

INFO-H415 ADVANCED DATABASES

TERM PROJECT

3D Spatial Databases and PostGIS

Tzu-Jou Hsiao 000424157

Bahadır Han Akyüz 000423438

31.12.2015

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

Contents
Introduction

Data Types

ESRI Shapefiles(SHP)

Keyhole Markup Language (KML)

The City Geography Markup Language (CityGML)

GeoJSON and YopoJSON

Well-known text (WKT)

Extended Well-known Text / Binary (EWKT/EWKB)

LOD(Level of Details) in CityGML

LOD 0 - Regional model

LOD 1 - City / Site model

LOD 2 - City / Site model

LOD 3 - City / Site model

LOD 4 - Interior model

Comparison of DB solutions for 3D spatial data

Application of PostGIS

Simple Distance Calculation

More Detailed Calculation for Amazon Drones

Problem Definition

Queries

Results and thoughts

Conclusion

Sources

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

Introduction
In the last five years DBMS made a large step toward maintenance of geometries as GIS used to manage them.

The support of 2D (two-dimensional) objects with 3D (three-dimensional) coordinates is adopted by all

mainstream DBMS. The offered functions and operations are predominantly in the 2D domain. The DBMS spatial

schemas have to be extended to fully represent the third dimension (first with simple volumetric object and later

with more complex 3D data types).

Management of texture and mechanism for texture mapping and texture draping is critical for management of

realistic 3D City models. 3D objects usually need more attributes for visualization compared to 2D objects.

In the geoinformation domain, 2D and 3D spatial data are commonly available. There is no doubt that 2D data are

utilized much more than 3D. This situation is attributable to several factors including difficulties in 3D data

structuring, particularly topological data structuring (Raper, 1992; Li, 1994). These problems need to be

investigated so that the feasibility of having a system capable of handling both 2D and 3D data types can be

assessed. We will focus on the subject of spatial data representation in an attempt to contribute to an

understanding of how spatial data could be utilized for a geoinformation system. We aim to review some of the

pertinent spatial data representations and adopt suitable structures for a geoinformation system capable of

handling 3D spatial data.

PostGIS is the well-known spatial database extension to PostgreSQL. PostGIS features a wide range of vector

spatial data processing features as well as raster data management features. PostGIS is the spatial database of

choice. It allows you to store and manipulate your geographical data with ease and speed. It is full of features and

let you leverage the power of spatial analysis to transform your data into information.

Data Types

ESRI Shapefiles(SHP)

The shapefile format is a digital vector storage format for storing geometric location and associated attribute

information. This format lacks the capacity to store topological information. The shapefile format was introduced

with ArcView GIS version 2 in the early 1990s. It is now possible to read and write geographical datasets using

the shapefile format with a wide variety of software.

The shapefile format is simple because it can store the primitive geometric data types of points, lines, and

polygons. Shapes (points/lines/polygons) together with data attributes can create infinitely many representations

about geographic data. Representation provides the ability for powerful and accurate computations.

The term "shapefile" is quite common, but is misleading since the format consists of a collection of files with a

common filename prefix, stored in the same directory. The three mandatory files have filename

extensions .shp, .shx, and .dbf. The actual shapefile relates specifically to the .shp file, but alone is incomplete for

distribution as the other supporting files are required. Legacy GIS software may expect that the filename prefix be

limited to eight characters to conform to the DOS 8.3 filename convention, though modern software applications

accept files with longer names.

The Esri shapefile is one of the most common formats for exchanging vector data. It actually consists of several

files with the same root name, but with different suffixes. At a minimum, you must include the .shp, .shx, and .dbf

files. Other files may be included in addition to these three when extra spatial index or projection information is

included with the file. Because a shapefile requires multiple files, it is often expected that you will zip them all

together in a single file when downloading, uploading, and emailing them.

https://en.wikipedia.org/wiki/Geospatial_topology
https://en.wikipedia.org/wiki/ArcView_3.x
https://en.wikipedia.org/wiki/Directory_(computing)
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/Filename_extension
https://en.wikipedia.org/wiki/DBase
https://en.wikipedia.org/wiki/8.3_filename

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

Keyhole Markup Language (KML)

KML is a file format for storing spatial information. It is most commonly associated with Google Earth, but there

are lots of other programs that can read/write KML files.

