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An Overview 
Deductive databases where born as an outgrowth of the field of logic programming in 
which mathematical logic is used to perform sophisticated inferences and draw appropriate 
conclusions while handling large amounts of data. 
 
During the 1970’s, based on the procedural interpretation of Horn clauses, and the need to 
develop a specialized theorem prover, the declarative language PROLOG (Programming 
in Logic) was developed in the university of Marseilles. By mid 1970’s a compiler that 
could help translate Prolog clauses into instructions of abstract machine was developed 
and served as the basis for “question-answering systems”. 
 
Using logic programming as a query language would eventually result in the integration to 
a database management system. The resulting systems combined a declarative style for 
formulating queries and constraints.  
 
In a traditional DBMS, an explicit procedural program code must be written to support 
declarative rules. However, since rules may change over the years, it is more convenient 
to change the declared deduction rules than record procedural programs. In this way, 
deductive databases not only store explicit information in the same way a relational 
database, but also stores rules, which enable inferences to be made based on the original 
stored data. 
 
The term deductive database highlights the ability to use a logic programming style for 
expressing deductions concerning the contents of a database. 
 
When is it recommended to use Deductive Databases? 
Deductive databases provide additional expressive power to relational databases when it 
comes to recursive queries. 
 
When you try to answer questions such as “Given a bill of materials with a certain unitary 
cost, what is the total cost to build a BMW motorcyle at today’s prices?” , or, “Given that 
you can get from airport A to B and from B to C, can you book a plane from A to C?” the 
only option is by adding recursion. Recursive queries are useful to build hierarchy trees. 
Usually this involves joining a set with itself a defined number of times. Each recursive call 
is another separate call that will have to be joined into the total results. 
 
Overall, deductive databases can range in a wide variety of applications: 
In decision support for example, given a finite number of resources and an estimated 
future state, one can make inferences and take better informed decisions about future 
plans.           
 
In the mining industry, large amounts of data may be collected through samples which 
then can be analyzed to see if there is large enough probability of finding a desired mineral 
on a specific region. 
 
In biology, deductive databases have been used for protein structure analysis. By 
restraining user defined levels of similarities between three dimensional and topological 
structures, the system can use a function to automatically search for similar structures. 
 
 
 



Mathematical Basis 
Deductive database technology stands at the intersection of database, logic programming 
and artificial intelligence systems technologies. Their common denominator (regardless of 
the language being used) is logic. In order to understand how deductive databases work, 
some mathematical background is needed: 
 
Propositional calculus 
The propositional calculus is concerned with logical propositions which can have only true 
or false value. Prepositions (elementary statement of propositional calculus) are combined 
into complex statements using connectives and, or, not and implication. It is important to 
mention one inference rule called modus ponens, which says that if we know the 
proposition p, and p implies the proposition q, then we can conclude that we know q. This 
is: 

    
  

   
 
The database in these systems consists of the truth values assigned to the various 
elementary prepositions known to the system.  
 
First-order predicate calculus 
The essential idea is that each proposition can be defined as a predication. Predication 
consists of a list of predicates. For instance Predicate(arg1, arg2, arg3…argn) (P must be 
with capital letter and the arguments with a small letter). For example: 
  
The train 110 goes to Brussels, can be transformed as: 

Go(110, brussels) In this case the predicate has 2 arguments.  
 

A simple predicate is one that assigns some property to the argument: 
Train 110 is a TGV.  

TGV(110) 

 

More complex predicates represent relations between 2 arguments.  

Send(jane, paul,letter) which can be read as Jane sends Paul a letter 
 

Note that the order in the argument structure is important.  

Mother(lucie,diana) represents Lucie is the mother of Diana.  

Mother(diana,lucie) represents Diana is the mother of Lucie.  

 
In both first order logic and regular propositional calculus, propositions are analogous to 
the tuples in a relational database system. Each proposition is grouped into predicates; 
these predicates are the relations in the Relational Database Systems. First order 
predicate calculus is a propositional system with the addition of variables and quantifiers. 
Two special symbols called quantifiers can appear in formulas, these are universal 
quantifier ( ) and existential quantifier ( ).   
 
 
 
 
 



Considering the following example of a bus company that registers the cities to which each 
bus travel.   
 

Propositions Predicate 

All buses from Paris go to Brussels.  Go(X,paris,brussels) 

Some buses from Paris go to Brussels.  Go(X,paris,brussels) 

Buses don’t go from Paris to Brussels. Go(X,paris,brussels) 

 
In all three cases the predications represent identical relations between entities but this 
doesn’t reflect the different meanings. The mechanism that allows the formalization of 
relations between sets and not between simple entities is the use of quantifiers. Both 
quantifiers return a TRUE or FALSE value according to the following rules: 

- If F is a formula, then the formula       , where t is a tuple variable. The 
formula is TRUE if the formula F evaluates to TRUE for some (at least one) tuple 
assigned to free occurences of t in F.  
- If F is a formula, then the formula        , where t is a variable tuple. The 
formula is TRUE if the formula F evaluates TRUE for every tuple in the universe. 
Otherwise FALSE is returned.  

 
Transforming the Universal and Existential Quantifiers  
We now introduce some transformations from mathematical logic that relate the universal 
and existential quantifiers. This is essential since for many RDBMS the universal quantifier 
is still not implemented. In general this transformations follow this principle: transform one 
type of quantifier into the other with negation; AND and OR replace one another; a 
negated formula becomes unnegated. Consider the following list of special 
transformations: 
 

    (    )               (    )  

    (    )               (    )  

                                 (    )       (    )   

                                (    )        (    )   

                                 (    )       (    )   

                                (    )        (    )  
 

  



Programming Language for Deductive Databases 
The language used to specify rules in a deductive database system is called declarative 
language. A declarative language is characterized to specify what to achieve rather than 
how to achieve it. They are completely different from imperative languages because in this 
kind of languages you will tell the machine how to do something and as a result you will 
get what you wrote was supposed to happen. In a declarative language you will tell the 
machine what you want to compute and you let her figure out how to compute the result. 
 
