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Chapter 1

Introduction

During the rise of the World Wide Web, new problems for the storage of data appeared. Indeed a few
years ago a thousand of users for an application was a huge number and we were not expected to have
more than a few thousand . But now billions and billions of people are connected through the Internet
and the number of data to store has increased significantly,this problem is related to Big Data problem.

To manage more easily this huge amount of data, it becomes a necessity to structure the data stored,
that is why databases has been created [1].
This picture (figure 1.1) shows the problem we would meet today if we manage data without structured
model 1.

Figure 1.1: Comparison between the size taken by structured and unstructured data with the Big
Data problem. Unstructured data takes more space if they are stored

Nowadays new paradigm of database were developed to improve the web access of data like JSON
and XML pages. These type of database are called documents oriented databases.

Through this report we are going to give some informations about document oriented databases
and especially what is it and what are the main differences between this type of database and a more
traditional relational databases.
Finally we will present an implementation of document databases and how it should be implemented.

1Picture found on the following website : http://www.couchbase.com/nosql-resources/what-is-no-sql
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Chapter 2

State of the art

2.1 What is a document database

A document database is one type of modeling data in the NoSQL(Not only SQL) family databases
that we are going to present briefly in the next subsection.
This model is based on the paradigm key-value. In our case the value is a document of type JSON or
XML. So with one key we can get a structured set of information (see the Figure 2.1 and bibliography
number [10] 1) and to do the same operation in the relational model we need to do many join that
reduce the performance.
In other word a document database takes the data you want to store and aggregates it into documents
using, for instance, the JSON format. So in a single document we can have the same information that
is usually stored in many table in a relational model as we can see in the figure 2.2 2.

Figure 2.1: A document oriented database with the key and its value
1Example of document database taken on the following website: https://www.thoughtworks.com/insights/blog/

nosql-databases-overview
2Picture taken on the following website: http://www.couchbase.com/nosql-resources/what-is-no-sql
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Figure 2.2: Document-oriented Database: How can be data from relational model stored in document-
oriented model (here it’s in a JSON format). This approach provides better data model flexibility,
greater efficiently in distributing documents, and superior read and write performance.

2.1.1 NoSQL databases

This acronyme was coined in 1998 and the main idea behind NoSQL is to try to make databases model
without using SQL and tabular relations like it’s the case in the relational model [2].These two types
of models are very different not only in their structure but also in their way to access the data.

Indeed, the relational model takes data and separates it into many interrelated tables that contain
rows and columns. Tables reference each other through foreign keys that are stored in columns. And
with this structure when we looking up for data, the desired information has to be collected from
many tables and combined before it can be provided to the application. On the other hand when we
have to write data, the writing action has to be performed on many tables.

There are a lot of different NoSQL databases [3] (other than document oriented) and each one of
them has a different structure for example [5]:

• Graph stores that are designed for data whose relations can be represented as a graph (elements
interconnected with an undetermined number of relations between them). An example of the
kind of data that can be represented by this kind of model could be social relations (as in Figure
2.3 3), public transport links, road maps or network topologies.

3Graph example taken on https://www.thoughtworks.com/insights/blog/nosql-databases-overview
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Figure 2.3: Social relations represented by a graph database

• Key-value stores are very simple because it is basically based on a dictionary (map) where the
data are represented by a pair key/value.

• Wide-column stores is similar to relation table except that in a NoSQL database the number of
column are dynamic in contrast to relational table where column are fixed on the creation of
the schema. So in a wide-column stores database when we want to add a data the number of
column may vary , it avoid to return column with NULL value.

• Document store can look similar to wide column in the sense that they share the schema-less
approach but the implementation is different. In a document database, each record is called a
document and is stored separately.

2.1.2 Why choose NoSQL?

There are many argument we can provide to support the choice of choosing NoSQL [4].

• Performance
For writing and reading to the database, a document store is faster than a traditional SQL
database. For example, CouchDB can be 20 times faster than Postgres [6]
This is due to the simpler nature of document, the database just needs to store directly the
document and for a read just have to make a look-up for the data while for a relational query,
it needs to decode the query and look in all the required table and aggregate the result. Thus,
the simplicity of document is a real advantage for performance oriented data storage.