Since KML information is XML-based, it can be stored in any database that is capable of storing text information.

The following is an example of a simple KML file:

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://www.opengis.net/kml/2.2">

 <Placemark>

 <name>Simple placemark</name>

 <description>Attached to the ground. Intelligently places itself

 at the height of the underlying terrain.</description>

 <Point>

 <coordinates>-122.0822035425683,37.42228990140251,0</coordinates>

 </Point>

 </Placemark>

</kml>

KML gained widespread use as the simple spatial data format used to place geographic data on top of Google

Earth. It is also supported in Google Maps and various non-Google products.

KML stands for Keyhole Markup Language, and was developed by Keyhole, Inc., before the company's

acquisition by Google. KML became an Open Geospatial Consortium (OGC) standard data format in 2008, having

been voluntarily submitted by Google.

KML is a form of XML, wherein data is maintained in a series of structured tags. KML is unique and versatile in

that it can contain styling information and it can hold either vector or raster formats ("overlays", in KML-speak).

The rasters themselves are not written in the KML, but are included with it in a zipped file called a KMZ. Large

vector datasets are also commonly compressed into KMZs.

The City Geography Markup Language (CityGML)

CityGML is a common information model and XML-based encoding for the representation, storage, and exchange

of virtual 3D city and landscape models. CityGML provides a standard model and mechanism for describing 3D

objects with respect to their geometry, topology, semantics and appearance, and defines five different levels of

detail. Included are also generalization hierarchies between thematic classes, aggregations, relations between

objects, and spatial properties. CityGML is highly scalable and datasets can include different urban entities

supporting the general trend toward modeling not only individual buildings but also whole sites, districts, cities,

regions, and countries.

CityGML provides much more than 3D content for visualization by diverse applications. It allows users to share

virtual 3D city and landscape models for sophisticated analysis and display tasks in application domains such as

environmental simulations, energy demand estimations, city lifecycle management, urban facility management,

real estate appraisal, disaster management, pedestrian navigation, robotics, urban data mining, and location

based marketing.

CityGML has been implemented in many software solutions and is in use in many projects around the world. In

National Spatial Data Infrastructure programs in the Netherlands, Germany, France, Malaysia, Abu Dhabi and

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

other countries, CityGML provides an important platform for the transition from 2D to 3D data. It also plays an

important role in bridging Urban Information Models with Building Information Models (BIM) to improve

interoperability among information systems used in the design, construction, ownership and operation of buildings

and capital projects.

CityGML is realized as an open data model is implemented as an application schema for the Geography Markup

Language 3 (GML3), the extendible international standard for spatial data exchange issued by the Open

Geospatial Consortium (OGC) and the ISO TC211. Because CityGML is based on GML, it can be used with the

whole family of GML compatible OGC web services for data accessing, processing, and cataloging like the Web

Feature Service, Web Processing Service, and the Catalog Service. CityGML is an open standard that can be

used free of charge.

GeoJSON and YopoJSON

JavaScript Object Notation (JSON) is a structured means of arranging data in a hierarchical series of key-value

pairs that a program can read. (It's not required for the program to be written in JavaScript.) JSON is less verbose

than XML and ultimately results in less of a "payload," or data size, being transferred across the wire in web

applications.

Following this pattern, GeoJSON is a form of JSON developed for representing vector features.

You might choose to save GeoJSON features into a .js (JavaScript) file that can be referenced by your web map.

Other times, you may encounter web services that return GeoJSON.

A variation on GeoJSON is TopoJSON, which stores each line segment as a single arc that can be "called"

multiple times by different polygons. In other words, when two features share a border, the vertices are only

stored once. This results in a more compact file, which can pay performance dividends when the data needs to be

transferred from server to client.

Well-known text (WKT)

Well-known text (WKT) is a text markup language for representing vector geometry objects on a map, spatial

reference systems of spatial objects and transformations between spatial reference systems. A binary equivalent,

known as well-known binary (WKB), is used to transfer and store the same information on databases, such as

PostGIS, Microsoft SQL Server and DB2. Both WKT and WKB include information about the type of the object

and the coordinates which form the object.

The formats were originally defined by the Open Geospatial Consortium (OGC) and described in their Simple

Feature Access and Coordinate Transformation Service specifications.

