
12/16/2015

Suela Isaj & Moditha Hewasinghage
IT4BI

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 1

Contents
Introduction ... 2

1. Entity Framework Features ... 2

1.1 Entities ... 2

1.2 Entity Framework Architecture .. 3

1.3 Entity Framework Development Approaches .. 4

1.4 Entity Framework data loading ... 5

1.5 Entity States ... 6

1.6 Queries execution .. 7

2. Implementations in Entity Framework ... 8

2.1 Code First .. 8

2.2 One to many ... 9

2.3 Many to Many ... 9

2.4 Many to many with additional attributes ... 10

2.5 DB First .. 11

2.6 Queries with entities ... 14

3. Experiment: Performance Analysis .. 20

4. Entity Framework Pros, Cons and Usage ... 25

References .. 28

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 2

Introduction
A database is a group of data organized in a meaningful way. In the most traditional way of

thinking is a group of linked tables. However we should not be that conservative in our way of

thinking. A group of data can be organized in a lot of creative ways, more conceptually and less

technically. An entity could be a tuple, a row in a spreadsheet, an object or even all of them,

having the ability to transform its shape depending on the circumstances.

While working with applications and programming, accessing a database is frequently needed. It

looks like the program and the database stored in some SQL Server or other provided speak

different languages and it needs external translation continuously. The programmers need to be

bilingual and also fast to translate all the time. Therefore a need for an intermediate layer is

fundamental to proceed.

Entity Framework is the bridge that links naturally both sides. It is an Object Relational Mapping

Framework. Object Relational Mapping is basically a translation of traditional databases into

programming elements, objects. Entity Framework goes beyond this capability, it offers a stable

environment to map a relational database quite efficiently. Entity Frameworks load the data, tables,

relationships automatically from the actual database, no need of previously declaring objects and

variables. Querying comes naturally too. Nevertheless, it is not only a translation of databases into

codes. It goes even further, it can create a database from scratch, by declaring and running a

conceptual object oriented model. Therefore, the motivation to explore it becomes strong!

1. Entity Framework Features

1.1 Entities
Entities in Entity Framework have some characteristics that will be introduced as follows (Klein,

2010):

Like objects:

 Entities have a known type.

 Entities have properties, and these properties can hold scalar values.

 Entity properties can hold references to other entities.

 Each entity has a distinct identity.

Differ from objects:

 Entities live within a collection.

 Each entity has associations with other entities.

 Entities have primary keys that uniquely identify the entity.

Like relational data:

 Entities live within an entity set.

 Entities have relationships to other entities.

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 3

 They have a primary key.

Differ from relational data:

 Entities support complex types.

 Entities support inheritance.

 Entities do not have physical storage knowledge.

Obviously from the comparison between objects and relational data, entities in Entity Framework

are more powerful since they are hybrids, bringing the advantages and eliminating disadvantages

of both.

1.2 Entity Framework Architecture

Entity Framework provides a user friendly Graphical User Interface for interacting with the

database, files will be generated automatically and they are EDM (Entity Data Model) format.

EDM file has the extension .edmx and contains the conceptual, storage and mapping components.

The components of Entity Framework are clearly shown by the following schema:

Figure 1. Entity Framework Architecture Source (EntityFrameworkTutorial.net, 2015)

Conceptual Model: Model classes and relationships

Storage Model: Database model: tables, views, relationships, keys

Mapping: Translation of Conceptual Model into Storage Model

LINQ to Entities: Query language of treating entities as Objects

Entity SQL: Query language

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 4

Object Service: Translation of data from database into objects and vice-versa. Responsible for

data access.

Entity Client Data Provider: Translation of LINQ to Entities and Entity SQL to plain SQL.

ADO.Net Data Provider: Communication with the database using ADO.Net.

(EntityFrameworkTutorial.net, 2015)

The EDM file can be generated through

• The EDMGen command-line tool

• ADO.NET data model wizard in Visual Studio

• Creating the model in Visual Studio and then generate your database structure from this model.

(Mackey, 2010)

The phases of creating the model by GUI are self-explanatory, as the windows guide in a simple

way through all the process, by selecting the databases which we are modeling and then choosing

the tables that we want to include.