• More Flexible Data Model due to schema-less data model.
A document database doesn’t use a fixed schema, instead it can store any document it needs
created at runtime. This allows the database to be modular and flexible, the application can
store everything it needs and in case the business logic of a program change, the database
doesn’t need any additional change. Every document contains it own schema and a collection
of document can have different schema. A single database can also work for multiple kind of
application because all the data logic are on the client side.

• Better scalability than a relational model
A lot of NoSQL database are designed with scalability and large amount of access in mind and
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document store is no exception. Due to their simple nature, they allow to easily increase the
database and split it between different server or node without having to increase the power of
the server, this allows the database to run on simpler hardware for the same performance and
to improve the reliability.

2.1.3 Performance overview of different databases

Before going further in this report let us define some notions [7].

Definition 1. ”Database performance can be defined as the optimization of resource use to increase
throughput and minimize contention, enabling the largest possible workload to be processed.”

Definition 2. Scalability [8] is the ability of a database to grow to very large size while supporting
an ever-increasing rate of transactions per second and to maintain its functionality and performance
in case of high demand.

Definition 3. Flexibility is the ability for the solution to adapt to possible or future changes in its
requirements with minimal modification of the system.

Definition 4. Complexity is degree to which a system or component has a design or implementation
that is difficult to understand and verify.

Definition 5. Functionality is the sum of the different operations and abilities that a software can
perform.

Now we have introduced some definition and presented some stores let us compare them [3]:

Data Model Performance Scalability Flexibility Complexity Functionality
Key-Value high high high none variable (none)
Column Oriented high high moderate low minimal
Graph variable variable high high graph theory 4

Relational variable variable low moderate relational algebra 5

Document Oriented high variable (high) high low variable (low)

Figure 2.4: Comparison of a few Data model based on five criteria

2.1.4 Why a document store

A document store is recommended when the application doesn’t need the complexity of SQL and only
store simple data without a lot of relation. It’s also a good system when the application needs the
speed without compromising reliability and scalability.

4The functionality of the graph database is limited to our knowledge of graph theory
5The functionality are defined by the relational algebra
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2.2 How does it work

2.2.1 Data storage

• XML based
In a document store, XML based data store uses XML files to store the data on a disk, a
document.
Example of XML document:6

<note>
<to>Tove</to>
<from>Jani </from>
<heading>Reminder</heading>
<body>

Don ’ t f o r g e t me t h i s weekend !
</body>

</note>

• JSON based
In this case, the database use JSON files instead of XML. These kind of storage are better when
the output needs to be usable for a web application or for programming object storage because
JSON tools are included in all modern web browser and it can also be used to represent an
object from every object oriented programming language.
Exemple of JSON file:

{
” docs ” :
[
{

” i d ” : ”562 e35c f7 f2d7ead13ac9188 ” ,
” index ” : 0 ,
” age ” : 40 ,
” eyeColor ” : ” blue ” ,
”name ” : ” Reeves Pru i t t ” ,
” gender ” : ”male ” ,
” whishes ” : {

” f r u i t s ” : ”Avocado ” ,
”number ” : 195

}
} ,
{

” i d ” : ”562 e35c f51a04e5226 fa09e7 ” ,
” index ” : 1 ,
” age ” : 20 ,
” eyeColor ” : ”brown ” ,

6From the w3c XML example: http://www.w3schools.com/xml/note.xml
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”name ” : ”Dean Blankenship ” ,
” gender ” : ”male ” ,
” whishes ” : {

” f r u i t s ” : ”Melon ” ,
”number ” : 337

}
}

}

• Other
Some document store use other type of data storage, like MongoDB which works like a JSON
based storage but transform its document to a binary format before writing to the disk to improve
performance and reduce storage size [9]. CouchDB is a JSON database that use a B-tree for
storage [11] [12].

2.2.2 Data querying and the map/reduce paradigm

For the retrieving of data, a document store is totally different than a relational database. It doesn’t
offer the power and complexity of those but still has a few tools that can be used by developer to
retrieve specific set of data. One of those tools is the map/reduce paradigm. It’s based around a two
part operation and is optimized for taking advantage of parallel programming and multiple cluster
database.

The map function will be run on each document and will return all the document or a subset of
the document. This approach allows the query to be run simultaneously on multiple process and on
multiple node of the database. All the result are grouped in a temporary data set.