The following is an example of a simple WKT file:

Show a 3D compound coordinate system, which is made by combining a projected coordinate system and a

vertical coordinate system.

 COMPD_CS["OSGB36 / British National Grid + ODN",

 PROJCS["OSGB 1936 / British National Grid",

 GEOGCS["OSGB 1936",

 DATUM["OSGB_1936",

 SPHEROID["Airy 1830",6377563.396,299.3249646,AUTHORITY["EPSG","7001"]],

 TOWGS84[375,-111,431,0,0,0,0],

 AUTHORITY["EPSG","6277"]],

 PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],

 UNIT["DMSH",0.0174532925199433,AUTHORITY["EPSG","9108"]],

 AXIS["Lat",NORTH],

http://portal.opengeospatial.org/files/?artifact_id=4700
http://portal.opengeospatial.org/files/?artifact_id=4700
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.isotc211.org/
https://github.com/mbostock/topojson/wiki
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Geometry
https://en.wikipedia.org/wiki/Map
https://en.wikipedia.org/wiki/Spatial_reference_system
https://en.wikipedia.org/wiki/Spatial_reference_system
https://en.wikipedia.org/wiki/Binary_file
https://en.wikipedia.org/wiki/PostGIS
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/IBM_DB2
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium
https://en.wikipedia.org/wiki/Simple_Feature_Access
https://en.wikipedia.org/wiki/Simple_Feature_Access
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#COMPD_CS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PROJCS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PROJCS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#GEOGCS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#GEOGCS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#DATUM
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#DATUM
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#SPHEROID
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#SPHEROID
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#TOWGS84
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#TOWGS84
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PRIMEM
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PRIMEM
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#UNIT
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#UNIT
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

 AXIS["Long",EAST],

 AUTHORITY["EPSG","4277"]],

 PROJECTION["Transverse_Mercator"],

 PARAMETER["latitude_of_origin",49],

 PARAMETER["central_meridian",-2],

 PARAMETER["scale_factor",0.999601272],

 PARAMETER["false_easting",400000],

 PARAMETER["false_northing",-100000],

 UNIT["metre",1,AUTHORITY["EPSG","9001"]],

 AXIS["E",EAST],

 AXIS["N",NORTH],

 AUTHORITY["EPSG","27700"]],

 VERT_CS["Newlyn",

 VERT_DATUM["Ordnance Datum Newlyn",2005,AUTHORITY["EPSG","5101"]],

 UNIT["metre",1,AUTHORITY["EPSG","9001"]],

 AXIS["Up",UP],

 AUTHORITY["EPSG","5701"]],

 AUTHORITY["EPSG","7405"]]

Extended Well-known Text / Binary (EWKT/EWKB)

Since WKT and WKB were defined in the SFSQL specification, they do not handle 3- or 4-dimensional

geometries. For these cases PostGIS has defined EWKT and EWKB formats. These provide the same formatting

capabilities of WKT and WKB with the added dimensionality.

A not-at-all-standard WKT variant introduced by PostGIS. EWKT offers real support for 3D [XYZ, XYM and

XYZM], and is quite widely supported, most notably by open source sw. EWKT can often offer better cross

platform portability than pure WKT. PostGIS EWKT/EWKB add 3DM,3DZ,4D coordinates support and embedded

SRID information.

LOD(Level of Details) in CityGML
CityGML has 5 Levels of Detail. Which can be basic differences in given image:1

1 Source:Research Center Karlsruhe

http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PROJECTION
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PROJECTION
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#PARAMETER
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#UNIT
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#UNIT
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#VERT_CS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#VERT_CS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#VERT_DATUM
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#VERT_DATUM
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#UNIT
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#UNIT
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AXIS
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html#AUTHORITY
http://workshops.boundlessgeo.com/postgis-intro/glossary.html#term-sfsql

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

LOD 0 - Regional model

● 2.5D Digital Terrain Model

● 11g: GeoRaster/TIN/PointCloud

LOD 1 - City / Site model

● block model without roof structures

● 11g: 3D Polygons/Surfaces

LOD 2 - City / Site model

● textured roof structures

● 11g: 3D Surfaces, GIF images

LOD 3 - City / Site model

● detailed architecture model

● 11g: 3D surfaces, GIF images

LOD 4 - Interior model

● architecture models

● 11g: 3D Lines/Polygons/Solids/Surfaces

Maintenance of multiple representations to be used as Level-Of-Details is another critical aspect of large three-

dimensional models. Still the management of multiple representations is far from formalized. A very promising

initiative is CityGML, which concepts can further be incorporated in the Spatial Schema and later incorporated in

Implementation Specifications.