For many years, Prolog was by far the most popular logic programming language. 
 
The notation used is based on providing predicates with unique names: 
 
As it was described before, a predicate has an implicit meaning which is suggested by the 
predicate name and a fixed number of arguments. The arguments can be variables or 
constant values. If the arguments are constant values the predicate states that a fact is 
true. When it has constants and variables, the predicate is considered as a query or as 
part of a rule. All predicate names and variables start with an upper case letter. The 
constant values of character type must be identified with a lowercase letter.  
 
Consider a database that contains all assembling parts to produce one chair.  
 

 
 
 
Facts: ASSEMBLY(component1, component2, qty)  

ASSEMBLY(chair, leg_assembly,1) 

ASSEMBLY(chair, back_assembly,1) 

ASSEMBLY(chair, seat,1) 

ASSEMBLY(leg_assembly,leg,2) 

ASSEMBLY(leg_assembly,crossbar,1) 



ASSEMBLY(back_assembly, side_rails,2) 

ASSEMBLY(back_assembly,cross_bar,1) 

ASSEMBLY(back_assembly,back_support,3) 

 
Rules  

COMPONENT(X,Y) :- ASSEMBLY(X,Y,Qty) 

COMPONENT(X,Y) :- ASSEMBLY(X,Z,Qty), COMPONENT(Z,Y,Qty)  

SUBPART(X,Y) :- ASSEMBLY(Y,X) 

 
Queries 
     COMPONENT(back_assembly,Y)? 

     COMPONENT(back_assembly,leg)? 

 
There are three predicate names, assembly, component and subpart.  
 
Facts 
The ASSEMBLY predicate is defined via a set of facts, each of which has three 
arguments: a part name, followed by the direct subpart in which the component is 
subdivided. The quantity expresses the number of subparts needed to produce the part. 
These facts correspond to the actual data that is stored in the database, and they can be 
considered as a set of tuples in a relation ASSEMBLY with three attributes whose schema 
is: 
            ASSEMBLY(Part, Subpart, Qty).  

 
Thus, ASSEMBLY(X,Y,Z) states the fact that part X is assembled with Z subparts of Y. 
Notice the omission of the attribute names in the Prolog notation. The names are only 
represented by the position of each argument in the predicate.  
 
Rules 
The other two predicates are defined by rules. The ability to specify recursive rules is one 
of the most important contributions of this notation. A rule is of the form head :- body, 
where :- is read as if and only if. A rule has a single predicate in the left of the :- symbol 
called the head. In the right side you can have one or more predicates called the body or 
premise of the rule. When a predicate contains only constants, it is called to be ground.  
 
A rule specifies that if a particular assignment of constant values to the variables in the 
body makes all the predicates true, it also makes the head true by using the same 
assignment of constant values to variables. A rule provides us with a way of generating 
new facts that are instantiations of the head of the rule. These new facts are based on 
facts that already exist, corresponding to instantiations of predicates on the body rule. It’s 
important to remark that a comma in the body implicitly apply  the AND operator to these 
predicates.  
 
Recursive rules 
Consider the definition of COMPONENT rule, whose first argument is a part name and 
whose second argument is either a direct or an indirect subpart of the part. By indirect 
subpart we mean the subpart of a subpart down to any number of levels. Thus, 
COMPONENT(X,Y) stands for the fact that X is a superior of Y through direct or indirect 
supervision.  
The predicate component is defined using two rules. The first rule stands all the direct 
subparts for X component. The second recursive rule states that if A(X,Z) and 



COMPONENT(Z,Y) are both true, then the rule body predicates in the body side is the 
same rule as the head. In general, the rule body defines a number of premeiss such that if 
they are all true, we can deduce a conclusion that is also true. If there exists two or more 
rules with the same head, it is equivalent to the use of OR logical operator.  
 
Built-in predicates 
Prolog system contains a number of built-in predicates that the system can interpret 
directly. These typically include the equality comparison, less or equal to, more or equal to 
(=, <=, >=,>,<). This comparison operators can be treated as binary predicates.  
 
Query 
A query involves a predicate symbol with some variable arguments, and its answer is to 
deduce all the different constant combinations that, when bound ro the variables, can 
make the predicate true. For example, in first query  
 

COMPONENT(back_assembly,Y)? 

 
We are interested in all the subparts that form the back_assembly part. When a query has 
only constant symbols as arguments it returns either true or false.  
 
Prolog was at first expected to be used as a database language, but some of its features 
were not suited to database applications [Particularly, Prolog can be quite sensitive to the 
order of statements. For instance, in Prolog, the rule “If A and B are true, then C is true” 
might not be the same as the logically equivalent “If B and A are true, then C is true”] and 
this motivated the definition of an alternative database and logic programming language, 
known as Datalog. 
  



Datalog vs Prolog 
Syntactically, Datalog is very similar to Prolog. The evolution from Prolog to Datalog 
assumes going from a record-oriented language (solved one answer at a time) to a set-
oriented language (solved by computing its meaning once). This transformation was 
parallel to the evolution of database systems from the hierarchical and network data 
models to the relational data model. 
 
Datalog is a significant extensión of relational algebra and calculus. Datalog is equivalent 
to relational algebra but with an additional fixpoint operator. 
 
In prolog, the programmer is responsible for the efficiency of the queries since he can 
decide to order the rules in an optimal way, in Datalog this is not possible, because the 
user might query any predicate and it is therefore the responsibility of the system to 
determine a good execution order. 
Additionally, In contrast to Prolog: 

 In a  Datalog program the order of statements literals does not matter and 
can be stated in any order. 