After the map operation, the database will shuffle the data, it rearrange them by pregrouping them
in a few data set and then will call the reduce method. The reduction of the data is an operation
that will combine the data using a user specified rule and output the result. A reduction is done on
each data set produced by the mapping so this operation is also done in parallel. After that an other
reduction can also be done on the result if needed. 7.

The final result of the mapping and reduction will be stored in a special document called a view.
A view can be used directly after a query like in a relational database or be kept in memory for a
specified amount of time. This allow the database to precompute heavy query that don’t need the
absolute up to date resource and cache or keep a request that is often called. this allows to reduce the
amount of work on the server by trading the consistency of the data.

7Map/reduce in CouchDB http://docs.couchdb.org/en/1.6.1/intro/tour.html#
running-a-query-using-mapreduce
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Figure 2.5: Visualisation of map/reduce operation from: http://docs.mon-
godb.org/manual/core/aggregation-introduction/

It needs to be specified that those two functions are loosely defined in the document database world
so the implementation can be really different between two database implementation. For example, in
CouchDB, the map function is responsible for deciding how to group the input and in RavenDB, it
falls on the reduce function [13].

2.2.3 Inserting and Modifying

The insertion and modification details depends on the database and the file format choosen, so here we
will explain specifically the implementation details of CouchDB query. On CouchDB, every deletion,
insertion and modification are always an insertion on the database, no data is really deleted unless the
user choose to remove a node of the storage Btree. This allow the database to maintain an history of
all the modification done.

2.2.4 ACID

ACID (Atomicity, Consistency, Isolation, Durability), is a set of properties for a database.

• Atomicity
In an atomic database, if a part of a transaction fails, the database will be left unchanged.

• Consistency
Consistency ensure that every new state that the database takes is a valid states according to
the design rules.

• Isolation
This ensure that for parallel request on the database will left the data in the same states that it
would have been if the requests were sequential.
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• Durability
The durability properties ensure that once a request has been made, it will remain even in the
case of a power surge.

In the document store paradigm, the ACID properties are not granted and these some document
store can be ACID compliant but not all. This is an important fact to consider when designing and
developing a document store application.
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2.3 The different solutions

2.3.1 Open source solution

• CouchDB
Couch DB is a document store developed in 2005. It’s now maintained by Apache since 2008.
Couch use JSON file for storage and queries. It’s mainly optimized for scalability and reliability.
Couch is ACID compliant8.

• MongoDB
Mongo is the other principal open source database and is mainly optimized for speed and can be
more than 25 times faster than Couch DB but doesn’t offer the same reliability. This database
is not ACID compliant because it only offer atomicity on each document and not on transaction
level.

2.3.2 Proprietary solution

• Lotus Note
Note (now IBM Note) is a client-server software that allow corporate management and col-
laboratives function between employees with mails, calendar, to-do list and others. The core
component of the server is a document database, the first one tho be developed. Due to it’s
proprietary nature, not a lot is known about its implementation details.

• DocumentDB
Document DB is a proprietary database developed by Microsoft that runs on their cloud plat-
form. It’s a JSON store.

• SimpleDB
SimpleDB is the Amazon developed concurrent of Document DB. It’s nearly equivalent but runs
on the Amazon server.

8Couch DB properties: https://wiki.apache.org/couchdb/Technical\%20Overview
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2.4 CouchDB

This section will cover CouchDB and it’s advantage in an real world application and how to use it. It
wont cover the technical part of the storage and everything that was already explained in the previous
section.

2.4.1 Why CouchDB

Couch DB is a Document DB specifically optimized for reliability and not speed. But it’s still faster
than the classical SQL database. It allows easy concurrency management and version control. Its
main advantage is the scalability; a new server or database can be added to increase the storage or
the compute power without any downtime or difference for the applications.

2.4.2 The storage

CouchDB use a Btree in which each document is stored in a block. B-Tree is a sorted data structure
that allows for searching, insertions and deletion in logarithmic time. Research in it is O(log N) time,
and the range is O(log N + K) In this database, nothing is deleted, this allows a revision history. This
means that a deleted document will only be marked as deleted but still be on the disk. The database
administrator needs to manually remove old document to avoid too much disk usage. To do so, he
creates a new empty node and copy in it only the last document revision and replace the old node
by the new. This allows the administrator to choose which version to keep but require more work to
manage the DB.