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

Comparison of DB solutions for 3D spatial data
In this part we aimed to give a general idea about different DB solutions for spatial data. We benefit from websites

of relevant solutions.

Database 3D
Support

Customized
functions
for 3D

Open
Source

Visual
Support2

Documentation
for help

Extensions
Support3

Support for
Web
applications

PostGIS YES YES YES YES YES YES YES

Oracle
Spatial

YES YES NO YES YES YES YES

IBM DB2 YES YES NO YES YES YES YES

Teradata
Geospatial

YES YES NO YES YES YES YES

SpatiaLite YES YES YES YES YES YES YES

MySQL NO YES YES NO YES YES YES

GeoMesa NO NO YES NO YES NO YES

Details of PostGIS
PostGIS is an open source project maintained by Refractions Research and is licensed under the GNU General

Public License (GPL). First version of PostGIS was released in 2001, 4 years later than first version it has

reached stability in 2005 after building of 6 middle version. It is used by many individuals and companies that

includes UBER as well4.

It is one of the widely used Spatial DBs since it provides various properties for spatial calculation.

It supports 2D data, 3D data as well. In additionally it enables user to keep extra information such as time, road-

miles, distance which is known as “M” dimension. Shortly it can be said that it provides support for 4 dimensional

spatial data.

PostGIS supports Spatial Reference System Identifier(SRID), thanks to that it is possible to work on different

SRID values which is quite common for especially global-scale spatial data. To add, to drop or to change SRID is

done easily by particular function. To choose the correct SRID is important part of projects on which calculations

on and it’s mostly related locations in sphere.5

In PostGIS, geometrical information is kept in Well-Known Binary(WKT) representation. As well as other tools in

PostGIS, It develops functions and usability according to ISO SQL/MM specification. It provides functions to

convert data between common formats such as WKT, EWKT, GML, KML, GeoJSON, Text. For each conversion

there are predefined functions that get input format generally as string then gives output such following examples:

● ST_AsGML,

● ST_GeogFromWKB,

● ST_GeomFromKML,

● ST_AsBinary.

Since PostGIS has two main data type for spatial data, one should decide which one to use before starting project.

The data types are called as “geometry” and “geography”. While geography keeps records as latitude, longitude

2 Easily and directly visual support with common applications such as QGIS, ARCGIS
3 Open Source or paid 3rd party extension support
4 https://en.wikipedia.org/wiki/PostGIS retrieved on 14.12.2015
5 http://spatialreference.org/

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

unit, on the other hand geometry type keeps records as degrees which is not equivalent in whole world.6 Although

it seems more accurate to use geometry type in order to get in real units (generally in meters), it does make more

complicated calculations on the backside (So it is costly, takes more time) and geography type has less function

than geometry has in PostGIS. Geometry type uses Cartesian projection which provides much faster results with

big number of available functions.

Application of PostGIS
At this part, we would like to show properties of PostGIS with sample 3D spatial DB. In order to get efficient and

more realistic results we obtained dataset -that is provided by City of Berlin7- at official CityGML webpage8. This

data consists of 1123 LOD2(mostly) and LOD1 buildings. This data was provided in CityGML version 1.0.0. In

order to get dataset into PostGIS, we used Geospatial Data Abstraction Library (commonly known as GDAL)9

which provides conversion between more than 100 formats and released under open license.

Several PostGIS functions will be used and we will try to give example cases for their using. But before going

through calculations and after importing data to PostGIS, we have to define SRID in order to get correct results

when we calculate values. To do so, PostGIS has function what we use.10

/*table name berlin_alexander*/

/*new SRID value 3068 that is mentioned by data-source*/

SELECT UpdateGeometrySRID('berlin_alexander','geom',3068);

Now, we changed SRID as 3068 and we can continue with calculations and what operations are possible in

PostGIS.

