
1

 Advanced Database Group Project -

Distributed Database with SQL Server

Hung Chang, Qingyi Zhu

Erasmus Mundus IT4BI

1. Introduction

1.1 Motivation
 Distributed database is vague for us. How to differentiate the database system is

the distributed database? Do they have the degree of distribution? For such a case in

Taiwan is the distributed database because of different locations and the query ability?

First, Five SQL Server databases located in five different flower markets and

transmitted data in CSV file format to one data warehouse as figure 1.1. The

transaction data generated by Auction Clock won’t update after 12 A.M owing to

transactions in all markets finished before 12 A.M. Second, the market managers and

the flower growers query the data originally in different location through OLAP.

Figure 1.1 : Location of Five Databases and Auction Clocks [1]

In this case, five databases didn’t connect together directly through the internet

due to the privacy issues. They only uploaded their data through internet. For example,

the SQL Server in Kaohsiung city couldn't query the database in Taipei city. They

could only query with OLAP. Therefore, are they distributed database? What level of

distribution did this case have? Could they distribute better?

2

1.2 Research Process
 We studied the distributed database from both theory and practical. First, reading

the book "Principles of Distributed Database System"[2] to know the concepts and

definitions, and then searching the keywords in MSDN[3] to understand the distributed

database with SQL Server. However, many different terminologies between SQL

Server and the book cause the difficulties. The reasons come from a lot of distributed

database product share the market based on figure 1.3 [4]. A note of distributed SQL

Server [5] exits but without replication section and terminologies matching.

 This article describes the different levels of distributed database to solve our

confusion, and shows the ability of distributed SQL Server. Meanwhile, discussing the

terminologies in "Principles of Distributed Database System" and SQL Server is also

the article main task.

 Follows are the structure of the article. Section 2 reviews the transparency.

Section 3 describes the way SQL Server becomes distributed. Section 4 shows the

distributed transaction with SQL Server. Section 5 demonstrates fragmentation with

SQL Server. Section 6 demonstrates the replication with SQL Server. Section 7

describes the difficulties when setting up the distributed SQL Server. Section 8 is the

conclusion.

Figure 1.3 : Distributed Database Software[4]

3

2. Transparency Management

 Transparent Management means how good the database distributed. With a fully

transparent DBMS the developer needs not to pay much attention to deal with the kind

of query which needs a distributed, fragmented and replicated database. The

transparency services can be provided at three distinct layers. The first layer at which

transparency can be provided is the access level. It provides transparent access to data

resources. The second layer at which transparency can be provided is the operating

system level. State-of-the-art operating systems provide some level of transparency to

system users. The third layer at which transparency can be provided is the DBMS level.

It provides translations from the operating system to the higher-level user interface. A

hierarchy of these transparencies is shown in Figure 2.1. This suggests SQL Server

only can provide transparency of replication, fragmentation and language. The

Section 4 discusses the Language Transparency.

 Replication Transparency means the existence of replicas and the manner of

distributing the replicas across the network is transparent. The user applications need to

determine how many copies to have and where to put these replicas. It will have an

effect on the performance, reliability and availability of user applications.

 Fragmentation Transparency means the fragmentation of database is transparent.

Since a global query is divided into several fragment queries, the query processing

becomes the fundamental issue of dealing with fragmentation transparency.

Considering of the ease of use and the difficulty and the cost of providing high levels

of transparency, we need to decide the level of transparency.

Figure 2.1 : Layers of Transparency

4

3. Linked Servers and Distributed Database

 The book describes distributed database is different databases running on

different servers. For instance, Figure 2.1 is not a distributed database because the

DBMS only at one site (server). Figure 2.2 is a distributed database because the

DBMSs are running on different sites (servers).

Figure 2.1 : Not Distributed Database[2]

Figure 2.2 : Distributed Database[2]

 MSDN names distributed SQL Server as Linked Server. The distributed query on

SQL Server explains why Linked Server has the same definition as the book in the

next section. Here firstly showing the way to build the distributed database on SQL

Server. Two methods which are the Transact-SQL and the configuration of SQL

management studio can generate Linked Server. For example, three databases on

5

different servers link together using a Transact-SQL.