 Datalog queries on finite sets are guaranteed to terminate, in Prolog, 
however, recursion can lead to non-termination 

 Datalog doesn’t allow function symbols in arguments, for example, p (1, 2) 
is admissible but  p (f (1), 2) is not 

 imposes certain stratification restrictions on the use of negation and 
recursion, 

 requires that every variable that appears in the head of a clause also 
appears in a nonarithmetic positive (i.e. not negated) literal in the body of 
the clause, 

 requires that every variable appearing in a negative literal in the body of a 
clause also appears in some positive literal in the body of the clause 

 
 
Generally, algorithms in deductive databases are divided in 2: bottom-up and top-down 
(also known as backward chaining). Bottom-up algorithms generate logical consequences 
of the database until all answers to the goal are found. On the other hand, Top-down 
algorithms start with the goal and reduce it to subgoals. 
 
Particularly for Prolog, bottom-up method is less efficient than top-down method 
because many facts that have nothing in common with the original problem are derived, 
therefore, Prolog uses top-down evaluation as a standard method of computation. 
 
In terms of efficiency, when comparing a typical Prolog top-down execution with the  
Datalog bottom-up execution, generally, the bottom-up evaluation reduces overall costs  
in terms of the number of I/O operations since bottom-ups perform on a set-oriented 
computation in contrast to tuple oriented computation applied in top-down methods. 
Additionally, bottom-up methods are able to avoid infinite loops by detecting possibly cyclic 
subgoals and therefore termination is guaranteed. 
 
The main disadvantage of bottom-up algorithms is that bottom-up algorithms are not goal-
oriented. Thus, in certain situations it computes the entire deductive closure of a program 
in order to answer a particular question, therefore the search can involve a lot of irrelevant 
computation.  
 



Datalog Particularities 
Safety 
In Datalog, two things are needed from a rule in order to avoid infinite results: 

 Every variable in the head of the rule must also be present in a non-arithmetic 
positive literal in the body 

 Every variable in a negative literal of the body must also be in some positive literal 
in the body 

 
Negation 
Using negation when dealing with  recursive queries, semantics can be unclear.  
For example:  
 

T(b). 

G(x) :- T(x) , not S(x).  

S(x) :- T(x) , not G(x). 

 
What happens when querying on G(b) or S(b)? 
 
The poblem is that there could be two minimal fixpoints for this program: If  rule 1 is 
applied first then R(b) will be in G(b) but if Rule 2 is applied first, it will be in S(b).  
 
T depends on S if some rule with T in the head contains S or (recursively) some predicate 
that depends on S, in the body. 
 
Therefore a stratification rule is needed: If T depends on not S, then S cannot depend on T 
(or not T). 
 
If a program is stratified, the tables in the program can be partitioned into strata: 
ƒ 
Stratum 0:  All database tables.   
Stratum I:  Tables defined in terms of tables in Stratum I and lower strata. 
ƒ 
If T depends on not S, S is in lower stratum than T 
 
Semantics of a stratified program, therefore is given as: 
First, compute the least fixpoint of all tables in Stratum 1.  (Since stratum 0 tables are 
already fixed.) 
Then, compute the least fixpoint of tables in Stratum 2; then the least fixpoint of tables in 
Stratum 3, and so on, stratum-by-stratum 
 
Several extensions have been made to Datalog: to support aggregate functions, to allow 
object-oriented programming, or to allow disjunctions (or) as heads of clauses. These 
extensions have significant impacts on the definition of Datalog's semantics and on the 
implementation of a corresponding Datalog interpreter. 
While any conjunctive query can be written as a datalog rule, not every datalog program 
can be written as a conjunctive query. In fact, only single rules over extensional predicate 
symbols can be easily rewritten as an equivalent conjunctive query. The problem of 
deciding whether for a given datalog program there is an equivalent nonrecursive program 
(corresponding to a positive relational algebra query, or, equivalently, a formula of positive 
existential first-order logic, or, as a special case, a conjunctive query) is known as the 
datalog boundedness problem and is undecidable 



An Alternative: Recursiveness in SQL 
Previous versions of SQL could handle recursive queries but since there was no “recursive 
statement” you could not retrieve more than one ancestry with a single query: 
 

SELECT p1.parent AS grandparent 
FROM Parent p1, Parent p2 
WHERE p1.child = p2.parent 
AND p2.child = ’Bart’ 

 
To find components that are one level deeper you would need another join and the best 
option was to join the result of query 1 with the table 2. To find all components, you would 
need as many joins as there are levels in the given instance. 
However, since SQL3 (1999) a “With” statement has been added which allows recursion. 
On a previous versión there was an alternative statement “connect by” however, this 
statement could not handle cycles. Whenever it detected a cycle, it returned an error. 
The general recursive statement is as follows: 

 
WITH Ancestor(anc, desc) AS // name given to each recursion 

((SELECT parent, child FROM Parent) // original table 
UNION 

(SELECT a1.anc, a2.desc // recursive query using recursion as from tables 
FROM Ancestor a1, Ancestor a2 

WHERE a1.desc = a2.anc)) 

SELECT anc /* select all ancestors from the recursive table, where start point is 

’Bart’ */ 
FROM Ancestor 
WHERE desc = ’Bart’;  

 
The query will start from an empty table and compute the query until a fixed point operator 
is met (in a function, a fix point is a point in which the function of x is equal to x itself. For 
example, the fixpoint of f(x)= x /2 is 0, since 0 is the only point where f(x) and x are equal. 
Similarly, in a recursive query, the query will stop when no new information is generated). 
In the first step, parents and children can be deduced from ancestor-descendant 
relationships, after the first step, in each subsequent steps we use the facts deduced in 
previous steps to get more ancestor-descendent relationships. The query will stop when 
no new facts can be proven. 
 