Simple Distance Calculation

There are couple of functions to find the distance between 3d objects. Since objects are 3D, there are more than

one distance between two objects. Two get the shortest ‘3D distance’ that doesn’t have to be on ground’ between

two objects, we use ST_3DDistance() function.

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3D

 FROM berlin_alexander AS a, berlin_alexander AS b

 WHERE a.gid AND b.gid<21

Since query for all pairs of buildings takes more than 10 minutes, we get the results for first 20 building which

provides 190 pairs. For 190 lines, so calculation Postgres makes calculations in almost 1 second.

Simple output is as following:11

building1' building2' distance3d'

1' 2' 21.2507665335417'

6 Marquez, Angel, PostGIS Essentials, Packt Publishing Ltd, April 2015
7 http://www.berlin.de/en/
8 http://www.citygml.org/index.php?id=1539
9 http://www.gdal.org/
10 http://postgis.net/docs/UpdateGeometrySRID.html
11 Single quotation marks are seen at the end of each cell which is because of representation.

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

1' 3' 447.561771821768'

1' 4' 457.948229941049'

As it is seen in 3rd column, results are in meters which makes much sense. In the older versions of PostGIS,

measurements were in degrees then user needed to convert into desired units as in that distance in km’s changes

according to location (ex. ~111 km in equator and getting smaller by going to North/ South) it was used

conversion of the closest one to Berlin which equals to 78.71 km per degree.12

As we mentioned before, PostGIS provides multiple functions for distance calculations. On above, we used

ST_3DDistance function which gives us the shortest distance between any possible 3D point-pairs.

We will continue with others and at the try to represent differences on basic images.

SELECT a.gid AS Building1, b.gid AS Building2,
 ST_Distance(a.geom, b.geom) AS Distance2Dmeter

 FROM berlin_alexander AS a, berlin_alexander AS b

 WHERE a.gid < b.gid AND b.gid<21

Above formula gives shortest distance for 3D objects or we can call it as bird’s-eye distance.

In order to compare the values, we would prefer to represent 3D and 2D distances together.

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,
 ST_Distance(a.geom, b.geom) AS Distance2Dmeter

 FROM berlin_alexander AS a, berlin_alexander AS b

 WHERE a.gid < b.gid AND b.gid<21

As you can see on sample below, 2D and 3D distances have tiny differences. For some pairs, difference is much

better and for some they are totally same.

building1' building2' distance3dmeter' distance2dmeter'

1' 2' 21.2507665335417' 21.2508473055211'

1' 3' 447.561771821768' 447.560712265538'

1' 4' 457.948229941049' 457.947194416054'

1' 5' 38.8304840537922' 38.8304840537922'

1' 6' 54.0526883495609' 54.0526883495609'

1' 7' 48.274294612083' 48.274294612083'

We might get the same results as forcing our 3D data into 2D as following:

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 ST_Distance(a.geom, b.geom) AS Distance2Dmeter,
 ST_Distance(ST_Force2D(a.geom), ST_Force2D(b.geom)) AS ForcedDistance2Dmeter

 FROM berlin_alexander AS a, berlin_alexander AS b

 WHERE a.gid < b.gid AND b.gid<21

The results for last two distance will be same:

12 https://en.wikipedia.org/wiki/Decimal_degrees

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

building1' building2' distance3dmeter' distance2dmeter' forceddistance2dmeter'

1' 2' 21.2507665335417' 21.2508473055211' 21.2508473055211'

1' 3' 447.561771821768' 447.560712265538' 447.560712265538'

1' 4' 457.948229941049' 457.947194416054' 457.947194416054'

1' 5' 38.8304840537922' 38.8304840537922' 38.8304840537922'

1' 6' 54.0526883495609' 54.0526883495609' 54.0526883495609'

1' 7' 48.274294612083' 48.274294612083' 48.274294612083'

With PostGIS, it is also possible to find the maximum distances between 3D objects:

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 ST_3DMaxDistance(a.geom, b.geom) AS MaxDistance3Dmeter,

 ST_Distance(a.geom, b.geom) AS Distance2Dmeter,
 ST_MaxDistance(a.geom, b.geom) AS MaxDistance2Dmeter

