">Christopher Lee</field>

</row>

<row>

<field name="id_actor">3</field>

<field name="name">Ewan McGregor</field>

</row>

</table_data>

<table_structure name="Acts">

<field Field="id_relation" Type="int(10) unsigned" Null="NO" Key="PRI"

Extra="auto_increment" Comment="" />

<field Field="id_actor" Type="int(10) unsigned" Null="NO" Key="MUL" Extra=""

Comment="" />

<field Field="id_movie" Type="int(10) unsigned" Null="NO" Key="MUL" Extra=""

Comment="" />

eXist-db 31

A. XML file generated by the mysqldump command

<key Table="Acts" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1"

Column_name="id_relation" Collation="A" Cardinality="2" Null=""

Index_type="BTREE" Comment="" Index_comment="" />

<key Table="Acts" Non_unique="1" Key_name="id_actor" Seq_in_index="1"

Column_name="id_actor" Collation="A" Cardinality="2" Null=""

Index_type="BTREE" Comment="" Index_comment="" />

<key Table="Acts" Non_unique="1" Key_name="id_movie" Seq_in_index="1"

Column_name="id_movie" Collation="A" Cardinality="2" Null=""

Index_type="BTREE" Comment="" Index_comment="" />

<options Name="Acts" Engine="InnoDB" Version="10" Row_format="Compact" Rows="4"

Avg_row_length="4096" Data_length="16384" Max_data_length="0"

Index_length="32768" Data_free="9437184" Auto_increment="5"

Create_time="2015-12-12 18:12:19" Collation="latin1_swedish_ci"

Create_options="" Comment="" />

</table_structure>

<table_data name="Acts">

<row>

<field name="id_relation">1</field>

<field name="id_actor">1</field>

<field name="id_movie">2</field>

</row>

<row>

<field name="id_relation">2</field>

<field name="id_actor">2</field>

<field name="id_movie">1</field>

</row>

<row>

<field name="id_relation">3</field>

<field name="id_actor">2</field>

<field name="id_movie">2</field>

</row>

<row>

<field name="id_relation">4</field>

<field name="id_actor">3</field>

<field name="id_movie">1</field>

</row>

</table_data>

<table_structure name="Distributors">

<field Field="id_distributor" Type="int(10) unsigned" Null="NO" Key="PRI"

Extra="auto_increment" Comment="" />

<field Field="name" Type="text" Null="NO" Key="" Extra="" Comment="" />

<key Table="Distributors" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1"

Column_name="id_distributor" Collation="A" Cardinality="2" Null=""

Index_type="BTREE" Comment="" Index_comment="" />

eXist-db 32

A. XML file generated by the mysqldump command

<options Name="Distributors" Engine="InnoDB" Version="10" Row_format="Compact"

Rows="2" Avg_row_length="8192" Data_length="16384" Max_data_length="0"

Index_length="0" Data_free="9437184" Auto_increment="3"

Create_time="2015-12-12 13:39:51" Collation="latin1_swedish_ci"

Create_options="" Comment="" />

</table_structure>

<table_data name="Distributors">

<row>

<field name="id_distributor">1</field>

<field name="name">New Line Cinema</field>

</row>

<row>

<field name="id_distributor">2</field>

<field name="name">20th Century Fox</field>

</row>

</table_data>

<table_structure name="Movies">

<field Field="id_movie" Type="int(10) unsigned" Null="NO" Key="PRI"

Extra="auto_increment" Comment="" />

<field Field="name" Type="text" Null="NO" Key="" Extra="" Comment="" />

<field Field="id_distributor" Type="int(10) unsigned" Null="NO" Key="MUL"

Extra="" Comment="" />

<key Table="Movies" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1"

Column_name="id_movie" Collation="A" Cardinality="2" Null=""

Index_type="BTREE" Comment="" Index_comment="" />

<key Table="Movies" Non_unique="1" Key_name="id_distributor" Seq_in_index="1"

Column_name="id_distributor" Collation="A" Cardinality="2" Null=""

Index_type="BTREE" Comment="" Index_comment="" />

<options Name="Movies" Engine="InnoDB" Version="10" Row_format="Compact"

Rows="2" Avg_row_length="8192" Data_length="16384" Max_data_length="0"

Index_length="16384" Data_free="9437184" Auto_increment="3"

Create_time="2015-12-12 13:42:40" Collation="latin1_swedish_ci"