 Server 1 : Tainan

 Server 2: Taipei

 Server 3: Taichung

EXEC sp_addlinkedserver

@server=' Tainan',

@provider='SQLNCLI',

@datasrc='TinanDB'

EXEC sp_addlinkedserver

@server =' Taipei',

@provider = 'SQLNCLI',

@datasrc = 'TaipeiDB'

EXEC sp_addlinkedserver

@server = ' Taichung',

@provider = 'SQLNCLI',

@datasrc = 'TaichungDB'

 Three store procedures created the linked servers at each three servers.

sp_addlinkedserver is the name of the procedure. @server is the name of the linked

server. @provider is the OLE DB provider. If @provider = 'MSDAORA', the

distributed database is heterogamous due to this is an oracle provider. If all @provider

= 'SQLNCLI' , it is homogenous distributed database. @datasrc is the data source.

6

4. Language Transparency and Distributed Query

 Transparency presents the level of database distribution. Liked Server is at the

Language Transparency level because when querying the tables it must know the name

of the partitions, tables and servers.

 In SQL Server environment, after creating the linked servers, can query the tables

in different servers. Assume the query executes at Tainan city. The Transact-SQL is as

follows.

SELECT * FROM

flowerDB.dbo.supplier

UNION ALL

SELECT * FROM

Taipei.flowerDB.dbo. supplier

UNION ALL

SELECT * FROM

Taichung. flowerDB.dbo. supplier

 This example describes the tables needed to query are at the server in Taipei city

and server in Taichung city separately. The result returns all the suppliers in those

cities.

7

4. MS DTC and Distributed Transaction

 SQL Server database engine and MS DTC(Microsoft Distributed Transaction

Coordinator) controls the distributed transactions in SQL Server. A transact-SQL

statement starts a distributed transaction when adding the following statement at the

beginning.

BEGIN DISTRIBUTED TRANSACTION

 Then, the instance of the SQL Server executes the Transact-SQL will become the

coordinator in this transaction, and perform local or remote distributed queries throw

MS DTC. MS DTC enlists all linked servers involved in this transaction as the

participants. Next, the controlling servers apply the Two Phase Protocol between the

linked servers to manage the ROLLBACK and COMMIT. The Two Phase Protocol

operated as figure 4.1[2]. At first, the local SQL server asks the linked server for

preparing to commit. If the participant is ready, it will return Yes else NO. Then the

coordinator knows the status of participant is YES and starts to commit. When the

participant have committed, it sends the message to the participant and the participant

writes end, and the whole process ends. Conversely, the rollback case also shows in

figure 4.1.

Figure 4.1 : Two Phase Protocol[2]

8

5. Distributed Partitioned Views and Horizontal

Fragmentation

 SQL Server uses Distributed Partitioned Views as the horizontal fragmentation.

The fragmentation means a table is divided into many tables. One is vertical

fragmentation and it separates the columns of a table into two tables which have part of

columns in the original table. The other is horizontal fragmentation and it separates the

row of a table into two tables which have part of rows in the original table. For example,

a flower table has 4 columns and 4 rows as follows. The horizontal fragmentation is as

Table 5.2 and Table 5.3 based on the location.

Table 5.1 : A Fragmentation Example

Flower

Name Price Quality Quantity

Lily 30 High 80

Rose 40 Low 40

Phalaenopsis 60 Medium 200

Chrysanthemum 50 Medium 10

Table 5.1 : Horizontal Fragmentation 1

Name Price Quality Quantity

Lily 40 High 80

Rose 60 Low 40

Table 5.2 : Horizontal Fragmentation 2

Name Price Quality Quantity

Phalaenopsis 30 Medium 200

Chrysanthemum 50 Medium 10

 SQL Server provides First, executing transact-SQL in one local database and the

transact-SQL as follows. through Distributed Partitioned Views and CHECK

constraints. Here is an example. Assume that Tainan stores the flower data from

FlowerID 1-100, and Tapei stores the flower data from FlowerID 101-200, and

Taichung stores the flower data from FlowerID 201-300.