 FROM berlin_alexander AS a, berlin_alexander AS b

 WHERE a.gid < b.gid AND b.gid<21

As it can be seen on values varies for maximum and minimum cases:

build

ing1'

build

ing2' distance3dmeter' maxdistance3dmeter' distance2dmeter' maxdistance2dmeter'

1' 2' 21.2507665335417' 31.4235499470059' 21.2508473055211' 26.0802948210733'

1' 3' 447.561771821768' 455.917910632118' 447.560712265538' 455.599751283345'

1' 4' 457.948229941049' 489.59128609918' 457.947194416054' 489.295893743153'

1' 5' 38.8304840537922' 58.2947287019993' 38.8304840537922' 53.3481526806664'

1' 6' 54.0526883495609' 74.3719316891463' 54.0526883495609' 71.3455270018734'

1' 7' 48.274294612083' 70.9184138362599' 48.274294612083' 66.9116687958911'

When we represent our data in 3D viewer, it could be more understandable to describe what we calculated. to

represent our data we used FZK Viewer which has Open Source License by Karlsruhe Institute of Technology.13 It

is also preferable to use one of the most common product, QGIS which provides much more than

representation.14 QGIS provides supports for many useful needs with different extension. For our case -

representing 3D data- we have met 2 main extensions (or Plug-in):

● Globe15,

● Qgis2threejs16

We will continue with first option because of its simplicity.

13 http://www.iai.fzk.de/www-extern/index.php?id=1134
14 http://www.qgis.org/en/site/
15 https://hub.qgis.org/wiki/17/Globe_Plugin
16 https://plugins.qgis.org/plugins/Qgis2threejs/

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

In image “A” represents “Berliner Fernsehturm” in Alexanderplatz and B represents nearby building. Grey line (on

top) stands for 3d maximum distance while the pink (under red) is for 3D minimum distance. On the other hand,

red represents 2D minimum distance that is slightly less than 3D min distance for this case.

Just for real images, we can see 3D maximum distance from top of Berliner Fernsehturm with help of Google

Street View.

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

More Detailed Calculation for Amazon Drones

Problem Definition

We already discussed about simple usage of 3D Spatial data, but what is more? What is it going to change? Why

companies/people should use them instead of 2D while it is so costly to obtain and process 3D data?

Since there is not lot much application of 3D DBs, we will ask some questions by our imaginations and try to

answer them with the help of PostGIS DBs.

We will get the case of Amazon Prime Air. As it is mentioned in Amazon’s futuristic delivery plan, they aim to ship

orders by “Octocopter” drones.17 Studies are still going on this drones but further to drone’s capabilities Amazon

needs to consider about also roots. Since there is no driver or responsible to lead these drones, they should

calculate the best (maybe not the shortest) roots for their travels.18

We will get two arbitrary building in our data set and try to calculate root between those building that we can call

one of them Amazon’s warehouse and the other delivery point.

17 http://www.cbsnews.com/news/amazon-unveils-futuristic-plan-delivery-by-drone/
18 This videos explain very well flying delivery process:
https://www.youtube.com/watch?v=98BIu9dpwHU

http://www.amazon.com/b?node=8037720011

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

As it can be seen on given image, there are different possibilities routes and some of them unfortunately are not

feasible. Amazon (represented A) should send customer package to point D (Delivery point) through one of pink,

red or green route since yellow route has meets another building. In reality there are more than possible routes

and it won’t be enough just to calculate route because there are also dynamic movements which are needed to be

taken care of drone’s intelligence. We will try to calculate initial feasible route for drone.

Queries

Firstly, we can assume that Amazon is sending orders from “the closest point to its facility to customer” to the

closest point of customer building. This arbitrary point can be on earth at 0 level height or roof of the building. To

get this we benefit PostGIs functions:

SELECT a.gid AS Building1, b.gid AS Building2,
 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 ST_3DClosestPoint(a.geom, b.geom) AS PointA,

 ST_3DClosestPoint(b.geom, a.geom) AS PointB

 FROM berlin_alexander AS a, berlin_alexander AS b

 WHERE a.gid < b.gid AND b.gid<21

build

ing1'

build

ing2'

distance

3dmeter' pointa' pointb'

1' 2'

21.25076

65335417

'

01010000A0FC0B00003AE12684F

7918240249DAC592D647C40F91C

6F69D9E43440'