Create_options="" Comment="" />

</table_structure>

<table_data name="Movies">

<row>

<field name="id_movie">1</field>

<field name="name">Star Wras II</field>

<field name="id_distributor">2</field>

</row>

<row>

<field name="id_movie">2</field>

<field name="name">The Lors of the Rings</field>

<field name="id_distributor">1</field>

</row>

eXist-db 33

A. XML file generated by the mysqldump command

</table_data>

</database>

</mysqldump>

eXist-db 34

B. Python script for parsing from Google file to XML format

B Python script for parsing from Google

file to XML format

Code B.1: Python script used to parse the Google format (Code 3.1) to a XML file compatible

with MySQL and eXist-db (Code 2.6, 2.7 or 2.8)

import sys

def convert_to_xml(filename, lines_to_parse):

f = open(filename, "r")

l = f.readlines()

f.close()

i = 0

j = 0

encountered_nodes = []

entry_table = "<table_data name=\"" + str(lines_to_parse) + "\">"

converted = [entry_table]

while (i < len(l)) and (j <= lines_to_parse):

if l[i][0] != "#":

j, converted_line = line_to_xml(l[i], i, j, encountered_nodes)

converted.append(converted_line)

i += 1

converted.pop()

converted.append("</table_data>")

for i in range(len(converted)):

print converted[i]

def line_to_xml(line, i, j, encountered_nodes):

splitted = line.split()

if not (splitted[0] in encountered_nodes):

j += 1

encountered_nodes.append(splitted[0])

return j, " <row id_edge=\"" + str(i) + "\" origin=\"" + str(splitted[0]) + "\"

destination=\"" + str(splitted[1]) + "\"/>"

if __name__ == "__main__":

filename = sys.argv[1]

lines_to_parse = sys.argv[2]

convert_to_xml(filename, int(lines_to_parse))

eXist-db 35

B. Python script for parsing from Google file to XML format

eXist-db 36

C. Benchmark code

C Benchmark code
Those are the different file with the java code required to launch the whole benchmarking

process :

C.1 Main file

Code C.1: Main.java

public class Main {

private static long m_count = 3;

private static String m_mysqlFile1 = "result500.xml";

private static String m_mysqlFile2 = "result1000.xml";

private static String m_mysqlFile3 = "result1500.xml";

private static String m_mysqlFile4 = "result2000.xml";

private static String m_mysqlFile5 = "result2500.xml";

private static String m_mysqlFile6 = "result3000.xml";

private static String m_mysqlFiles[] = {m_mysqlFile1, m_mysqlFile2,

m_mysqlFile3, m_mysqlFile4, m_mysqlFile5, m_mysqlFile6};

private static String m_mysqlQuery1 = "SELECT * FROM Digraph WHERE

Digraph.id_node = 4;";

private static String m_mysqlQuery2 = "SELECT DISTINCT * FROM Digraph AS D1

INNER JOIN Digraph AS D2 ON D2.origin = D1.destination;";

private static String m_mysqlQuery3 = "SELECT DISTINCT * FROM Digraph AS D1

INNER JOIN (Digraph AS D2 INNER JOIN Digraph AS D3 ON D2.destination =

D3.origin) ON D2.origin = D1.destination;";

private static String[] m_mysqlQueries = {m_mysqlQuery1, m_mysqlQuery2,

m_mysqlQuery3};

private static double m_mysqlResults[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0};

private static String m_eXistFiles[] = {"500", "1000", "1500", "2000", "2500",

"3000"};

private static String m_XQuery1 =

"/table_data[@name=\"TO_REPLACE\"]/row[@id_edge=4]";

private static String m_XQuery2 =

"/table_data[@name=\"TO_REPLACE\"]/row[@origin =

collection(\"/db/apps/test/INFOH415/\")/table_data[@name=\"TO_REPLACE\"]/row/@destination]";

eXist-db 37

C. Benchmark code

private static String m_XQuery3 =

"/table_data[@name=\"TO_REPLACE\"]/row[@destination =

collection(\"/db/apps/test/INFOH415/\")/table_data[@name=\"TO_REPLACE\"]/row[@destination

=

collection(\"/db/apps/test/INFOH415/\")/table_data[@name=\"TO_REPLACE\"]/row/@origin]/@origin]";

private static String[] m_XQueries = {m_XQuery1, m_XQuery2};//, m_XQuery3};

private static double m_eXistResults[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0};

public static void main(String[] args){

MySQL_DB mysql = new MySQL_DB();