Additionally, some widely used database systems include ideas and algorithms developed 
for Datalog. For example, the SQL:1999 standard includes recursive queries, and the 
Magic Sets algorithm (initially developed for the faster evaluation of Datalog queries) is 
implemented in IBM's DB2.Moreover, Datalog engines are behind specialised database 
systems such as Intellidimension's database for the semantic web.  
 

  



Datalog Educational System (DES) 
DES is a deductive database system which  allows both SQL and Datalog as query 
languages. This system is targeted to educational purposes, for this reason it won’t be the 
most competitive and efficient software in the market. It is free, open-source, portable, 
supports extensions to pure Datalog in the form of stratified negation, strong constraints 
and duplicates.  In the SQL mode views are supported.  
DES system was born for the need to teach to postgraduate students deductive database 
concepts. It was first released in 2004, in a moment when no open source systems where 
on the market. It allows the following  

 Nulls and outer joins operators.  

 Duplicates and duplicate elimination.  

 Datalog and SQL queries sharing the same database.  

 Tabling-based deductive engine implementing stratified negation.  

 Source levels tracers and declarative debuggers from Datalog and SQL.  
 
At the beginning DES was developed to be used via an interactive command shell. Now a 
day more appealing environments are available. In the application developed to do this 
project Java-based IDE ACIDE was used. ACIDE supports syntax coloring, project 
management, interactive console, configurable buttons and history of transactions.  
DES is implemented on top of Prolog interpreter this means that it can be run on any OS 
supported by such prolog interpreter. There  are portable executables that can be run from 
Windows, Linux and MAC OS.  
 
Languages supported 
This platform supports both Prolog ISO and SQL:2008 ISO standards respectively. DES 
supports the following constructions: 

 Aggregates: group_by(Relation, Grouping_Variables, Condition) creates groups 
from Relation R usuing the variables (columns) in which the group by will take 
place. In condition expressions as sum(Variable) must be included. If no grouping 
is needed, expressins as sum(Relatino, Variable, Result) are also admitted.  

 Outer join operations: Nulls operations are allowed, for example rj(L,R,C) returns 
the right outer join of relations L, R that satisfy the join condition C.  

 Negation: not(Flight) computes the negation of Flight by means of negation as 
failure.  

 Duplicate Elimination: the syntaxis is distinct(Relation) which computes distinct 
tuples of Relation when duplicates are enabled.  
 

Simple example creating new tables and doing simple queries.  
 

DES> % SQL  

DES> CREATE TABLE student(name STRING, last_name STRING, age 

INT);  

DES> INSERT INTO student VALUES ('Jorge', 'Galicia',26)  

Info: 1 tuple inserted.           

DES> INSERT INTO student VALUES ('Victor','Flores',31)  

Info: 1 tuple inserted.           

DES> Select * from student  

answer(student.name:string,student.last_name:string,student.a

ge:int) -> 

{ 

answer('Jorge','Galicia',26), 



answer('Victor','Flores',31) 

} 

Info: 2 tuples computed. 

  

DES> % DATALOG  

DES> :-type(student(name:string, last_name:string, age:int))    

DES> /assert student('Juan','Ruiz',24) 

DES> /assert student('David','Beck',20) 

DES>  student(X,Y,Z)  

 

{ 

student('David','Beck',20), 

student('Jorge','Galicia',26), 

student('Juan','Ruiz',24), 

student('Victor','Flores',31) 

} 

Info: 4 tuples computed. 

 

Notice that both tables were read even if two different query languages were used. To 
introduce any new rule the command /assert is provided. The program above was directly 
introduced to the system prompt but I could also had been stored in a file and processed 
with the command /process FileName. If the program you want to consult is a Datalog file, 
use the command /consult FileName.  
 

DES> % SQL  

Select age from student where name='Victor'  

answer(student.age:int) -> 

{ 

answer(31) 

} 

Info: 1 tuple computed.     

DES> % DATALOG  

DES> student('Victor',X,Y)  

{ 

student('Victor','Flores',31) 

} 

Info: 1 tuple computed.           

 

Note that the first query returns the tuples of student projected by the age argument. To 
get a similar output relation we use a temporary view in Datalog as follows: 
 

stud(Age):-student('Victor',Last_name,Age)  

Info: Processing: 

stud(Age) :- student('Victor',Last_name,Age). 

{ 

stud(31) 

} 

Info: 1 tuple computed.   

 

In last view we defined both the projection columns and renamed the relations. In ACID, 
always when making a relation or predicate between two different tables a predicate 



dependency graph is built. A PDG is a tool to visualize dependencies among predicates. 
All its nodes are predicates and the arcs represents relationships.  
 
For last view the PDG is this one: 
 

 
 
System Architecture of DES 
Every Datalog program is stored in what is called an In-memory Prolog Database. All 
queries are processed in the Deductive Engine, which relies completely on cache memory 
to store all fixed point computations. The result is then stored in what is called an 
Extension Table (ET). To display the data results from a Datalog query it is necessary to 
inspect ET for entries matching the query after its solving.  
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SQL views and tables are stored using in this two ways: 

 Use the same logic as in prolog. Views are translated into Datalog programs and 
tables into predicates consisting only of facts. SQL queries results are returned as 
if they were Datalog programs. Results are also cached in an ET and displayed 
eventually from this table. After the query is performed all information is removed 
from the ET table.  

 Use the ODBC bridge to access external database, and taking advantage from 
their solving performance, persistency and scalability. When submitting a CREATE 
VIEW statement, this data is forwarded to the external database through the ODBC 
connection. After the operations succeeded in the other DBMS, result is returned to 
DES which does not use the Prolog DB for SQL statements anymore.  