1.3 Entity Framework Development Approaches

The most popular development approach is Database – First approach, which is based on

generating object relational mappings according to an existing database. Therefore all the rules,

connections, triggers, relationships, methods are defined in the database level, and we just call

them to our Entity Framework and use them. Moreover we can add more capabilities to our model

by creating classes and methods that are not part of the database. This is called POCO support

(Plain Old CLR Objects). (Mackey, 2010)

A good work practice would be not to update the automatically generated database classes, so we

will not have to rewrite the changes any time we generate database files. Another reason is that

keeping them separately will be more helpful when we change our application and we need to

update the functionalities. POCO feature is quite powerful because we can shape our existing

database depending on our application requirements, without changing physically the rules of the

database.

The other approach of data accessing is Model - First way. There is no database in this approach.

The programmer creates the model first on Entity Framework using GUI provided by the platform.

Relationships, keys, connections are defined by the programmer, but not the tables, rows, tuples.

It is only the conceptual model needed, the translation into physical organization is done by Entity

Framework. This option is quite interesting as it is creative and flexible. Abstraction is the

strongest point of this option.

There exists also another approach which is Code – First approach. This way is more programming

oriented, it does not use any GUI or given workflow. The programmer writes domain classes,

which will be translated into tables in the actual model.

The following figure illustrates how the translation is performed, the first case is Database – Driven

approach where tables are translated into classes, the second case is the Code – First Approach

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 5

where Domain Classes are translated into tables and the last case is dedicated to Model – First

where we define everything in our DB model (using the provide GUI), so it is translated into a

database and classes.

Figure 2. Entity Framework cases, Source (EntityFrameworkTutorial.net, 2015)

1.4 Entity Framework data loading

Entities in Entity Framework are more conceptual than physical. So while loading an entity, we

want to access it as a whole, as a unit. If we were in traditional Relational Database Model, an

entity could be divided among different tables. So if we need to access it, we will have to join on

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 6

the keys of all tables it is part of, in order to see the entity as a whole. This requires a good

knowledge of the database model.

Entity Framework offer the possibility to access all the features of an entity easily, without the

need of join queries. By typing the entity name then “.” and then the attribute, the join between

tables is done automatically. For example: customer.orders will return the orders of the entity

customer, even though they might be in different tables.

There are two main ways of loading the data in Entity Framework. The first one is Eagerly

Loading. This way uses the concept of an entity as a whole and so loads the entity entirely. This

means that when we call a customer, the links are called and the loading of other attributes related

to the customer is done automatically. However the main drawback of this way is that we might

load unnecessary data every time we call an entity and we slow our process. Therefore the lazy

loading way is offered too. Lazy loading does not load the attributes until you call them. So when

we call customers, their relation with the orders is still there but is not loaded until we type

customer.orders. Lazy loading is more efficient as it does not load the memory with unnecessary

information. The difference is the performance is considerable. Lazy loading can be turned off or

on by the user.

1.5 Entity States

Entities might have different states during their life. They can be inserted, updated, deleted and

Entity Framework keeps track of the changes. We can modify an entity in our code, put until we

run Save Changes, nothing is performed physically on the database. However we are keeping track

of our entities, even though the actions are not performed. The changes of the state are kept within

the context we are working on, if the context is updated, we start keeping track again and we lose

the previous information. For example if we delete a customer, the state of this entity will be

deleted. When we run Save Changes, then this state not show anymore, as the entity does not exist

and we do not keep any track any more.

The states an entity can have are:

 Added (when we create a new entity)

 Deleted (when the entity is deleted)

 Modified (when the entity is updated)

 Unchanged (when we do not change anything in the entity)

 Detached (when we do not keep track any more regarding the changes that might happen

with the entity, the entity is not attached any more)

The following schema provides a clear view of how we keep track of our entities:

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 7

Figure 3.Entity States Source (EntityFrameworkTutorial.net, 2015)

1.6 Queries execution

Queries in Entity Framework follow a set of operations. First of all, the metadata of the model is

loaded and the connection to the database is established. These processes are considered of a

moderate cost. Afterwards, a set of local views are generated and this phase has a high cost. Then

the preparation of query (pre compile) and the execution of it are performed, with moderate and

low cost respectively. The last phase of loading and validating the types, tracking (keeping record

of the changes we make in our model) and materializing the objects has a low cost. Therefore it is

quite obvious that the generation of the local views is the most costly action in this process it is

highly recommended to pre-generate them and add to the project. . (Microsoft, 2015)

There are two ways of query execution, the deferred and the immediate execution. In the deferred

execution, no query is executed while written, only when the statement “for each” is called.