Figure 2.6: Btree storage [14]

2.4.3 concurrency

CouchDB allows better management of concurrency access than a SQL database. Due to the self
containing nature of document, a change of data only happens in a single document. This allows
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multiple access even when each access will modify the data without locking all the database like in
SQL databases. A read access will just receive the version that is available, sometimes not the last
one as seen on the figure 2.7. This allows CouchDB to run effectively under high load.

Figure 2.7: Concurrency in a document store: http://guide.couchdb.org/draft/consistency.html#fig-
ure/3

2.4.4 Managing the database

• Management center
Couch DB can be managed from HTTP-based REST API or from a web interface called Futon.
This section will be about the HTTP request that create and manage a simple database. We
suppose that a CouchDB server is installed and run locally. After a command, CouchDB will
return a JSON answer.
The Futon web interface allows every command possible in a user friendly way and is ideal for
simple management command.

Figure 2.8: Futon interface

• Creating a database
To create a new database, send a PUT request using curl for example:
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curl −X PUT http://localhost:5984/new database. The name of the database can only contain
lowercase, number and/or underscore. the answer should be:

{”ok ” : t rue }

• Removing a database
The request: curl −X DELETE http : //localhost : 5984/database name
The answer:

{”ok ” : t rue }

• Adding data
To add documents to the db use the following command and replacing the JSONFile with the
file containing the documents in the correct JSON format.
curl −H ”Content − Type : application/json” −d @JSONFile.json −vX POST http :
//127.0.0.1 : 5984/databasename/ bulk docs. The answer will be the list of the id of the docu-
ments added:

[ {
”ok ” : true ,
” id ” :”5631130 c01d2d7c497622e3f ” ,
” rev ”:”1 −5 a0872dd28f5310aa61f2e6 f8a1baf06 ”

} ]

• Updating data
The modification of data in CouchDB is always done by adding a new document with the same
id but a different revision number. (See ”Adding data” above).

• Removing Data
They are multiple way to remove a document from the database; The first one involve adding a
new document with the same name like in a modification but with the special field : ” deleted” :
true in the JSON document. dz the second one invoke the HTTP DELETE request to remove
it. The last one is putting the document in the ” purge” API. They are not the same, the first
one will preserve all the field in the document but it will still be considered removed. The HTTP
delete request will remove all the field in the document but it will still be there. Finaly the last
one is not the correct one because the document will still be on disk but will be inaccessible [15].

• Versioning
If you want to change a document in CouchDB,you load the full document out of CouchDB,
make your changes in the JSON and save the entire new version of that document back into
CouchDB. This means that every change are written on the disk in a new document and that
every version of the document can be retrieved unless the database administrator cleaned the
node of the document. To see them, send the revision number needed for the document in the
HTTP request. Sometimes two document can be modified at the same time and will both be
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marked as the newest one. When it happens, the database will detect it and notify with the
conflict flag, mark one of them as the new one and keep the other as a previous revision. It is

up to the application that created the conflict to solve it.

• Replication
In CouchDB, the replication between database is made incrementally to reduce bandwidth and
processing time allocated to the replication. Replication is necessary to keep data consistency
between two node of the DB or with the backup server. A database will trigger a replication
between two server. Then the servers compare their data then the first one send the change. A
replication is always uni-directionnal but a server that received change can also start a replication.
This process can be propagated between multiple server (see figure 2.9

Figure 2.9: Replication in CouchDB: http://docs.couchdb.org/en/1.6.1/ images/intro-consistency-04.png

A replication can be local or remote. A local replication is between two databases running on
the same CouchDB server. This is useful for local backup, or snapshots. To replicate locally use
the following command:

c u r l −X PUT http : // l o c a l h o s t :5984/ r e p l i c a t e −d
’ {” source ” : ” sourceDB ” ,” t a r g e t ” : ” destDB”} ’

A remote replication is when the target is a database running on another server. This is useful for
data consistency between multiple instance of a server. To replicate remotely use the following
command:

c u r l −X PUT http : // l o c a l h o s t :5984/ r e p l i c a t e −d
’ {” source ” : ” sourceDB ” ,” t a r g e t ” : ” http :// t a r g e t a d r e s s . com/destDB”} ’
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A remote duplication can also have a local destination but a remote source, this is useful for
data consistency because a replication is one sided.
Both source and destination can also be remote.