 
What is done when asserting a new Datalog rule in DES? 
Many steps are developed when a new rule is defined in Datalog. First, a syntactic tree is 
built of all valid rules. If there are errors in this phase, an exception is raised with error 
location and source data.  
Second, if validation was correct a preprocessing stage is performing consisting of: 

 Simplification of successive applications of not(Goal) and transformation of 
predicates are needed. For instance =, < are converted in /=, >=. Finally a 
compound goal is defined as the body of a rule for a new predicate where its 
arguments are the relevant variables. Finally a compound goal is allowed, for 
example not(p(X),q(X)) is transformed in the following rule: not (q(X)) where q(X):-
p(X),q(X).  

 All aggregation predicates including compound goals are computed before the 
aggregation itself (sum, average, etc).  

 Disjunctive bodies are allowed, therefore a rule including disjunctive bodies is 
transformed. For instance p(X):-q(X);r(X) is translated into p(X):-s(X) and s(X):-q(x) 
and s(X):-r(X) are added to the program.  
 

Compile-Time Analyses 
DES runs constantly compile time analysis to detect unsafe rules. This kind of analysis 
tries to detect user-defined predicates which are always infinite. For instance, the rule 
less(X,Y):-X<Y is unsafe because the sign < can be source of infinite data: 

 

DES> less(X,Y):-X<Y  

Error: X<Y will raise a computing exception at run-time. 

Warning: This view is unsafe because of variables: [X,Y] 

 
Here is another source of usafety detected by the Compile-Time analysis. In this case, 
since variable Y is not bound, and all tuples in t/2 are considering for computing his 
outcome.  

 

DES> distinct([X],t(X,Y))  

 

Warning: This view has a singleton variable: [Y] 

Info: Processing: 

answer(X) :- distinct([X],t(X,Y)). 

Warning: Undefined predicate: [t/2] 

{ 

} 

Info: 0 tuples computed.       



How to deal with constraints? 
This are one of most important features relational databases offer, primary keys and 
foreign keys just to mention the most important ones. In deductive database systems that 
implement stable models, the use of constraints is understood as filters. In these cases, 
since a database can have several models, only the models that fulfil the constraints are 
included in the answer. The part of the answer that doesn’t meet all the requirements of 
the constraints is simply not shown as part of the answer.  
In DES this constraints are understood in a similar way as in relational database models.  
In the following example a primary key constraint is entered in the following table: 

 

%Datalog 

DES> :-type (train(from:string, to:string, duration:int))  

DES> /assert train('Bruxelles','Anvers',45)  

DES> /assert train('Anvers','Rotterdam',90)  

DES> /assert train('Bruxelles','Paris',80)  

DES> /assert train('Paris','Nice',180) 

 

DES> :-pk(train,[to,from]) //the primary key is between 

attributes to and from.  

DES> /assert train('Anvers','Rotterdam',95)  

Error: Primary key violation train.[from,to]when trying to 

insert: train(Anvers,Rotterdam,95) 

 

Let’s consider another case of constraints; in this case we will establish a constraint for 
limiting the duration from an origin to a destination.  
 
Next relation shows the time between two cities that have direct and no direct trains.  
 

DES> /assert connected(X,Y,Z):-train(X,W,Z1), 

connected(W,Y,Z2), Z is Z1+Z2  

DES> connected('Bruxelles','Nice',Z)  

{ 

  connected('Bruxelles','Nice',260) 

} 

Info: 1 tuple computed.           

DES> :-group_by(connected(X,Y,Z),[X,Y],S=sum(Z)),S>=250 // 

this constraint won’t let to add new destination time more 

than 250 minutes.  

 

Tracing and debugging 
SQL and Datalog are both declarative high abstraction languages. This means, you tell the 
machine what you would like to happen and let it figure out how to do it. When a query is 
demanded, an execution plan for it includes transformations considering data statistics to 
enhance performance. Therefore, instead of following a more imperative approach to 
tracint, we focus on a naïve declaration approach which only takes into account the output 
is correct or not.  
 
 
 
 
 



Practical Implementation of a deductive database system 
We demonstrate the implementation of deductive databases by the use of 2 practical 
applications: 
 
Application 1: Bill of Materials BoM 
In the following example it is described the BoM (Bill of Materials) required to build a 
product in a fabric. The BoM provides the manufacturer’s part name (Capital letter) and the 
quantity needed for each component. Consider a car factory, to build component A of car 
X, components B, C, D, E, F, G, H, I, J, K, L, M, N, O, P are needed in different quantities.   

 
 

Figure 1: BoM of Product A 
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   The capital letter represents the name of the part. The number in each arrow 
is the quantity of subparts that the part needs to be built. For instance, part B is formed 
with 10 subparts of D and 10 subparts of M.   

For simplicity this example considers a small amount of subparts; however a bigger 
database can be loaded to perform the same type of queries. The queries will be 
evaluated with both languages SQL and Datalog.  

 
 
 
 
 
 



 
SQL 
 
Create table 

CREATE TABLE [dbo].[PartList]( 

 [no] [int] IDENTITY(1,1) NOT NULL PRIMARY KEY CLUSTERED , 

 [Part] [varchar](8) NULL, 

 [subpart] [varchar](8) NULL, 

 [qty] [int] NULL) 

 

This query displays the following table after adding the corresponding values to the table: 
 

No Part Subpart Quantity 

1 A C 5 

2 A B 3 

3 C E 2 

4 C F 3 

5 C G 4 

6 C I 3 

7 E B 7 

8 E I 6 

9 F J 6 

10 G K 10 

11 G L 11 

12 B D 10 

13 B M 10 

14 I O 10 

15 I N 10 

16 J P 8 

17 J O 8 
 

  



Queries 
 
First Level BoM 
Which pieces are necessary to create a piece identified as C? This list will include direct 
subparts, subparts of subparts, etc. Moreover if a piece is used many times, the subparts 
will only be used in the list one time. 