Moreover, the queries do not store any result and we can use them several times, while the

immediate execution performs the executing for any query that returns a value. (Klein, 2010)

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 8

2. Implementations in Entity Framework

2.1 Code First

In the code first approach the programmer decides on the entities that he wants to have in his

system and the relationships they have. In order to do this you have to add an ADO.Net entity data

model into your project. Then select empty code first type.

You can see the created model class which is extended from the DbContext Super Class. You

can define the Entities that you have in your project as DbSet Collections.

 public class Model1 : DbContext
 {
 public Model1() : base("name=Model1") { }

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 9

 public DbSet<Customer> Custoemrs { get; set; }
 public DbSet<CustomerDemography> CustomerDemographies { get; set; }
 public DbSet<Order> Orders { get; set; }
 public DbSet<Product> Products { get; set; }
 public DbSet<ProductCatagory> ProductCategories { get; set; }

 }

The most essential part of any relational database is the relationships. You can configure the

different types of relationships between the entities as follows. All the connections are depicted as

virtual properties of the class.

2.2 One to many

In the following scenario a Product belongs to a certain category.

public class Product
 {
 public int ProductId { get; set; }
 public string ProductName { get; set; }

 [ForeignKey("Catagory")]
 public int CatagoryId { get; set; }
 public virtual ProductCatagory Catagory { get; set; }
 }

There are many products that belong to a certain category which is represented as a list.

 public class ProductCatagory
 {
 public int ProductCatagoryId { get; set; }
 public string CatagoryName { get; set; }
 public virtual List<Product> Products { get; set; }
 }

2.3 Many to Many

In a many to many relationships both classes have virtual lists of the other class. But on the weak

relationship you need to have the identity column defined.

public class Customer
 {
 public int CustomerId { get; set; }
 public string Name { get; set; }
 public virtual List<CustomerDemography> Demographies { get; set; }

 }

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 10

 public class CustomerDemography
 {
 [Key]
 public int DemographyId { get; set; }
 public string Name { get; set; }
 public virtual List<Customer> Customers { get; set; }
 }

2.4 Many to many with additional attributes

If there is a many to many relationship with additional attributes (Product and order with details),

you need to create the connecting table as an entity. And have one to many relationships to it from

the main tables.

 public class Product
 {
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public List<OrderDetails> OrderDetails { get; set; }
 }

 public class Order
 {
 public int OrderId { get; set; }
 public int CustomerId { get; set; }
 public DateTime OrderDate { get; set; }
 public List<OrderDetails> OrderDetails { get; set; }

 }

 public class OrderDetails
 {
 [Key, Column(Order = 0), ForeignKey("Order")]
 public int OrderID { get; set; }
 [Key, Column(Order = 1), ForeignKey("Product")]
 public int ProductID { get; set; }
 public decimal UnitPrice { get; set; }
 public int Quantity { get; set; }
 public virtual Order Order { get; set; }
 public virtual Product Product { get; set; }

 }

For the connecting table there are virtual attributes for the main tables. In order to maintain the

proper relationships and the composite primary key the data attributes Key and foreign key is used

giving the reference to the virtual object name.

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 11

Once you have the code setup the entity framework will generate the tables when you run the code

for the first time. The structure created for the above code first relationships is as below.

2.5 DB First

Most of the time the design of the table structure is decided before the start of the actual project or

may be someone want to create a project for an existing database. In this scenario you can use the

DB first approach in entity framework. This is more like the natural approach which current

projects use and have more flexibility with the GUI interface

You need to add an ADO.Net entity data model for this with EF designer from database for this.