EXist_DB eXist = new EXist_DB();

for(int toRun = 0; toRun < m_count; ++toRun) {

System.out.println("TEST NO : " + toRun + "/" + m_count);

for (int i = 0; i < m_eXistFiles.length; ++i) {

System.out.println("File operated : " + m_mysqlFiles[i]);

System.out.println("MYSQL");

mysql.loadTable(m_mysqlFiles[i]);

for (int j = 0; j < m_mysqlQueries.length; ++j) {

System.out.println("Query : " + m_mysqlQueries[j]);

mysql.query(m_mysqlQueries[j]);

m_mysqlResults[(m_mysqlQueries.length * i) + j] +=

mysql.getCount();

}

mysql.emptyTable();

System.out.println();

System.out.println("XQUERY");

String query = m_XQuery1.replace("TO_REPLACE", m_eXistFiles[i]);

System.out.println("Query : " + query);

eXist.query(query, "test/INFOH415/");

m_eXistResults[(m_XQueries.length * i)] += eXist.getCount();

query = m_XQuery2.replace("TO_REPLACE", m_eXistFiles[i]);

System.out.println("Query : " + query);

eXist.query(query, "test/INFOH415/");

m_eXistResults[(m_XQueries.length * i) + 1] += eXist.getCount();

}

}

mysql.closeAll();

System.out.println();

System.out.println("== RESULTS

==");

eXist-db 38

C. Benchmark code

System.out.println();

for (int i = 0; i < m_eXistFiles.length; ++i) {

for (int j = 0; j < m_mysqlQueries.length; ++j){

System.out.println("Average time spent on query : ");

System.out.println(m_mysqlQueries[j]);

System.out.println("with file " + m_mysqlFiles[i]);

System.out.println("TIME : " + m_mysqlResults[(m_mysqlQueries.length

* i) + j] / m_count / 1000000 + "ms");

System.out.println();

}

}

for (int i = 0; i < m_eXistFiles.length; ++i){

System.out.println("Average time spent on query : ");

System.out.println(m_XQuery1.replace("TO_REPLACE", m_eXistFiles[i]));

System.out.println("with file " + m_eXistFiles[i]);

System.out.println("TIME : " + m_eXistResults[(m_XQueries.length * i)] /

m_count / 1000000 + "ms");

System.out.println("Average time spent on query : ");

System.out.println(m_XQuery2.replace("TO_REPLACE", m_eXistFiles[i]));

System.out.println("with file " + m_eXistFiles[i]);

System.out.println("TIME : " + m_eXistResults[(m_XQueries.length * i) +

1] / m_count / 1000000 + "ms");

System.out.println("Average time spent on query : ");

System.out.println(m_XQuery3.replace("TO_REPLACE", m_eXistFiles[i]));

System.out.println("with file " + m_eXistFiles[i]);

System.out.println("TIME : " + m_eXistResults[(m_XQueries.length * i) +

2] / m_count / 1000000 + "ms");

}

}

}

C.2 Mysql file

The class concerning the communication with the MySQL database.

Code C.2: MySQL DB.java

import java.sql.*;

public class MySQL_DB {

eXist-db 39

C. Benchmark code

static final String JDBC_DRIVER = "com.mysql.jdbc.Driver";

static final String DB_URL = "jdbc:mysql://localhost/INFOH415";

// Database credentials

static final String USER = "";

static final String PASS = "";

private Connection m_conn;

private Statement m_stmt;

private double m_count;

public MySQL_DB() {

try {

Class.forName("com.mysql.jdbc.Driver");

m_conn = DriverManager.getConnection(DB_URL, USER, PASS);

m_stmt = m_conn.createStatement();

} catch (ClassNotFoundException e) {

e.printStackTrace();

} catch (SQLException e) {

e.printStackTrace();

}

}

public void loadTable(String xmlFile){

String sql = "LOAD XML INFILE \"" + xmlFile + "\" INTO TABLE Digraph;";

try {

ResultSet rs = m_stmt.executeQuery(sql);

rs.close();

} catch (SQLException e) {

e.printStackTrace();

}

}

public void emptyTable(){

String sql = "DELETE FROM Digraph;";

try {

int rs = m_stmt.executeUpdate(sql);

} catch (SQLException e) {

e.printStackTrace();