 

WITH Tempview(PART, SUBPART, QTY) AS 

 ((SELECT PL.PART, PL.SUBPART, PL.QTY FROM PARTLIST PL WHERE 

 PART='C') 

 UNION ALL 

  SELECT Child.PART, Child.SUBPART, Child.QTY 

  FROM Tempview Father, PartList Child 

  WHERE Father.SUBPART=Child.PART 

  ) 

SELECT distinct PART, SUBPART, QTY FROM Tempview 

 ORDER BY PART,SUBPART, QTY 

 
The recursive SQL query displays the following table: 
 

Part Subpart Quantity 

B D 10 

B M 10 

C E 2 

C F 3 

C G 4 

C I 3 

E B 7 

E I 6 

F J 6 

G K 10 

G L 11 

I N 10 

I O 10 

J O 8 

J P 8 
 

The result can be interpreted as follows: to build part C it is necessary to have 10 parts D 
which are subparts of B, 10 parts of M which are subparts of B, 2 parts of E which are 
subparts of C… etcetera. 
  



Query 2 
Summarized BoM: In this query it is just asked how many parts of each type are needed to 
build part C? 
 

WITH TempView(PART, SUBPART, QTY) AS 

 ((SELECT PL.PART, PL.SUBPART, PL.QTY FROM PARTLIST PL WHERE 

 PART='C') 

 UNION ALL 

  SELECT Father.PART, Child.SUBPART, Child.QTY*Father.QTY 

  FROM TempView Father, PARTLIST Child 

  WHERE Father.SUBPART=Child.PART 

 ) 

SELECT distinct PART, SUBPART, SUM(QTY) AS 'TOTAL QTY USED' FROM 

TempView 

 GROUP BY PART, SUBPART 

 ORDER BY PART,SUBPART 

 
A recursive query is needed to display the correct data. Note that a multiplication is done to get the 
total number of subparts needed to build a given part. For instance, to build C, it is necessary to 
have 7*2=14 subparts B. 
 

Part Subpart 
Total Qty 

Used 

C B 14 

C D 140 

C E 2 

C F 3 

C G 4 

C I 15 

C J 18 

C K 40 

C L 44 

C M 140 

C N 150 

C O 294 

C P 144 
 

  



Query 3: Level Control 
In this query the number of levels of necessary parts is restricted. For example, if the 
question: Which are the first two levels of parts necessaries to create C part? 
 

 

WITH TempView(PLevel, PART, SUBPART, QTY) AS 

 (SELECT 1,PL.PART, PL.SUBPART, PL.QTY FROM PARTLIST PL WHERE  

 PART='C' 

 UNION ALL 

 SELECT Father.PLevel+1,Child.PART, Child.SUBPART, Child.QTY 

 FROM TempView Father, PARTLIST Child 

 WHERE Father.SUBPART=Child.PART 

 AND Father.PLevel<2 

 ) 

SELECT distinct PART,PLevel, SUBPART, QTY FROM TempView 

 

 

Part Plevel Subpart 
Total Qty 

Used 

C 1 E 2 

C 1 F 3 

C 1 G 4 

C 1 I 3 

E 2 B 7 

E 2 I 6 

F 2 J 6 

G 2 K 10 

G 2 L 11 

I 2 N 10 

I 2 O 10 
 

  



Datalog 
Similar to SQL, a table is declared to store the initial data. Each one of this data is called a 
fact. In DES to store a fact it is necessary to write the keyword /assert before writing the 
fact to store.  
 

:-type (part,[x:string, y:string, z:int]) . //Table is 

created 

/assert part(a,b,3) . 

/assert part(a,c,5) . 

/assert part(c,e,2) . 

/assert part(c,f,3) . 

/assert part(c,g,4) . 

/assert part(c,i,3) . 

/assert part(e,b,7) . 

/assert part(e,i,6) . 

/assert part(f,j,6) . 

/assert part(g,k,10) . 

/assert part(g,l,11) . 

/assert part(b,d,10) . 

/assert part(b,m,10) . 

/assert part(i,o,10) . 

/assert part(i,n,10) . 

/assert part(j,p,8) . 

/assert part(j,o,8) . 

 
Declaration of Views: in this part subparts are declared with three main rules.  
 

:-type (subpart,[x:string, y:string ]). //Table is created 

/assert subpart(X,Y):-part(X,Y,Z). 

/assert subpart(X,Y):-subpart(X,Z), subpart(Z,Y). 

 
A view subpart is declared, first rule states that every direct subpart is a subpart of piece 
X. Next subpart declaration states that every subpart of a subpart is a part of the original 
part desired. This is called a bottom up rule since  it generates logical consequences of 
the database until all answers to the goal are found.  
 
  



Query 1: How many subparts does each part have? 
This is a simple query in Datalog whose syntax is as follows: 

 

group_by(subpart(X,Y),[X],Z=count) 

 
The result of last query is: 

 

answer(X,Z) :- 

     group_by(subpart(X,Y),[1],[X],Z=count). 

{ 

answer(a,14), 

answer(b,2), 

answer(c,13), 

answer(e,6), 

answer(f,3), 

answer(g,2), 

answer(i,2), 

answer(j,2) 

} 

Info: 8 tuples computed.   

 
Query 2: How many pieces are needed to build A or B parts.  

:-type (part_n,[a:string, b:string, c:int ]) //Table is 

created 

/assert part_n(X,W,Z):-part(X,W,Z) 

/assert part_n(X,W,Z):-part_n(X,Y,Z1),part_n(Y,W,Z2),Z is 

Z1*Z2 

group_by(part_n(a,X,Y),[X],Z=sum(Y)) 

 
The result of last query is: 

 

Info: Processing: 

answer(X,Z) :- 

group_by(part_n(a,X,Y),[2],[X],Z=sum(Y)). 

