Advanced Database Group Project -

Distributed Database with SQL Server
Hung Chang, Qingyi Zhu

Erasmus Mundus IT4BI

1. Introduction

1.1 Motivation

Distributed database is vague for us. How to differentiate the database system is
the distributed database? Do they have the degree of distribution? For such a case in
Taiwan is the distributed database because of different locations and the query ability?
First, Five SQL Server databases located in five different flower markets and
transmitted data in CSV file format to one data warehouse as figure 1.1. The
transaction data generated by Auction Clock won’t update after 12 A.M owing to
transactions in all markets finished before 12 A.M. Second, the market managers and
the flower growers query the data originally in different location through OLAP.

Taichung county/ 2807
g~
Changhua j/<uné

g

ualien county

Chiayi
Chiayi cg

2 v 74
3 -
Kaohsiung city
Pingtung county

Figure 1.1 : Location of Five Databases and Auction Clocks [1]

Taitung county

In this case, five databases didn’t connect together directly through the internet
due to the privacy issues. They only uploaded their data through internet. For example,
the SQL Server in Kaohsiung city couldn't query the database in Taipei city. They
could only query with OLAP. Therefore, are they distributed database? What level of

distribution did this case have? Could they distribute better?
1

1.2 Research Process

We studied the distributed database from both theory and practical. First, reading
the book "Principles of Distributed Database System"[2] to know the concepts and
definitions, and then searching the keywords in MSDN[3] to understand the distributed
database with SQL Server. However, many different terminologies between SQL
Server and the book cause the difficulties. The reasons come from a lot of distributed
database product share the market based on figure 1.3 [4]. A note of distributed SQL
Server [5] exits but without replication section and terminologies matching.

This article describes the different levels of distributed database to solve our
confusion, and shows the ability of distributed SQL Server. Meanwhile, discussing the
terminologies in "Principles of Distributed Database System" and SQL Server is also
the article main task.

Follows are the structure of the article. Section 2 reviews the transparency.
Section 3 describes the way SQL Server becomes distributed. Section 4 shows the
distributed transaction with SQL Server. Section 5 demonstrates fragmentation with
SQL Server. Section 6 demonstrates the replication with SQL Server. Section 7
describes the difficulties when setting up the distributed SQL Server. Section 8 is the
conclusion.

Vendor Product Important Features

IBM + DB2 Data Propagator » Works with DB2; replicates data to “regional transactional” databases
* Distributed Relational Database * Primary site and asynchronous updates
* Architecture (DRDA) * Read-only sites subscribe to primary site
» DB2 Information Integrator s Supports both distribution and consolidation

* Heterogeneous databases
* Integrates data from multiple types of sources
Sybase + Replication Server * Primary site and distributed read-only sites
+ SQL Anywhere Studio » Update to read-only site as one transaction
* Hierarchical replication
» Data and stored procedures replicated
* Databases located outside the traditional data center
Oracle * Oracle Streams » Sharing data with both Oracle and non-Cracle data stores
* Oracle Advanced Replication * Hub-and-spoke replication
* Synchronous capture for table replication
* Multi-master replication supporting distributed applications
MySQL * Built-in replication capabilities * Scale-out solutions
* Analytics
» Long-distance data distribution
Microsoft * SQL Server 2008 » Multiple types of replication: transactional, merge, and snapshot
* Microsoft Sync Framework

Figure 1.3 : Distributed Database Software[4]

2. Transparency Management

Transparent Management means how good the database distributed. With a fully
transparent DBMS the developer needs not to pay much attention to deal with the kind
of query which needs a distributed, fragmented and replicated database. The
transparency services can be provided at three distinct layers. The first layer at which
transparency can be provided is the access level. It provides transparent access to data
resources. The second layer at which transparency can be provided is the operating
system level. State-of-the-art operating systems provide some level of transparency to
system users. The third layer at which transparency can be provided is the DBMS level.
It provides translations from the operating system to the higher-level user interface. A
hierarchy of these transparencies is shown in Figure 2.1. This suggests SQL Server
only can provide transparency of replication, fragmentation and language. The
Section 4 discusses the Language Transparency.