Then you will be prompted to connect to the database you want to connect. After that all the tables,

views and stored procedures in the database will be presented and you can pick the ones that you

want to work with.

CustomerDemographies

DemographyId

Name

CustomerDemographyCustomers

CustomerDemography_DemographyId

Customer_CustomerId

Customers

CustomerId

Name

OrderDetails

OrderID

ProductID

UnitPrice

Quantity

Orders

OrderId

CustomerId

OrderDate

ProductCatagories

ProductCatagoryId

CatagoryName

Products

ProductId

ProductName

CatagoryId

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 12

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 13

For this example the Northwind database was chosen (https://northwinddatabase.codeplex.com/)

and the following designer and all the classes were created for the schema.

Through the designer you can see all the relationships that are there in the schema and the

cardinalities.

https://northwinddatabase.codeplex.com/

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 14

2.6 Queries with entities

With entity framework you can query the entities mainly using two LINQ syntaxes. The method

syntax or the query syntax. In this report the main syntax used is the method syntax.

1. Selection

 Get All Employees

With LINQ Method syntax

private NORTHWNDEntities db = new NORTHWNDEntities();

 var employees = db.Employees;
 return View(employees.ToList());

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 15

LINQ Query syntax

var employees = from e in db.Employees select e;

 Get Employee with the name “Smith”

db.Employees.Where(e=>e.FirstName=="Smith");

2. Projection

With Entity Framework you can project the result into custom objects

 db.Employees.Where(e => e.FirstName == "Smith")
.Select(e=>new {name=e.FirstName, age=DbFunctions.DiffYears(DateTime.Now,e.BirthDate)
});

The Dbfunctions class contains EDM canonical functions for use in DbContext or ObjectContext

LINQ to Entities queries.

3. Joining

By default Entity Framework uses lazy loading to load the entities. Therefore if you want to have

the connections between the entities they need to be included in the query time. After that you can

navigate through the navigational properties of the entity class to go to the relational entities.

db.Orders.OrderBy(o => o.Customer.CompanyName).Include(o => o.Customer).Include(o =>

o.Employee).Include(o => o.Shipper)

4. Adding

When adding an entity to your database you first have to create it and then add it to the

corresponding DBSet. But it will not be added to the database until the save changes is called

through the entity framework. If you want to add relationships you can add the parent to its DBSet

and get the primary key of the parent (It will be automatically updated by the entity framework

when you save the changes) and put it as the foreign key for the child relationship. Or you can add

the parent entity to the child’s collection and then add the child to the corresponding DBSet

Supplier sup = new Supplier
 {
 CompanyName = "New Supplier",
 City = "Brussels",
 Country = "Belgium",
 };

 db.Suppliers.Add(sup);
 Category cat = new Category
 {
 CategoryName = "New Category",

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 16

 Description = "This is a new Category"
 };

 Product newProduct = new Product
 {
 Category = cat,
 ProductName = "New Product",
 ReorderLevel = 10,
 SupplierID=sup.SupplierID
 };

 db.Products.Add(newProduct);

In the above example a new product is added with a new supplier and a new category. The category

is added with the product and the supplier is added first and then its Id is taken and inserted in to

the product.

5. Looking up with the primary key and Editing

If you want to edit an entity you can take it from the database and do the necessary manipulation

on the entity and then call save changes to write the changes to the database. If you have a primary

key of an entity you can use the “Find” method of the DBSet to find the entity by the primary key.

Product p = db.Products.Find(1);
 p.UnitPrice=(decimal)150.99;
 db.SaveChanges();

6. Deleting

When deleting an entity you have to remove it from the DBSet collection and then save the

changes. If there are any constraints that are there in the schema it will throw an error when you

try to save the changes.