{ 

answer(b,73), 

answer(c,5), 

answer(d,730), 

answer(e,10), 

answer(f,15), 

answer(g,20), 

answer(i,75), 

answer(m,730) 

} 

Info: 8 tuples computed.    

First rule states that all direct subparts of element X must be included in the table. The 
second rule states that indirect subparts of element X must be included in the table. Note 
that the quantity is the multiplication of the quantity needed to produce the direct and 
indirect subparts.  
 
 



Primary Keys in Datalog 
Suppose that you want the combination X,Y in part(X,Y,Z) to be unique. It is possible to 
add this rule in DES using the following syntax: 
 

:-pk(part,[x,y]) 

 
If we try to insert value part(a,b,2) into the table, the primary key constraint doesn’t let to 
insert the value.  
 

/assert part(a,b,2) 

Error: Primary key violation part.[x,y] 

     when trying to insert: part(a,b,2) 

 
Nullability Constraint 
Columns can be imposed to contain a concrete value rather than null. In this case the 
constraint is as follows: 
 

:-nn(part,[x]) 

 
If we want to insert a null value in x column the constraint won’t let us insert the value.  
Any of the constraints can be dropped using the following statement: 
 

/drop_ic name_constraint 

 
  



Predicate dependency graph 
It is possible to see the predicate dependency graph of a relation using  the PDG window 
in DES. In next figure the PDG for last relations is shown: 

 

 

 
Top to down and bottom up expressions evaluation 
DES has an option where run time can be displayed whenever the console launches a 
query. This option will be used to evaluate the following expressions: 
 
Expression 1: 

:-type (subpart,[x:string, y:string ]). 

/assert subpart(X,Y):-part(X,Y,Z). 

/assert subpart(X,Y):-subpart(X,Z), subpart(Z,Y). 

 
Expression 2: 

:-type (subpart2,[x:string, y:string ]). 

/assert subpart2(X,Y):-part(X,Y,Z). 

/assert subpart2(X,Y):-part(X,Z,W), subpart2(Z,Y). 

 
Both expressions display the same answer: the subparts of a determined part X. The first 
fact will be evaluated using the bottom up approach. Expression two uses top-down  
approach.  
  



 

Query 
Time in milliseconds 

Expression 1 Expression 2 

subpart(X,Y)/subpart2(X,Y) 

 
44 22 

subpart(a,X)/subpart2(a,X) 

 
53 19 

group_by(subpart(X,Y),[X],Z=count)/ 
group_by(subpart2(X,Y),[X],Z=count) 

35 30 

 

For this example, using DES system it is much faster to evaluate expressions using top-

down approach.  

  



Application 2: Airline System 

Let’s consider the following example, which states flight links that a company offers to their 

clients (flight/3 for origin, destination and duration) between airports. The company has 

direct flights to many destinations; moreover the company offers flights with connections to 

many other destinations. All flight travel of the company are stored in the flight_travel table.  

:-type(flight,[origin:string, 

destination:string,duration:int]). //Table flight is created 

:-pk(flight,[origin, destination]) 

/assert flight('guatemala','mexico',90). 

/assert flight('guatemala','panama',120). 

/assert flight('guatemala','costa rica',70). 

/assert flight('mexico','amsterdam',600). 

/assert flight('mexico','frankfurt',660). 

/assert flight('mexico','madrid',540). 

/assert flight('panama','dubai',1020). 

/assert flight('panama','buenos aires',180). 

/assert flight('panama','paris',550). 

/assert flight('mexico','panama',150). 

/assert flight('madrid','paris',120). 

/assert flight('paris','london',60). 

/assert flight('paris','bruxelles',60). 

/assert flight('paris','amsterdam',110). 

/assert flight('frankfurt','berlin',45). 

/assert flight('frankfurt','rome',120). 

/assert flight('frankfurt','oslo',130). 

/assert flight('frankfurt','moscou',240). 

/assert flight('guatemala','los angeles',250). 

/assert flight('los angeles','tokio',840). 

/assert flight('dubai','tokio',300). 

:-type (flight_travel,[origin: string, destination: string,  

duration : int ]). //Create table flight_travel 

The table flight travel should include direct and connection flights to different cities. The 

total flight time of a flight_travel must be the sum of times between two or more direct 

flights involving a connection. It is possible that one flight option is not available, this is 

modeled with the not closed statements. It will be clarified in the examples.  

/assert flight_travel(X,Y,Z):- flight(X,Y,Z), not closed(X), 

not closed(Y). 

/assert flight_travel(X,Y,Z):-

flight(X,W,Z1),flight_travel(W,Y,Z2),not closed (X), not 

closed (Y),not closed (W),Z is Z1+Z2. 

 



Predicate dependency graph 

 

Query 1 
List all destinations from Guatemala 
 

flight_travel('guatemala',X,Y). 

{ 

flight_travel(guatemala,amsterdam,690), 

flight_travel(guatemala,amsterdam,780), 

flight_travel(guatemala,amsterdam,860), 

flight_travel(guatemala,amsterdam,900), 

flight_travel(guatemala,berlin,795), 

flight_travel(guatemala,bruxelles,730), 

flight_travel(guatemala,bruxelles,810), 

flight_travel(guatemala,bruxelles,850), 

flight_travel(guatemala,'buenos aires',300), 

flight_travel(guatemala,'buenos aires',420), 

flight_travel(guatemala,'costa rica',70), 

flight_travel(guatemala,dubai,1140), 

flight_travel(guatemala,dubai,1260), 

flight_travel(guatemala,frankfurt,750), 

flight_travel(guatemala,london,730), 

flight_travel(guatemala,london,810), 

flight_travel(guatemala,london,850), 

flight_travel(guatemala,'los angeles',250), 

flight_travel(guatemala,madrid,630), 

flight_travel(guatemala,mexico,90), 

flight_travel(guatemala,moscou,990), 

flight_travel(guatemala,oslo,880), 

flight_travel(guatemala,panama,120), 

flight_travel(guatemala,panama,240), 

flight_travel(guatemala,paris,670), 

flight_travel(guatemala,paris,750), 

flight_travel(guatemala,paris,790), 

flight_travel(guatemala,rome,870), 

flight_travel(guatemala,tokio,1090), 

flight_travel(guatemala,tokio,1440), 

flight_travel(guatemala,tokio,1560) 



} 

Info: 31 tuples computed.   