01010000A0FC0B000000000000042F8

24000000000A8787D40040000CCCCC

C3440'

1' 3'

447.5617

71821768

'

01010000A0FC0B00000000000038

35824000000000488E7D40FBFFF

FEB7C533240'

01010000A0FC0B0000000000004C388

24000000000A0C38C40040000CCCC4

C3340'

1' 4'

457.9482

29941049

'

01010000A0FC0B00000000000038

35824000000000488E7D40FBFFF

FEB7C533240'

01010000A0FC0B000000000000785E8

44000000000B4EC8C40040000CCCC

4C3340'

1' 5'

38.83048

40537922

'

01010000A0FC0B000000000000F4

F4804000000000A8867B40F7FFF

F5F66660240'

01010000A0FC0B00000000000080E58

14000000000C80F7D40F7FFFF5F666

60240'

1' 6' 54.05268 01010000A0FC0B00002DE165D77 01010000A0FC0B000000000000E0828

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

83495609

'

CE2814055215A7932187D40BA85

E9B0D1563240'

04000000000C8207B40BA85E9B0D15

63240'

1' 7'

48.27429

4612083'

01010000A0FC0B00000000000078

E281400000000040187D400C0000

2CDB563240'

01010000A0FC0B0000000000002CA5

804000000000F05F7B400C00002CDB

563240'

On above we can see closest point of two 3D object we are going to send packages between this points. As

defined in PostGIS documentation these points are the start and end point of minimum 3D distance.

Here the points are represented in WKT (Well Known Text) format as usual in PostGIS. If needed, we can convert

them to text which is more readable:

b1' b2' distance3dmeter' pointa' pointb'

1' 2'

21.2507665335417

'

POINT Z (594.245857528447

454.261071848176

20.8939424415848)'

POINT Z (581.876953125

471.541015625

20.7999999523163)'

1' 3'

447.561771821768

'

POINT Z (582.65234375

472.892578125

18.3261249065399)'

POINT Z (583.037109375

920.453125 19.2999999523163)'

1' 4'

457.948229941049

'

POINT Z (582.65234375

472.892578125

18.3261249065399)'

POINT Z (651.80859375

925.587890625

19.2999999523163)'

1' 5'

38.8304840537922

'

POINT Z (542.619140625

440.416015625

2.29999995231628)'

POINT Z (572.6875

464.986328125

2.29999995231628)'

1' 6'

54.0526883495609

'

POINT Z (572.310957714018

465.512322761603

18.3391371317027)'

POINT Z (528.359375

434.048828125

18.3391371317027)'

1' 7' 48.274294612083'

POINT Z (572.30859375

465.515625 18.3392817974091)'

POINT Z (532.646484375

437.99609375

18.3392817974091)'

Not surprisingly, our points have 3 measurement and Point Z definition that is used in PostGIS for 3D points.

Values give respectively dimensions of X, Y and Z coordinates.

We need to find 3D line between these two points check whether there is a building in route. Instead of finding

points we will continue discovering routes. We can also calculate the length of route with functions but in this case

it will be same as minimum distance.

 SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,
 ST_3DShortestLine(a.geom, b.geom) AS ShortestRoute,

 ST_3DLength(ST_3DShortestLine(a.geom, b.geom)) AS ShortestRouteLength

 FROM berlin_alexander AS a, berlin_alexander AS b

 WHERE a.gid < b.gid AND b.gid<21

Now, we have to check whether there is conjunction in our route.

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 /*ST_3DShortestLine(a.geom, b.geom) AS ShortestRoute,*/

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

 /*ST_3DLength(ST_3DShortestLine(a.geom, b.geom)) AS ShortestRouteLength,*/
 c.gid AS Building3,

 ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5) AS WithinRoute

 FROM berlin_alexander AS a, berlin_alexander AS b, berlin_alexander AS c

 WHERE a.gid < b.gid AND b.gid<21 AND c.gid<10

 AND c.gid <> a.gid
 AND c.gid <> b.gid

Above SQL code check whether there is any “c” building between “a” and “b”. Obviously if there is a building

within route we cannot use that route. As you can see we compare relations of 20 building (190 pair) with 10

building (for some cases less) to understand it is within our route. This query takes more than 10 seconds. We

can say that when you include big numbers of buildings for analysis, it will take much more time. Additionally, we

used ST_3DWithin function with 5 meters of range.