Order order = db.Orders.Find(2);
 db.Orders.Remove(order);
 db.SaveChanges();

7. Turning off tracking

As explained in the details the entity framework keeps track of all the entities that are retrieved

and being used by the program. Sometimes this could be an unnecessary overhead depending on

the scenario. If you have a list of entities that you need to display in a static page, read-only there

is no point of keeping track of the changes done to them. For this when you can remove the tracking

from the entities when you retrieve them. When you do this none of the changes that you do will

reach the database even if you save the changes as it is not being tracked.

orders = db.Orders.Take(100).Include(o => o.Customer).Include(o => o.Employee)

.Include(o => o.Shipper).AsNoTracking();

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 17

8. Query in the DB vs Query in the Program

With entity framework it is possible to do some of the filtering of the data in memory of the

application (not the DB server) through the IEnumerable interface. In this the data is loaded to the

memory and filtered in the memeory. So under heavy load this could slow down the performance

considerably. If you use the Iqueriable interface the entity framework will build a query and send

it to the database for the filtering. The following examples show how different techniques send

different queries to the database.

 IQueryable<Employee> employees = db.Employees;
 employees = employees.Where(e => e.FirstName == "John");

The resulting query sent to the database

SELECT
 [Extent1].[EmployeeID] AS [EmployeeID],
 [Extent1].[LastName] AS [LastName],
 [Extent1].[FirstName] AS [FirstName],
 [Extent1].[Title] AS [Title],
 [Extent1].[TitleOfCourtesy] AS [TitleOfCourtesy],
 [Extent1].[BirthDate] AS [BirthDate],
 [Extent1].[HireDate] AS [HireDate],
 [Extent1].[Address] AS [Address],
 [Extent1].[City] AS [City],
 [Extent1].[Region] AS [Region],
 [Extent1].[PostalCode] AS [PostalCode],
 [Extent1].[Country] AS [Country],
 [Extent1].[HomePhone] AS [HomePhone],
 [Extent1].[Extension] AS [Extension],
 [Extent1].[Photo] AS [Photo],
 [Extent1].[Notes] AS [Notes],
 [Extent1].[ReportsTo] AS [ReportsTo],
 [Extent1].[PhotoPath] AS [PhotoPath]
 FROM [dbo].[Employees] AS [Extent1]
 WHERE N'John' = [Extent1].[FirstName]

With IEnumerable

IEnumerable<Employee> employee = db.Employees;
 employee = employee.Where(e => e.FirstName == "John");

The Query is

SELECT

 [Extent1].[EmployeeID] AS [EmployeeID],

 [Extent1].[LastName] AS [LastName],

 [Extent1].[FirstName] AS [FirstName],

 [Extent1].[Title] AS [Title],

 [Extent1].[TitleOfCourtesy] AS [TitleOfCourtesy],

 [Extent1].[BirthDate] AS [BirthDate],

 [Extent1].[HireDate] AS [HireDate],

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 18

 [Extent1].[Address] AS [Address],

 [Extent1].[City] AS [City],

 [Extent1].[Region] AS [Region],

 [Extent1].[PostalCode] AS [PostalCode],

 [Extent1].[Country] AS [Country],

 [Extent1].[HomePhone] AS [HomePhone],

 [Extent1].[Extension] AS [Extension],

 [Extent1].[Photo] AS [Photo],

 [Extent1].[Notes] AS [Notes],

 [Extent1].[ReportsTo] AS [ReportsTo],

 [Extent1].[PhotoPath] AS [PhotoPath]

 FROM [dbo].[Employees] AS [Extent1]

By comparing the two queries it is clear that when you use the Queryable interface the querying

is done in the database and Enumerable does it in the application.

9. Extension methods

The extension methods in Entity Framework can be compared to having views in the database.

These methods can be used to retrieve queries which you use frequently rather than writing them

over and over again. (Getting non discontinued products)

public static class Extensions
 {
 public static IQueryable<Product> NonDiscontinued(this IQueryable<Product> products)
 {
 return products.Where(p=>!p.Discontinued);
 }
 }

You need to write the extension methods as static in a static class. Then use it in the query as

follows.

db.Products.NonDiscontinued();

10. Migrating changes on the DB

If the changes are done in the DB you need to migrate the changes to your model.

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 19

Right click on the canvas of the edmx and select the option to update the model from the database.

Then you reach the following screen where it shows the added, deleted and changed elements in

the database which you can select to include in your model.