Replication Transparency means the existence of replicas and the manner of
distributing the replicas across the network is transparent. The user applications need to
determine how many copies to have and where to put these replicas. It will have an
effect on the performance, reliability and availability of user applications.

Fragmentation Transparency means the fragmentation of database is transparent.
Since a global query is divided into several fragment queries, the query processing
becomes the fundamental issue of dealing with fragmentation transparency.

Considering of the ease of use and the difficulty and the cost of providing high levels
of transparency, we need to decide the level of transparency.

Figure 2.1 : Layers of Transparency

3. Linked Servers and Distributed Database

The book describes distributed database is different databases running on
different servers. For instance, Figure 2.1 is not a distributed database because the
DBMS only at one site (server). Figure 2.2 is a distributed database because the
DBMSs are running on different sites (servers).

Site 1

Site 5

Communication

Network

Site 4 Site 3

Figure 2.1 : Not Distributed Database[2]

—
Site 1
Site 5 Site 2
Communication
MNetwork
——
F::’— Site 4 Site 3 ——
e e

Figure 2.2 : Distributed Database[2]

MSDN names distributed SQL Server as Linked Server. The distributed query on
SQL Server explains why Linked Server has the same definition as the book in the
next section. Here firstly showing the way to build the distributed database on SQL
Server. Two methods which are the Transact-SQL and the configuration of SQL

management studio can generate Linked Server. For example, three databases on
4

different servers link together using a Transact-SQL.

Server 1 : Tainan
Server 2: Taipei
Server 3: Taichung

EXEC sp_addlinkedserver
@server="'Tainan’,
@provider="SQLNCLI',
@datasrc="TinanDB'

EXEC sp_addlinkedserver
@server =' Taipeli',
@provider ="'SQLNCLI',
@datasrc = "TaipeiDB'

EXEC sp_addlinkedserver
@server =" Taichung’,
@provider ='SQLNCLI',
@datasrc = "TaichungDB'

Three store procedures created the linked servers at each three servers.
sp_addlinkedserver is the name of the procedure. @server is the name of the linked
server. @provider is the OLE DB provider. If @provider = 'MSDAORA, the
distributed database is heterogamous due to this is an oracle provider. If all @provider
='SQLNCLI'", it is homogenous distributed database. @datasrc is the data source.

4. Language Transparency and Distributed Query

Transparency presents the level of database distribution. Liked Server is at the
Language Transparency level because when querying the tables it must know the name
of the partitions, tables and servers.

In SQL Server environment, after creating the linked servers, can query the tables
in different servers. Assume the query executes at Tainan city. The Transact-SQL is as
follows.

SELECT * FROM
flowerDB.dbo.supplier

UNION ALL

SELECT * FROM
Taipei.flowerDB.dbo. supplier
UNION ALL

SELECT * FROM

Taichung. flowerDB.dbo. supplier

This example describes the tables needed to query are at the server in Taipei city
and server in Taichung city separately. The result returns all the suppliers in those
cities.

4. MS DTC and Distributed Transaction

SQL Server database engine and MS DTC(Microsoft Distributed Transaction
Coordinator) controls the distributed transactions in SQL Server. A transact-SQL
statement starts a distributed transaction when adding the following statement at the
beginning.

BEGIN DISTRIBUTED TRANSACTION

Then, the instance of the SQL Server executes the Transact-SQL will become the
coordinator in this transaction, and perform local or remote distributed queries throw
MS DTC. MS DTC enlists all linked servers involved in this transaction as the
participants. Next, the controlling servers apply the Two Phase Protocol between the
linked servers to manage the ROLLBACK and COMMIT. The Two Phase Protocol
operated as figure 4.1[2]. At first, the local SQL server asks the linked server for
preparing to commit. If the participant is ready, it will return Yes else NO. Then the
coordinator knows the status of participant is YES and starts to commit. When the
participant have committed, it sends the message to the participant and the participant
writes end, and the whole process ends. Conversely, the rollback case also shows in
figure 4.1.