2.4.5 Querying the database

Couch DB use the map reduce paradigm as seen before. Here is an example of a map function that
can be used on the data loaded:

func t i on ( doc ){
i f ( doc . type == ’ buyer ’ && doc . wishes [ ’ f r u i t s ’ ] . l enght > 0){

emit ( doc . gender , 1 ) ;
}

}

Here is an example of the corresponding reduce:

f unc t i on ( keys , va lue s ){
return sum( va lue s ) ;

}

This is a very simple example that just query the gender of all the potential buyer of fruits and
then compute the sum for each gender. Incremental Computation of Map Results

2.4.6 Specificity of Couch DB

• Design Document
Design documents are a special type of CouchDB document that contains application code. They
are created by adding design/ at the beginning of their ID. They act like other document for the
database but will contains special field that will contains map/reduce code for the corresponding
data or instruction on how to transform the data into a HTML or XML view. They can also
include other file like for example CSS or image as attachment. The design document paradigm
allows web-based application to be deployed and updated by a simple database replication with
an easy rollback in case of problem. It also force the developer to use safe data transformation
by using validated data request. The Design document API are complex and new field are added
each major CouchDB update so this section is a simple overview and not a complete guide.

{
” i d ” : ” de s i gn /example ” ,
” views ” : {

” foo ” : {
”map” : ” func t i on ( doc ){ emit ( doc . id , doc . r ev )} ”

}
}

}

Figure 2.10: A simple design document: http://guide.couchdb.org/draft/design.html#basic
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• Validation
Validation is a tool that allows the database to only accept correctly formed document. When
the application will insert a erroneous document, CouchDB will return a error code 403 and
the database won’t be modified. To implements these validation, the user has to add a special
function to the corresponding design document; the validate doc update Javascript function that
will be called for each document added or updated. A design document can contains only one
validate function but the database can contains multiple design documents with each their own
validation. In this case, each function will be called on each document in an unspecified order
(it can change for each request).
This function accepts 3 arguments;

f unc t i on (newDoc , savedDoc , userCtx ){
. . .

}

– newDoc is the document being added or the new version of the document.
– savedDoc is the last revision of the document currently in the database in case it exists.
– userCtx is the user that made the request and their roles

The body of this function can include code that will make some test and return an exception if
they fail. A validate function can never modify the documents on which they work, they needs
to only read them.
the two errors that the validate doc update function can throw are;

– throw({ unauthor ized : ’ Error message here . ’ } ) ;

thrown when a user is not authorized to make the change but may re-authenticate.

– throw({ f o rb idden : ’ Error message here . ’ } ) ;

thrown when the change is not allowed.

See figure 2.11 below for an example of a validate function.
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f unc t i on (newDoc , oldDoc , userCtx ) {
i f (newDoc . d e l e t e d === true ) {

// a l l ow d e l e t e s by admins and matching user s
// wi thout check ing the o ther f i e l d s
i f ( ( userCtx . r o l e s . indexOf ( ’ admin ’ ) !== −1) | |

( userCtx . name == oldDoc . name ) ) {
return ;

} else {
throw({ f o rb idden :

’ Only admins may d e l e t e other user docs . ’ } ) ;
}

}

i f ( ( oldDoc && oldDoc . type !== ’ user ’ ) | | newDoc . type !== ’ user ’ ) {
throw({ f o rb idden : ’ doc . type must be user ’ } ) ;

} // we only a l l ow user docs f o r now

i f ( ! newDoc . name) {
throw({ f o rb idden : ’ doc . name i s r equ i r ed ’ } ) ;

}

i f ( ! newDoc . r o l e s ) {
throw({ f o rb idden : ’ doc . r o l e s must e x i s t ’ } ) ;

}

i f ( ! i sArray (newDoc . r o l e s ) ) {
throw({ f o rb idden : ’ doc . r o l e s must be an array ’ } ) ;

}

i f (newDoc . i d !== ( ’ org . couchdb . user : ’ + newDoc . name ) ) {
throw({

f o rb idden : ’Doc ID must be o f the form org . couchdb . user : name ’
} ) ;

}

i f ( oldDoc ) { // v a l i d a t e a l l updates
i f ( oldDoc . name !== newDoc . name) {

throw({ f o rb idden : ’ Usernames can not be changed . ’ } ) ;
}

}

i f (newDoc . password sha && ! newDoc . s a l t ) {
throw({

f o rb idden : ’ Users with password sha must have a s a l t . ’ +
’ See / u t i l s / s c r i p t /couch . j s f o r example code . ’