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 20

 Updating the DB from the model with migration scripts

In the code first approach you can enable migration to your model and do the DB changes through

the migration scripts (https://msdn.microsoft.com/en-us/data/jj591621). Since we used the DB first

approach it is not possible to implement this.

3. Experiment: Performance Analysis

One of the known drawback of using Entity Framework is that the performance is remarkably low

in case of large data. Therefore we will test our infrastructure in different scenarios and analyze it

later.

We will enter data to the database from the Entity Framework, we will start with small data and

then we will increase it step by step. In the meantime we will measure the time it takes to perform

this operation (granularity milliseconds).

This is the code we are using to enter the data:

var db = new ULBEntities();
 for (int i = 0; i < 10; i++)
 {
 LoadTest lt = new LoadTest
 {
 Code1 = Guid.NewGuid(),
 Code2 = Guid.NewGuid(),
 Code3 = Guid.NewGuid(),
 Code4 = Guid.NewGuid(),
 Code5 = Guid.NewGuid()
 };
 db.LoadTests.Add(lt);
 }
 db.SaveChanges();

In the yellow part, we input different figures, from 10 to 50000.

The results are as follows:

Records Milliseconds

10 1550

100 2210

1000 8650

5000 42960

10000 92960

20000 288500

30000 551260

40000 885020

50000 1163310

https://msdn.microsoft.com/en-us/data/jj591621

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 21

It is clear that when the data load increases the execution takes a considerably long time to

complete. Considering 20 minutes to insert 50 000 rows is not an acceptable performance.

Therefore while investigating on the issue we found out several factors affecting performance for

bulk data entry

 The growing context

Each and every item that goes through the EF is added to the context. Therefore when we add new

object the context expands which consumes a lot of memory.

 Tracking of objects

EF needs to keep track of every object in its context and it’s listening to any changes happening to

them.

 Bulk saving

It is better to save in batches rather than saving large bulk of records.

After the findings we optimized the code for the following one.

 var db = new ULBEntities();
 db.Configuration.AutoDetectChangesEnabled = false;
 db.Configuration.ValidateOnSaveEnabled = false;
 for (int i = 0; i < 40000; i++)
 {
 LoadTest lt = new LoadTest
 {
 Code1 = Guid.NewGuid(),
 Code2 = Guid.NewGuid(),
 Code3 = Guid.NewGuid(),
 Code4 = Guid.NewGuid(),
 Code5 = Guid.NewGuid()
 };

 db.LoadTests.Add(lt);

 if (i % 1000 == 0)
 {
 db.SaveChanges();
 db.Dispose();
 db = new ULBEntities();
 db.Configuration.AutoDetectChangesEnabled = false;
 db.Configuration.ValidateOnSaveEnabled = false;
 }
 }
 db.SaveChanges();

We turned off the parameters to auto detecting changes and the validations before saving in the

context. Furthermore we are saving in batches every 1000 records and after we save we dispose

the context and make a new context since we don’t need to keep the entered data.

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 22

The following is the result of the optimized code runtime.

Records Millisec Opt

10 1630

100 2460

1000 8570

5000 37350

10000 73260

20000 180430

30000 243690

40000 332770

50000 401630

It is obvious that the improvement is significant. The graphical representation reflects the

improvement better.

We can see that the behavior of both cases is similar of small data, but the difference is considerable

for large data. We have tried to find a regression model for both cases, in order to find the

coefficients of variables, a possible relation between them, but also to have the slope and intercept

to predict future growth.

Therefore for the not optimized case, we could find the below coefficients for the intercept and

slope, with an excellent P value of the slope, while for the intercept it is relatively acceptable.