 

Query 2 
Notice that the query throws all possible travels from Guatemala to any destination. If we 
want to show only one option having the minimum time to a destination the query is as 
follows: 
 

group_by(flight_travel('guatemala',X,Y),[X],Z=min(Y)) 

{ 

answer(amsterdam,690), 

answer('buenos aires',300), 

answer('costa rica',70), 

answer(dubai,1140), 

answer(frankfurt,750), 

answer('los angeles',250), 

answer(madrid,630), 

answer(mexico,90), 

answer(panama,120), 

answer(paris,670), 

answer(tokio,1090) 

} 

Info: 11 tuples computed.           

 

Deductive queries 
Assumptions can be used in combination with any of the features of DES. Hypothetical 
queries are common need in several scenarios, related mainly with business intelligence 
applications. These are called "what if" queries. In last example we defined flight and 
flight_travel relations using the not closed arguments.  
 
Query 3 
Consider that panama airport is closed because there is a big storm. Which are the 
possible flights going from Guatemala? 

 

closed('panama')=>group_by(flight_travel('guatemala',X,Y),[X]

,Z=min(Y))   

{ 

answer(amsterdam,690), 

answer('costa rica',70), 

answer(frankfurt,750), 

answer('los angeles',250), 

answer(madrid,630), 

answer(mexico,90), 

answer(tokio,1090) 

} 

Info: 7 tuples computed.    

 
Note that all flights going from Panama were excluded from the list.  
 



Query 4 
Give all possible cities whose possible destination is Tokio.  

 

group_by(flight_travel(X,'tokio',Y),[X],Z=min(Y)) 

{ 

answer(dubai,300), 

answer(guatemala,1090), 

answer('los angeles',840), 

answer(mexico,1470), 

answer(panama,1320) 

} 

Info: 5 tuples computed.   

 

Query 5 
Give all possible cities whose possible destination is Tokio considering that Paris and 
Mexico airports are closed.  

 

closed('paris') /\ closed('mexico') => 

group_by(flight_travel(X,'tokio',Y),[X],Z=min(Y)) 

{ 

answer(dubai,300), 

answer(guatemala,1090), 

answer('los angeles',840), 

answer(panama,1320) 

} 

Info: 4 tuples computed.   

 
If the city had been Brussels the result would have been empty since to go to Brussels the 
only city of departure is Paris.  
 

closed('paris') /\closed('mexico')=>flight_travel(X,'bruxelles',Z) 

answer(X,Z) :- 

    closed(paris) 

    /\ 

    closed(mexico) 

    => 

    flight_travel(X,bruxelles,Z). 

{ 

} 

Info: 0 tuples computed.          

 

Charging a Database to DES 
This section includes descriptions about the connection to relational database system via 
ODBC connections, persistence and safety and compatibility. DES provides support for 
connections to relational database management systems in order to provide data source 
for relations. This means that a relation defined in a RDBMS as a view or table is allowed 
as any other relation defined via a predicate in the deductive database.  
Almost any relational database can be accessed from DES using an ODBC connection. 
ODBC drivers are usually bundled with OS platforms as Windows OS’s.  
To access a RDB in DES, first open the connection with the following command where test 
is the name of a previously created ODBC connection to a database.  



/open_db deductivedb 

 
Next one can ask for the database schema (metadata) with the command: 

 

/db_schema 

//Result 

Info: Database 'deductivedb' 

Info: Table(s): 

* Flight(Origin:nchar(20),Destination:nchar(20),Time:float(8)) 

* Part(part:nchar(20),subpart:nchar(20),quantity:int(4)) 

* PartList(no:int 

identity(4),Part:varchar(8),subpart:varchar(8),qty:int(4)) 

 * dual(void:int(4)) 

Info: View(s): 

 * RPL(Part:varchar(8),Subpart:varchar(8),Quantity:int(4)) 

Info: No integrity constraints. 

 

 

 
 

 

All of these databases can be accessed and queried from DES as if they were local.  
 

flight(X,Y,Z) 

{ 

flight(dubai,tokio,300), 

flight(frankfurt,berlin,45), 

flight(frankfurt,moscou,240), 

flight(frankfurt,oslo,130), 

flight(frankfurt,rome,120), 

flight(guatemala,'costa rica',70), 

flight(guatemala,'los angeles',250), 

flight(guatemala,mexico,90), 

flight(guatemala,panama,120), 



flight('los angeles',tokio,840), 

flight(madrid,paris,120), 

flight(mexico,amsterdam,600), 

flight(mexico,frankfurt,660), 

flight(mexico,madrid,540), 

flight(mexico,panama,150), 

flight(panama,'buenos aires',180), 

flight(panama,dubai,1020), 

flight(panama,paris,550), 

flight(paris,amsterdam,110), 

flight(paris,bruxelles,60), 

flight(paris,london,60) 

} 

Info: 21 tuples computed. 

 

All queries where developed with small amount of data just for illustration purposes. 
However if more data want to be added to the model, any database can be charged and 
then queried utilizing the same principles. Consider that DES was developed to have a 
simple, interactive, multiplatform and affordable system (not necessarily efficient) for 
students, so that they can get the fundamental concepts behind deductive database with 
Relational Algebra, Datalog and SQL. This system is not targeted as a complete deductive 
database, so that it does not provide transactions, security and other features present in 
current database systems.  
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