First, create the Distributed Partitioned Views by executing the transact-SQL in

each local database as follows.

9

-- On Tainan Server

CREATE VIEW AllFlower AS

SELECT * FROM

flowerDB.dbo.flower

UNION ALL

SELECT * FROM

Taipei. flowerDB.dbo.flower_200

UNION ALL

SELECT * FROM

Taichung. flowerDB.dbo.flower_300

-- On Taipei Server

CREATE VIEW AllFlower AS

SELECT * FROM

Tainan. flowerDB.dbo.flower_100

UNION ALL

SELECT * FROM

flowerDB.dbo.flower_200

UNION ALL

SELECT * FROM

Taichung.flowerDB.dbo.flower_300

-- On Taichung Server

CREATE VIEW AllFlower AS

SELECT * FROM

Tainan. flowerDB.dbo.flower_100

UNION ALL

SELECT * FROM

Taipei.flowerDB.dbo.flower _200

UNION ALL

SELECT * FROM

DBteacher.dbo.Teacher_300

10

The CHECK constraints ensures the rules in the partition tables as following

transact-SQL

-- On Server1:

CREATE TABLE dbo.flower_100

(ID INTEGER PRIMARY KEY

CHECK (ID BETWEEN 1 AND 100)

-- On Server2:

CREATE TABLE dbo.flower_200

(ID INTEGER PRIMARY KEY

CHECK (ID BETWEEN 101 AND 200)

-- On Server3:

CREATE TABLE dbo.flower_300

(ID INTEGER PRIMARY KEY

CHECK (ID BETWEEN 201 AND 300),

The CHECK constraints help the optimization of distributed query to achieve the

smallest data delivery between linked servers to minimize the cost of distributed query.

Therefore, SQL Server refers the CHECK constraints to better execute the distributed

query. For example, we want to know which flower ID is between 51 and 103. The SQL

Server will not issue a query to server 3 according to the CHECK Constraints, only

query server1 and server2.

SELECT *

FROM AllFlower

WHERE ID BETWEEN 100 AND 200

11

6. Replication

6.1 Theory
Replication improves the reliability of distributed database explaining the

importance of it. Replication has different degree. For example, the database is fully

replicated and stores the replicated databases in different sites, or the database is

partially replicated and stores the replicated partitions in different sites. This shows

three replication problems. First, duplication of data means choosing one of several

copies to retrieve, and update each copy. Second, problem occurs when some sites or

some communication links fail while executing an update. The system must ensure that

it can recover from the failure. The third problem is about the synchronization. When

executing the query, the system need to get data from different sites, so the difficulty is

to satisfy the synchronization of transactions on multiple sites. Some protocols are

designed to ensure the consistency of the copies of database. These protocols can be

eager or lazy. The eager means that all the updates must be applied to all the copies

before transaction completes. The lazy means that the updates of other copies can be

done after the transaction of one copy is completed.

6.2 Replication with SQL Server
SQL Server calls the problems as the autonomy and latency, and provides the

solution with three roles (as figure 6.1). An on-line bookstore illustrates how the SQL

Server replication works. The boss of bookstore (publisher) can decide the books

(article) to sell, but the books (article) must put in a shelf (publication) which the

client (Subscriber) can choose from, and the boss asks express delivery (distributors)

for sending the books to the client periodically. In fact, SQL Server Replication Agent

controls the mechanism.

Figure 6.1 : The relation Between Three roles in SQL Server Replication

Publisher • Maintain the
publication and article

Distributer
• Transfer the
publication and
article

Subscriber
• Receive the
publication and
article

12

SQL Server provides three types of replication for use in distributed applications:

Transactional replication, Merge replication, Snapshot replication as figure 6.2. The

difference is the autonomy and latency issues.