0

200000

400000

600000

800000

1000000

1200000

1400000

10 100 1000 5000 10000 20000 30000 40000 50000

Performance Measure

Millisec NonOpt Milisec Opt

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 23

 Coefficients P-value

Intercept -58739.6265 0.140112598

Slope 22.8369524 0.00000089392539

However the entire model has a good significance for the confidence level 95%:

ANOVA

 Significance F

Regression 0.00000089392539

Regression Statistics

Multiple R 0.986647971

R Square 0.973474219

For the optimized case we found a good entire model, a good coefficient of slope and for

intercept still acceptable:

 Coefficients P-value

Intercept 820.1494 0.834398731

Slope 8.16353 0.000000000208

ANOVA

 Significance F

Regression 0.0000000002

Regression Statistics

Multiple R 0.99878

R Square 0.997562

After both analysis, we considered it as interesting to divide the behavior of the regression in two

different regression models. As we can see from the graph, after the value of 10.000 records, the

behavior of the performance is changing dramatically and maybe a single equation of the whole is

not quite fitting. So, we consider 10.000 records as a starting point for a new regression for both

cases. The previous behavior is similar for both cases and will be removed from the observations,

we will only use the data from 10.000 records and on for the next analysis.

More in detail, for the not optimized case, the model is better than the previous one, all figures are

significant:

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 24

Regression Statistics

Multiple R 0.99618946

R Square 0.99239344

ANOVA

 Significance F

Regression 0.000282205

 Coefficients P-value

Intercept -224956 0.0162465

Slope 27.3722 0.000282205

We can come to the conclusion that our hypothesis holds, it is a complete different behavior when

it comes to large data.

And for the optimized case, the results are almost the same as the previous models, which means

that the behavior of the small data and the large data can be included in one equation, as they are

comparable, the growth has almost the same coefficient. This is an important finding, as it means

that the optimization techniques that we used have been quite productive in reducing the time of

the processing and making it relatively comparable to small data.

Regression Statistics

Multiple R 0.99878

R Square 0.997562

ANOVA

 Significance F

Regression 0.0000000002

 Coefficients P-value

Intercept 820.1494 0.834398731

Slope 8.16353 0.000000000208

To conclude, in order to predict the performance for big data, we can put the number of record in

the place of x and evaluate y which is the time in milliseconds.

For not optimized case: y = 27.3722 * x - 224956

For the optimized case: y = 8.16353 * x + 820.1494

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 25

The slope of the not optimized is almost 3-4 times bigger than the optimized. Of course the

intercept plays an important role too, but in case of very large data, the intercept will not have a

significant effect and the difference will be driven more by the effect of the slope.

4. Entity Framework Pros, Cons and Usage

We have already discovered most of the topics related to Entity Framework and now it is the time

to reflect and compare with other options, find the stronger and weaker points and evaluate the

cases where Entity Framework would be a satisfying solution.

Pros of using Entity Framework:

 Joins between tables are made naturally, without explicit statements.

 Quicker development time

 No need to have a knowledge on the database tables and relations

 Manipulation of objects is simple, no need for long query-s of update or delete.

 Entity Framework can work with different database providers (SQL Server, Oracle etc)

 Models and files can be shared within users and executed quite easily.

 Adaptive to different application development, you can create new methods and functions

related to the requirements without changing the database itself or adding new stored

procedures.

 Easy syntax, comparable to SQL but obviously simpler than object – oriented databases,

in which knowing the syntax is a strong requirement.

In particular, advantages over LINQ to SQL:

 Entity Framework, as previously mentioned, works with different database environments

(SQL Server, Oracle, DB2), while LINQ to SQL can work only with SQL Server.

 Entity Framework can support complex types, while LINQ to SQL cannot.

 Entity Framework can create a database from a model (Model-First approach, explained in

paragraph 1.3) while LINQ to SQL cannot.

 Entity Framework has the capability of creating different types of relationships between its

classes and relational tables (one to one, one to many and many to many) while LINQ to

SQL can allow only one to one mapping. (Chauhan, 2014)

Advantages over NHibernate:

 In NHibernate there is no pure way of Code-First Approach, the actual way includes the

involvement of third parties.

 Entity Framework supports schema migration, while NHibernate can only support the

initial schema.

 NHibernate does not provide Asynchronous Operations, while Entity Framework does.

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 26

 NHibernate offers the flexibility in the languages it supports, but this is not considered an

advantage, since some of them are not matured and they do not function as expected.

Therefore Entity Framework is more stable.

 Documentation related Entity Framework is updated and covers almost all the issues, while

in this point NHibernate’s documentation is quite poor. (Kucinskas, 2014)

 Both of them offer the opportunity to track changes of their entities or not, but Entity

Framework has an extra option: self-tracking entities. These entities decide to track

changes on them only when they are connected to the context, so they switch between

tracking and non-tracking smartly by themselves.