Coordinator Participant
S
Pffﬂiﬂ”fﬂff
wri‘te] Hd,_,a-—““'""——# - N
begl:'ln Ic:Dcugmmll = /f,-"d W”i:_l"-‘lzgon e
¢ :‘ISE”/ - l\’es

"
_____ Viore-comman | | write ready
in log
Yes write abort G'DMfB_D'l
inlog =

write commit | _——
inlog

(Unilateral abort)
=
o
[=]
=8

+ Type|of msg?

write abort
in log

Commit

write commit
in log

wiite: 'L
end_of_transaction Y

in log
ABORT

Figure 4.1 : Two Phase Protocol[2]

5. Distributed Partitioned Views and Horizontal

Fragmentation

SQL Server uses Distributed Partitioned Views as the horizontal fragmentation.
The fragmentation means a table is divided into many tables. One is vertical
fragmentation and it separates the columns of a table into two tables which have part of
columns in the original table. The other is horizontal fragmentation and it separates the
row of a table into two tables which have part of rows in the original table. For example,
a flower table has 4 columns and 4 rows as follows. The horizontal fragmentation is as
Table 5.2 and Table 5.3 based on the location.

Table 5.1 : A Fragmentation Example

Flower

Name Price | Quality | Quantity
Lily 30 High 80

Rose 40 Low 40
Phalaenopsis 60 Medium | 200
Chrysanthemum | 50 Medium | 10

Table 5.1 : Horizontal Fragmentation 1

Name Price Quality Quantity
Lily 40 High 80

Rose 60 Low 40
Table 5.2 : Horizontal Fragmentation 2

Name Price Quality Quantity
Phalaenopsis 30 Medium 200
Chrysanthemum 50 Medium 10

SQL Server provides First, executing transact-SQL in one local database and the
transact-SQL as follows. through Distributed Partitioned Views and CHECK
constraints. Here is an example. Assume that Tainan stores the flower data from
FlowerID 1-100, and Tapei stores the flower data from FlowerIlD 101-200, and
Taichung stores the flower data from FlowerID 201-300.

First, create the Distributed Partitioned Views by executing the transact-SQL in
each local database as follows.

-- On Tainan Server

CREATE VIEW AllFlower AS
SELECT * FROM
flowerDB.dbo.flower

UNION ALL

SELECT * FROM

Taipei. flowerDB.dbo.flower_200
UNION ALL

SELECT * FROM

Taichung. flowerDB.dbo.flower_300

-- On Taipei Server

CREATE VIEW AllFlower AS
SELECT * FROM

Tainan. flowerDB.dbo.flower 100
UNION ALL

SELECT * FROM
flowerDB.dbo.flower 200

UNION ALL

SELECT * FROM
Taichung.flowerDB.dbo.flower_300

-- On Taichung Server

CREATE VIEW AllFlower AS
SELECT * FROM

Tainan. flowerDB.dbo.flower 100
UNION ALL

SELECT * FROM
Taipei.flowerDB.dbo.flower 200
UNION ALL

SELECT * FROM
DBteacher.dbo.Teacher 300

The CHECK constraints ensures the rules in the partition tables as following
transact-SQL

-- On Serverl:

CREATE TABLE dbo.flower_100
(ID INTEGER PRIMARY KEY
CHECK (ID BETWEEN 1 AND 100)

-- On Server2:

CREATE TABLE dbo.flower_200

(ID INTEGER PRIMARY KEY
CHECK (ID BETWEEN 101 AND 200)

-- On Servera3:

CREATE TABLE dbo.flower_300

(ID INTEGER PRIMARY KEY
CHECK (ID BETWEEN 201 AND 300),

The CHECK constraints help the optimization of distributed query to achieve the
smallest data delivery between linked servers to minimize the cost of distributed query.
Therefore, SQL Server refers the CHECK constraints to better execute the distributed
query. For example, we want to know which flower ID is between 51 and 103. The SQL
Server will not issue a query to server 3 according to the CHECK Constraints, only
query serverl and server2,

SELECT *

FROM AllFlower
WHERE ID BETWEEN 100 AND 200

10

6. Replication

6.1 Theory

Replication improves the reliability of distributed database explaining the
importance of it. Replication has different degree. For example, the database is fully
replicated and stores the replicated databases in different sites, or the database is
partially replicated and stores the replicated partitions in different sites. This shows
three replication problems. First, duplication of data means choosing one of several
copies to retrieve, and update each copy. Second, problem occurs when some sites or
some communication links fail while executing an update. The system must ensure that
it can recover from the failure. The third problem is about the synchronization. When
executing the query, the system need to get data from different sites, so the difficulty is
to satisfy the synchronization of transactions on multiple sites. Some protocols are
designed to ensure the consistency of the copies of database. These protocols can be
eager or lazy. The eager means that all the updates must be applied to all the copies
before transaction completes. The lazy means that the updates of other copies can be
done after the transaction of one copy is completed.