}

}

public void query(String sql) {

eXist-db 40

C. Benchmark code

try {

long tStart = System.nanoTime();

ResultSet rs = m_stmt.executeQuery(sql);

long tEnd = System.nanoTime();

this.m_count = (tEnd - tStart);

System.out.println("RESULT : " + this.m_count);

rs.close();

} catch (SQLException se) {

//Handle errors for JDBC

se.printStackTrace();

} catch (Exception e) {

//Handle errors for Class.forName

e.printStackTrace();

}

}

public double getCount(){

return this.m_count;

}

public void closeAll(){

try {

m_stmt.close();

m_conn.close();

} catch (SQLException e) {

e.printStackTrace();

}

}

}

C.3 eXist file

The class concerning the communication with the MySQL database.

Code C.3: EXist DB.java

import org.xmldb.api.base.*;

import org.xmldb.api.modules.*;

import org.xmldb.api.*;

public class EXist_DB {

private static String URI =

"xmldb:exist://localhost:8080/exist/xmlrpc/db/apps/";

eXist-db 41

C. Benchmark code

private Database m_database;

private double m_count;

public EXist_DB(){

final String driver = "org.exist.xmldb.DatabaseImpl";

Class cl = null;

try {

cl = Class.forName(driver);

m_database = (Database) cl.newInstance();

m_database.setProperty("create-database", "true");

DatabaseManager.registerDatabase(m_database);

} catch (ClassNotFoundException e) {

e.printStackTrace();

} catch (IllegalAccessException e) {

e.printStackTrace();

} catch (InstantiationException e) {

e.printStackTrace();

} catch (XMLDBException e) {

e.printStackTrace();

}

}

public void query(String query, String filename){

Collection col = null;

try {

col = DatabaseManager.getCollection(URI + filename);

XQueryService xqs = (XQueryService) col.getService("XQueryService",

"1.0");

xqs.setProperty("indent", "yes");

CompiledExpression compiled = xqs.compile(query);

double tStart = System.nanoTime();

ResourceSet result = xqs.execute(compiled);

double tEnd = System.nanoTime();

this.m_count = tEnd - tStart;

} catch (XMLDBException e) {

e.printStackTrace();

} finally {

//dont forget to cleanup

if(col != null) {

try { col.close(); } catch(XMLDBException xe) {xe.printStackTrace();}

}

eXist-db 42

C. Benchmark code

}

}

public double getCount() {

return m_count;

}

}

C.4 Benchmark program output

Example of the benchmark program output

== RESULTS ==

== RESULTS ==

Average time spent on query :

SELECT * FROM Digraph WHERE Digraph.id_node = 4;

with file result500.xml

TIME : 0.3333333333333333ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN Digraph AS D2 ON D2.origin = D1.destination;

with file result500.xml

TIME : 47.0ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN (Digraph AS D2 INNER JOIN Digraph AS D3 ON D2.destination = D3.origin) ON D2.origin = D1.destination;

with file result500.xml

TIME : 2972.3333333333335ms

Average time spent on query :

SELECT * FROM Digraph WHERE Digraph.id_node = 4;

with file result1000.xml

TIME : 0.3333333333333333ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN Digraph AS D2 ON D2.origin = D1.destination;

with file result1000.xml

TIME : 99.66666666666667ms

Average time spent on query :

eXist-db 43

C. Benchmark code

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN (Digraph AS D2 INNER JOIN Digraph AS D3 ON D2.destination = D3.origin) ON D2.origin = D1.destination;

with file result1000.xml

TIME : 7223.333333333333ms

Average time spent on query :

SELECT * FROM Digraph WHERE Digraph.id_node = 4;

with file result1500.xml

TIME : 0.0ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN Digraph AS D2 ON D2.origin = D1.destination;

with file result1500.xml

TIME : 148.66666666666666ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN (Digraph AS D2 INNER JOIN Digraph AS D3 ON D2.destination = D3.origin) ON D2.origin = D1.destination;

with file result1500.xml

TIME : 10712.0ms

Average time spent on query :

SELECT * FROM Digraph WHERE Digraph.id_node = 4;

with file result2000.xml

TIME : 0.3333333333333333ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN Digraph AS D2 ON D2.origin = D1.destination;

with file result2000.xml

TIME : 313.3333333333333ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN (Digraph AS D2 INNER JOIN Digraph AS D3 ON D2.destination = D3.origin) ON D2.origin = D1.destination;

with file result2000.xml

TIME : 15973.0ms

Average time spent on query :