} ) ;
}

}

Figure 2.11: A simple validate function: http://docs.couchdb.org/en/1.6.1/couchapp/ddocs.html
18



Chapter 3

Implementation

3.1 Implementation details

The following chapter will present briefly a test application made in Java using CouchDB to test and
display all the specificity of a document database.
The application is a simple graphical user interface that manage display and manage a simple database.
This database contains information about a Fruits and vegetables store and their clients. This appli-
cation is coded in Java using the MVC principle and the lightcouch framework for the communication
to the database. This framework is a simple wrapper over the HTTP request.

When the application launch, it will first display a pop up window that ask information about
the database; the server, the name of the database , the password and the username. It will then
store them in a Database object and reuse them for every request (see figure 3.2). Contrary to a SQL
database, there is no need to open a connection , the server is not contacted until the first request.

Figure 3.1: Connection Screen
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CouchDbProperties p r o p e r t i e s = new CouchDbProperties (
name ,
true ,
” http ” ,
host ,
port ,
username ,
password

) ;
CouchDbClient db = new CouchDbClient ( p r o p e r t i e s ) ;

Figure 3.2: Database connection object

after the connection, the main window will display a list of all the document in the database and
basic information about the query that retrieved them.

Figure 3.3: View window

It use an HTTP request to retrieve all the document and their value ( see figure 3.4 ) The first line
send a request to the view called all docs that CouchDB create by default for all database and that
contains a list of all the documents in it. the parameter .includeDocs(true) specifies that the request
needs the data of every documents and not just the keys.

L i s t <JsonObject> a l lDocs = DBManager . getDb ( )
. view ( ” a l l d o c s ” )
. inc ludeDocs ( true )
. query ( JsonObject . class ) ;

System . out . p r i n t l n ( a l lDocs ) ;

Figure 3.4: Retrieve all the doc using Java
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When a row is selected, more informations is displayed on the left of the application and allows
deletion and edit of this specific document. The change are made by a simple request and the server
answer ”Ok” or with the new revision in case of an edit.

An other tab allows the user to select a predefined list of request. Those request use the principle
of design document and are self contained in the database. Or if the request is not yet in the database,
the user can write it and execute it in the lower part of this tab.
The map/reduce request must be written in Javascript with the reduce function and the map function
separated in their corresponding area.
The application will then send them to the database by creating a new design document, putting the
map reduce in it and adding it to the database. The application then call it from the design document
and then when the result is return, it delete this design document.

This is due to the design of CouchDB that only allows map/reduce to be run from within the
database and not from a simple request. It’s a major design flaw in the application because that mean
that every time the user will send a new request it will increase the size of the database due to the
nature of the storage of CouchDB.
In a real world application, all the map/reduce will be already in the database. That allows the
application to always use the last version without updating it and reducing the bandwidth by not
needing to transmit all the request each time.

Figure 3.5: Request window

The last tab allows custom request to be sent to the database by specifying manually the param-
eters. The application will then append the user input with the address of the database and send it
to CouchDB; htttp : //database adress.com/database name/custom input

The result will be displayed in the lower frame as plain text. This allows all the other request not
implemented in the application to be still executed.
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Figure 3.6: Result of a map/reduce

The application allows more command in a menu bar over the main window. This menu bar allows
the creation of a new database, the deletion of the current database, the import of documents in bulk
in the JSON format and the connection to a new database. All those requests will require the user to
have the corresponding right over the database

Figure 3.7: Menu bar of the application
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Chapter 4

Conclusion

This document is an overview and a real world test of CouchDB. The conclusion of this is that a doc-
ument store is a lightweight fast and reliable database optimised for the web and high load application
with its lock free multi access. The database installation and maintenance is really straightforward
and simple and the database request are plain HTTP request that require a few lines of code.

But even with all those advantages, CouchDB is not always the best document store.MongoDB
is recommended in application that don’t need the consistency and the history feature of Couch but
benefice more of the speed advantage of MongoDB. This shows that even when a No-SQL database is
better, CouchDB could not be the recommended one to use

When the application needs complex request like join or relation, SQL is still more appropriate.
Document store also doesn’t guaranty that an application will always access the last version of the
data. Because of those, it’s not destined to replace SQL but rather to complement it.
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