6.2 Replication with SQL Server

SQL Server calls the problems as the autonomy and latency, and provides the
solution with three roles (as figure 6.1). An on-line bookstore illustrates how the SQL
Server replication works. The boss of bookstore (publisher) can decide the books
(article) to sell, but the books (article) must put in a shelf (publication) which the
client (Subscriber) can choose from, and the boss asks express delivery (distributors)
for sending the books to the client periodically. In fact, SQL Server Replication Agent
controls the mechanism.

publisher 1N Maintain the
publication and article

e Transfer the
Distributer publication and
article

® Receive the
Subscriber publication and
article

Figure 6.1 : The relation Between Three roles in SQL Server Replication
1

SQL Server provides three types of replication for use in distributed applications:
Transactional replication, Merge replication, Snapshot replication as figure 6.2. The
difference is the autonomy and latency issues.

The Snapshot replication distributes data at a specific moment in time without
monitoring the updates of data. This type is better if data doesn’t change frequently or
is few. The Transactional replication responds each time of the change, instead of only
respond to the final change while several changes happen. It begins with a publication
of database objects and a snapshot of data. After creating the initial snapshot, data
changes deliver to subscriber immediately when there are some data changes in
publisher. The order of data changes is also the same to guarantee the transactional
consistency within a publication. This type is better to deal with the synchronization
problem. Besides, it assures low latency between the time changes made at the
Publisher and the changes arrived at the Subscriber. The Merge replication uses triggers
to track data changes in the Publisher and Subscribers. When subscriber connects to the
network, it will synchronize with the publisher. If more than one Subscriber which
update the same data at different time, and then spread the changes to server and other
subscribers, it’s better to use merge replication. Sometimes conflicts exist, and Merge
replication deal with them in different ways.

The difference between Merge replication and Transactional replication is that
Merge replication doesn’t synchronize each change. So, though the data in Subscriber
has changed several times, the publisher only reflects the final change.

."3 New Fublication Wizard E@@

Publication Type
Choose the publication type that best supports the reguirements of wour
application.

Publication type:

| Snapshot publication

& Transactional publication
& Transactional publication with wpdatable subscriptions
¥ Merge publication

Publication type descriptions:

Enapshot poblication: L
The Publisher sends a snapshot of the published data to Subscribers at scheduled intervals.

Transactional publication:
The Publisher streams transactions to the Subscribers after thew receive an indtial snapshot of
the publizhed data.

Transactional publication with updatable subscriptions:

The Publisher streams transactions to 0L Server Subscribers after thew receive an initial
=napshot of the published data. Transactions originating at the Subscriber are applied at the
Fublisher.

e

[) (e]

Figure 6.2 Three Main Method for Replication

12

7. Difficulties of Setting Distributed SQL Server

This section focuses on the trouble-shooting of setting distributed SQL Server.
Two virtual machines simulate the distributed database scenario. It is the case because
without connecting to the internet, the SQL Server can't connect to the other. If the
SQL server on two virtual machines can connect each other without internet, it just
represents a server with two databases.

BEGIN DISTRIBUTED TRANSACTION
SELECT * FEON
L Taipei.idventurellork

3. Production, Product)

¢ }

']
L Mesmges
OLE LB prowider "SQLNCLILO" for linked server "Taipei" returned message "Unable to complete login process due to delay in opening
OLE LB prowider "SQLNCLILO" for linked server "Taipei" returned message "A network-related or instance-specific error has ccourrer
M=y &BE3E, Level 16, 3tace 1, Line 0
i SQ0L Server Network Interfaces: Error Locating Server/Instance Specified [xFFFFFFFF].