SELECT * FROM Digraph WHERE Digraph.id_node = 4;

with file result2500.xml

TIME : 0.0ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN Digraph AS D2 ON D2.origin = D1.destination;

with file result2500.xml

eXist-db 44

C. Benchmark code

TIME : 264.6666666666667ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN (Digraph AS D2 INNER JOIN Digraph AS D3 ON D2.destination = D3.origin) ON D2.origin = D1.destination;

with file result2500.xml

TIME : 21281.0ms

Average time spent on query :

SELECT * FROM Digraph WHERE Digraph.id_node = 4;

with file result3000.xml

TIME : 0.0ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN Digraph AS D2 ON D2.origin = D1.destination;

with file result3000.xml

TIME : 418.3333333333333ms

Average time spent on query :

SELECT DISTINCT * FROM Digraph AS D1 INNER JOIN (Digraph AS D2 INNER JOIN Digraph AS D3 ON D2.destination = D3.origin) ON D2.origin = D1.destination;

with file result3000.xml

TIME : 22403.0ms

Average time spent on query :

/table_data[@name="500"]/row[@id_edge=4]

with file 500

TIME : 27.186995ms

Average time spent on query :

/table_data[@name="500"]/row[@origin = collection("/db/apps/test/INFOH415/")/table_data[@name="500"]/row/@destination]

with file 500

TIME : 195579.427206ms

Average time spent on query :

/table_data[@name="1000"]/row[@id_edge=4]

with file 1000

TIME : 64.28772866666667ms

Average time spent on query :

/table_data[@name="1000"]/row[@origin = collection("/db/apps/test/INFOH415/")/table_data[@name="1000"]/row/@destination]

with file 1000

TIME : 780695.4224136666ms

Average time spent on query :

/table_data[@name="1500"]/row[@id_edge=4]

with file 1500

TIME : 61.797511666666665ms

eXist-db 45

C. Benchmark code

Average time spent on query :

/table_data[@name="1500"]/row[@origin = collection("/db/apps/test/INFOH415/")/table_data[@name="1500"]/row/@destination]

with file 1500

TIME : 1776834.0850523333ms

Average time spent on query :

/table_data[@name="2000"]/row[@id_edge=4]

with file 2000

TIME : 75.16550133333332ms

Average time spent on query :

/table_data[@name="2000"]/row[@origin = collection("/db/apps/test/INFOH415/")/table_data[@name="2000"]/row/@destination]

with file 2000

TIME : 2851473.7605643333ms

Average time spent on query :

/table_data[@name="2500"]/row[@id_edge=4]

with file 2500

TIME : 88.921065ms

Average time spent on query :

/table_data[@name="2500"]/row[@origin = collection("/db/apps/test/INFOH415/")/table_data[@name="2500"]/row/@destination]

with file 2500

TIME : 4821692.128955ms

Average time spent on query :

/table_data[@name="3000"]/row[@id_edge=4]

with file 3000

TIME : 119.386111ms

Average time spent on query :

/table_data[@name="3000"]/row[@origin = collection("/db/apps/test/INFOH415/")/table_data[@name="3000"]/row/@destination]

with file 3000

TIME : 6405930.657636667ms

eXist-db 46

	Introduction
	Introduction
	Introduction to relational databases
	General concept
	Limitation

	Introduction to XML databases

	Integration of eXist-db
	Introduction
	Import of a relational database in eXist-db
	From MySQL to XML
	From XML to eXist-db
	Conclusion : MySQL to XML database

	Import of a XML database in MySQL
	XML file to MySQL
	Conclusion : XML database to MySQL

	eXist-db and web semantic
	The web semantic
	eXist-db support
	Not supported by eXist-db

	Benchmarks
	Creation of the databases
	Parsing of the file
	Creation of the MySQL database
	Creation of the eXist-db database

	First Query : search an edge in function of its ID
	SQL Request
	XQuery
	Results

	Second Query : search all reachable destination (level 2)
	SQL Request
	XQuery
	Results

	Third Query : search all reachable destination (level 3)
	SQL Request
	XQuery

	Conclusion

	Conclusion
	XML file generated by the mysqldump command
	Python script for parsing from Google file to XML format
	Benchmark code
	Main file
	Mysql file
	eXist file
	Benchmark program output