 Entity Framework offers more integration with Visual Studio, ASP.NET, WCF libraries.

(Allen, 2012)

Advantages over ADO.NET:

 In Entity Framework the code is less than in ADO.NET, as for accessing the data, the

model is uses, not the classes particularly. Therefore the code is more maintainable too.

 Operations with entities are easier and faster (update, delete, insert)

 Faster development time.

 Changes in the database are maintained directly by the model, no need to data access logic.

(Patel, 2014)

We have almost a clear view what are the strong point of using Entity Framework. Let’s discover

now the dark side of the Entity Framework:

 It needs some time to disconnect from thinking in a traditional way of databases. Since

SQL and relational databases are quite popular, switching to this new approach needs some

spirit in the beginning.

 As mentioned in this report, Entity Framework is a layer on the database. Therefore it is

apparent that more layers slow down the data exchange. Querying directly the database is

not the same as writing a code in a language that will be translated to SQL to be executed

to the database. This drawback cannot be distinguished for small data. But with a lot of

data, the process really gets slow. According to the findings of the experiment in chapter 3

of this study, large data load is a disaster without performance optimization techniques. We

would recommend not using Entity Framework for big data load at all.

 Every time there is a change on the existing database, the files need to be regenerated.

 Another remark during exploring Entity Framework is that given SQL functions cannot be

called directly, functions as datediff etc. The way of accessing them is using the library

DbFunctions then citing the name of the function. This is not a pure drawback, but those

who are used to SQL, they might find it annoying.

 While working with entities, until we push our changes to the database, we keep the actions

in the memory. This might cause a memory overload time after time, so we will have to

run SaveChanges frequently.

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 27

Given the above outcomes, Entity Framework has a defined profile that should be used

appropriately. Therefore, we would suggest it in developing environment, creating applications

which need interaction with a database. Programming teams will adapt easily to the platform and

they will find the abstraction offered quite helpful. No need for database deep knowledge. The

connection to the database is fast and the relation to coding is close. So it will still feel like they

are coding, even though their objects are tuples and tables.

Dynamic and mixed environments will be still appropriate, since Entity Framework offers the

option to deal with different data sources and the integration capability is high.

We do not find it appropriate for business teams or even for retrieving or querying data, the usage

of an Entity Framework is unnecessary, as its scope is wider than just daily interactions with

database.

Moreover, we do not recommend it for large data processes as the performance degrades

considerably.

To sum up, Entity Framework is a powerful tool, it can fit perfectly some gaps between database

and programming environments, but it should not be used outside its scope.

Entity Framework | Suela Isaj & Moditha Hewasinghage

Page 28

References
Allen, J. (2012). Comparing NHibernate and Entity Framework. Retrieved from InfoQ:

http://www.infoq.com/news/2012/06/NHibernate-EF

Chauhan, S. (2014). Difference between LINQ to SQL and Entity Framework. Retrieved from DotNet

Tricks: http://www.dotnet-tricks.com/Tutorial/entityframework/1M5W300314-Difference-

between-LINQ-to-SQL-and-Entity-Framework.html

EntityFrameworkTutorial.net. (2015). Entity Framework Tutorial. Retrieved from Entity Framework

Tutorial: http://www.entityframeworktutorial.net/

Klein, S. (2010). Pro Entity Framework 4.0.

Kucinskas, D. (2014). Entity Framework 6 vs NHibernate 4. Retrieved from Devbridge Group:

https://www.devbridge.com/articles/entity-framework-6-vs-nhibernate-4/

Mackey, A. (2010). Introducing .NET 4.0 with Visual Studio 2010.

Microsoft. (2015). Performance Considerations (Entity Framework). Retrieved from Microsoft:

https://msdn.microsoft.com/library/cc853327.aspx

Patel, B. (2014). Advantage of Entity Framework over ADO.NET. Retrieved from DotnetSpan.com:

http://www.dotnetspan.com/2014/07/advantage-of-entity-framework.html