Figure 7.1 : Error Massage when without internet connection.

7.1 Fail to Build Linked Server

Sometimes the servers’ links fail due to the network problem. To build linked
servers, Firewall, SQL Server Browser, and SQL Server Network Configuration
(TCP/IP, Named Pipes) in SQL Server Configuration must be suitable configured.

E

BRE HITW WED HEDm
& ENE

‘@ B0L Berver Configuration Manager (Local) Frotocol Hame Statnz
SOL Berver Services T Shared Mermory Enabled
= J B0 Server Network Configiration %= Named Pipes Enabled
E‘F Protocols for SOLEXPRESS %= TCPAP Enabled
+ .. S0L Wative Client 10.0 Confignration V1A Enahled

Figure 7.2 : SQL Server Configuration Manager

13

If the setting is suitable configured, browsing the network servers in
Management Studio can see the database on the other sever. The example runs on
VMware to represent two different servers.

| Object Explorer | Local Servers | Metwork Servers

Comnect~ 83 1

Select a 8L Server instance in the network for your connsstion:

Microsoft*

| = | Database Engine
[FNCINKEDSER VER
5 ¥IT-13PC5C523DRSQLEAPRESS

(10,50}

Z~ SQL Server2008r2

Server bpe | Database Engine

Server name:

|<Browss for more._ »

Anthentication:

| Pindows Anthentication

Figure 7.3 : Browsing the Database on the Other Server

Typing the Transact-SQL can add linked server successfully if the above internet

setting of SQL Server has been done. The bottom left window shows Linked server
has created, and the bottom window shows the distributed query executes successful.

‘- Microzoft SQL Server Management Stndio

File Edit Wiew Query Debung Toolz Window Commwnity Help
S Newouery | [y [| 5 I & B o
4l M mazter * | ¥ Execute
Object Explorer > 1 X SQLQueryl sql - ¥IT...S master (sa (52))*|
Comnect - 3} il m . EXEC =p_addlinkedserver
Gt Sl I
[msdb pr -
u tempdb Bprowvider=1'3QLNCLI',
L_j Diatabase Snapshots [Hdatasre=N'LINEEDSERVERY, SQLEEPRESS'
| Adventore Works
| Adventure Works2008 Bl SELECT * FROM
u Adventore WorksDW L Taipei. AdventurelWorks. Production. Product
| Adventure WorksD #2003
| Adventore WorksL T
u Adventore WorksL T2008
| | DefaultBizagiFroject
| | ReportServerd2QLEEFRERS
| ReportlerverbSQLEEPRERE TempDB
| ERIZ_PDR <
[Zecurity ——
[Zerver Objects [Results @ Messages |
[Replication Marme ProductMumber | MakeFlag = FinishedGo
ggfﬂsgemnl © gt 1P disabled) 1 | Adjustable Race AR-5351 0 0
B erver A gent (L gent XPs disl . i
= [VIT-13FCSC523DRSQLELPRESS (SQL Serve & Bearing Bal _ Ba-8327 o o
3 Databases 3 3 EB Ball Ezaring BE-2349 1 u}
[Security 4 4 Headset Ball Bearings BE-2308 1] 1]
= [Server Objects a 316 Blade EL-2036 1 u}
3 Backup Devices B @7 LL Crankarm CA-5965 0 0
3] oA e ts
SRR AT 7 A k] ML Crankarm CA-B738 1] 1]
C3 Providers g 3113 HL Crankarm Ca-7a57 o o
LINKEDSERVER\SQLEXPRENS 9 320 Chainring Bolts CB-29032 1] 1]
repl_distributor 10 321 Chairring Mut CH-E137 u} u}
| Todpei UL Chainring CR-7833 0 0
'—Rj]lﬁiim 12 323 Crown Race CR-9351]]
E eplication .
' R nent 13 324 Chain Stays Cs-2a2 1 1]
Ot B P R — < |
~
< P/ @ Cuery executed succesfully.

Figure 7.4 : Linked Server

14

7.2 Fail to Begin Distribute Transaction

To begin distributed transaction, it is still not enough. The following error
massage shows the MS DTC is not activated. To start the MS DTC, Open START >
SETTINGS > CONTROL PANEL > ADMINISTRATIVE TOOLS > SERVICES, and
start the service called 'Distributed Transaction Coordinator".