 The Snapshot replication distributes data at a specific moment in time without

monitoring the updates of data. This type is better if data doesn’t change frequently or

is few. The Transactional replication responds each time of the change, instead of only

respond to the final change while several changes happen. It begins with a publication

of database objects and a snapshot of data. After creating the initial snapshot, data

changes deliver to subscriber immediately when there are some data changes in

publisher. The order of data changes is also the same to guarantee the transactional

consistency within a publication. This type is better to deal with the synchronization

problem. Besides, it assures low latency between the time changes made at the

Publisher and the changes arrived at the Subscriber. The Merge replication uses triggers

to track data changes in the Publisher and Subscribers. When subscriber connects to the

network, it will synchronize with the publisher. If more than one Subscriber which

update the same data at different time, and then spread the changes to server and other

subscribers, it’s better to use merge replication. Sometimes conflicts exist, and Merge

replication deal with them in different ways.

The difference between Merge replication and Transactional replication is that

Merge replication doesn’t synchronize each change. So, though the data in Subscriber

has changed several times, the publisher only reflects the final change.

Figure 6.2 Three Main Method for Replication

13

7. Difficulties of Setting Distributed SQL Server

 This section focuses on the trouble-shooting of setting distributed SQL Server.

Two virtual machines simulate the distributed database scenario. It is the case because

without connecting to the internet, the SQL Server can't connect to the other. If the

SQL server on two virtual machines can connect each other without internet, it just

represents a server with two databases.

Figure 7.1 : Error Massage when without internet connection.

7.1 Fail to Build Linked Server
 Sometimes the servers’ links fail due to the network problem. To build linked

servers, Firewall, SQL Server Browser, and SQL Server Network Configuration

(TCP/IP, Named Pipes) in SQL Server Configuration must be suitable configured.

Figure 7.2 : SQL Server Configuration Manager

14

 If the setting is suitable configured, browsing the network servers in

Management Studio can see the database on the other sever. The example runs on

VMware to represent two different servers.

Figure 7.3 : Browsing the Database on the Other Server

 Typing the Transact-SQL can add linked server successfully if the above internet

setting of SQL Server has been done. The bottom left window shows Linked server

has created, and the bottom window shows the distributed query executes successful.

Figure 7.4 : Linked Server

15

7.2 Fail to Begin Distribute Transaction
 To begin distributed transaction, it is still not enough. The following error

massage shows the MS DTC is not activated. To start the MS DTC, Open START >

SETTINGS > CONTROL PANEL > ADMINISTRATIVE TOOLS > SERVICES, and

start the service called 'Distributed Transaction Coordinator'.

Figure 7.5 : Error of MS DTC

Figure 7.6 : MS DTC activates

16

8. Conclusion

 The terminologies between SQL Server and the books are very confusing, for

instance, Linked Server, Publisher and Subscriber. This implies originally each

DBMS software doesn’t provide distributed database, they add the features based on

the Client/Server architecture. This also suggests no pure distributed database

software exits.

On the other hand, SQL Server has the ability to implement a lot of promises of

distributed database, such as distributed query, distributed transaction, fragmentation

and replication, which can also set-up with Management Studio. The linked server

provides the basic structure for distributed database. Based on linked server, the

instances on SQL Server can execute distributed query, perform distributed

transaction through MS DTC, and horizontal fragmentation, but the replication should

set in the other way. Although the different terminologies between the book and SQL

Server confuse a lot, it still provides the excellent way to implement the distributed

database.

9. Reference

[1] G. R. Liang, "Incentive Driven Supply Chain," 2009.

[2] M. Tamer èOzsu and P. Valduriez, Principles of Distributed Database Systems:

Springer, 2011.

[3] Microsoft. (2013). MSDN. Available: http://msdn.microsoft.com/en-US/

[4] J. A. Hoffer, R. Venkataraman, and H. Topi, Modern Database Management,

11/E: Prentice Hall, 2002.

[5] (2013). Distributed Database. Available:

http://www.unife.it/ing/lm.infoauto/sistemi-informativi/allegati/