",: Microsoft SQL Server Management Studio

File Edit ¥iew OQuerr Debuz Tools Window Community Help

Qlewowy [y 3 GHS E

42 B0 | master + P Eeat b9 o35 EIJ I iy Qj =
Cbject Explorer >3 X _/SQLszryl_sql— VIT..S.master (sa (52))%|
Comnect » gj 4l g T &
U nodel - EXEE sp_adiilt‘iﬁkgdsn?lrver
1 b server ?.lIIJllil ,
(1] mpib fsrvproduct=n'',

(3 Database Snapshats Aprovider=H'SQLNCLI',

U Ddventus Works fdatasre=N' LINKEDSERVER, 3QLEXPREZS! ;
| Adventurs Warks2008
| Advestue WorksDW BEGIN DISTRIBUTED
|J Ldventure WorksDW2008 [BJSELECT * FR
| AdventurWorked T QTaipei. id
| Adventurs Works 12003

|| DefanliBizagiProfect

IJ ReportServerbSQLEXPRESS

| ReportServer§SQLENPRESS TempDB

ntureWorks. Production. Product

u SRI5_IDE ¢
[Becurity —_—
[Rerver Objects |-4=§ Messages |
[Replication Msg 5501, Lewel l&, Ztate 3, Line 1
[Management MEDTC on serwver 'VIT-13FCECEZIDFYEQLEXPRESE' is unavailable.

[, SO Server Aoent (4 sent XPs disabled)

Figure 7.5 : Error of MS DTC

wWREE BT R A
= @ FHB £E » =
B BT () s, BB CGEIE) !
Distributed Transaction E=t fimsti AR5 EEhiR: A~
Coordinator ity ASP NET State Service Pravi... Fa&
&t 0 uiomatic Updates £iT ... O&Eh B
e WM. & |
B&h A
EmE B5 i
BH.. [Sicd: i
=i o%& Fah
=i F#h
fii= (= =) i
2. E=Esh B#
ED [0 = &
- e, CEE 8
3 Distributed Link Tracking Clisnt ik EEE a@ E
it Distributed Transaction Coordinator tRsE. . Fa&
S DNS Clisnt mRtT. CEE B &
44y Error Reporting Service JLEY.. CEEEh B8 E
S Event Log BH .. 2 B3
8 Esctensible Authentication Protocol Service i FEh
i Faat User Switching Compatibility EE. BEFH FHh
4 Health Kex and Certificate Management Service] F&h
@ Help and Support S, EEEh B#
S HTTP 851 iEM@E Fah
g Human Interface Device Access A =2iEH &
- R, -~ il
N Bk A TR

Figure 7.6 : MS DTC activates

15

8. Conclusion

The terminologies between SQL Server and the books are very confusing, for
instance, Linked Server, Publisher and Subscriber. This implies originally each
DBMS software doesn’t provide distributed database, they add the features based on
the Client/Server architecture. This also suggests no pure distributed database
software exits.

On the other hand, SQL Server has the ability to implement a lot of promises of
distributed database, such as distributed query, distributed transaction, fragmentation
and replication, which can also set-up with Management Studio. The linked server
provides the basic structure for distributed database. Based on linked server, the
instances on SQL Server can execute distributed query, perform distributed
transaction through MS DTC, and horizontal fragmentation, but the replication should
set in the other way. Although the different terminologies between the book and SQL
Server confuse a lot, it still provides the excellent way to implement the distributed
database.

9. Reference

[1] G. R. Liang, "Incentive Driven Supply Chain," 2009.

[2] M. Tamer €0zsu and P. Valduriez, Principles of Distributed Database Systems:
Springer, 2011.

[3] Microsoft. (2013). MSDN. Available: http://msdn.microsoft.com/en-US/

[4] J. A. Hoffer, R. Venkataraman, and H. Topi, Modern Database Management,
11/E: Prentice Hall, 2002.

[5] (2013). Distributed Database. Available:
http://www.unife.it/ing/Im.infoauto/sistemi-informativi/allegati/

16