Some part of the results are given:

building1' building2' distance3dmeter' building3' withinroute'

1' 10' 40.1706616379044' 3' f'

1' 10' 40.1706616379044' 4' f'

1' 10' 40.1706616379044' 5' t'

1' 10' 40.1706616379044' 6' f'

1' 10' 40.1706616379044' 7' f'

1' 10' 40.1706616379044' 8' f'

1' 10' 40.1706616379044' 9' f'

With given results, we can say that it is not possible to send order from 1 to 10 with defined route since 5th

building is within route.

Just to see difference between 2D-within and 3D within function we can call given SQL query:

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 /*ST_3DShortestLine(a.geom, b.geom) AS ShortestRoute,*/

 /*ST_3DLength(ST_3DShortestLine(a.geom, b.geom)) AS ShortestRouteLength,*/

 c.gid AS Building3,

 ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5) AS WithinRoute3D,
 ST_DWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5) AS WithinRoute2D

 FROM berlin_alexander AS a, berlin_alexander AS b, berlin_alexander AS c

 WHERE a.gid < b.gid AND b.gid<21 AND c.gid<10

 AND c.gid <> a.gid

 AND c.gid <> b.gid

Sometimes footprint of our route can conjunct with some other building but that doesn't mean that we cannot use

that route. We can imagine that particular conjunct building has less height than our departure and arrival points.

building1' building2' distance3dmeter' building3' withinroute3d' withinroute2d'

1' 7' 48.274294612083' 4' f' f'

1' 7' 48.274294612083' 5' t' t'

1' 7' 48.274294612083' 6' f' f'

1' 7' 48.274294612083' 8' f' f'

1' 7' 48.274294612083' 9' f' f'

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

1' 8'

447.57256715466

3' 2' f' f'

1' 8'

447.57256715466

3' 3' f' t'

1' 8'

447.57256715466

3' 4' f' f'

1' 8'

447.57256715466

3' 5' f' f'

1' 8'

447.57256715466

3' 6' f' f'

Building 3 is within footprint of our route but it is not within our original route. Since Amazon’s droid flies that

doesn’t make any problem. But we can say that a pedestrian cannot use footprint of our route since there are at

least one building on his/her way. Above query takes approximately 15 seconds.

To get faster result and more realistic case, we will 2nd and 3rd building to send orders in between and check all

other buildings for conjunctions.

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 /*ST_3DShortestLine(a.geom, b.geom) AS ShortestRoute,*/

 /*ST_3DLength(ST_3DShortestLine(a.geom, b.geom)) AS ShortestRouteLength,*/
 COUNT(c.gid) AS ConjuctedBuildingNumber

 /*ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5) AS WithinRoute3D*/

 /*ST_DWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5) AS WithinRoute2D*/

 FROM berlin_alexander AS a, berlin_alexander AS b, berlin_alexander AS c

 WHERE a.gid=2 AND b.gid=3 AND b.gid<21 AND c.gid<1124
 AND c.gid <> a.gid

 AND c.gid <> b.gid

 AND ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom, 5)=TRUE

 GROUP BY Building1, Building2, Distance3Dmeter

There are 30 building which might cause a problem for our shipping:

building1' building2' distance3dmeter' conjuctedbuildingnumber'

2' 3' 465.333259967083' 30'

Now, it is not easy to decide how can the problem optimized since there are lots of possible ways. We will

continue with reverse-u route which is based on maximum height of conjunctions and tried to be represented with

pink color in the possible routes images.

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 ST_ZMax(a.geom) AS B1MaxHeight,
 ST_ZMax(b.geom) AS B2MaxHeight,

 MAX(ST_ZMax(c.geom)) AS MaxHeightConjuction

 FROM berlin_alexander AS a, berlin_alexander AS b, berlin_alexander AS c

 WHERE a.gid=2 AND b.gid=3 AND b.gid<21 AND c.gid<1124

 AND c.gid <> a.gid

 AND c.gid <> b.gid
 AND ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5)=TRUE

 GROUP BY Building1, Building2,Distance3Dmeter, B1MaxHeight, B2MaxHeight

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

build

ing1'

build

ing2' distance3dmeter' b1maxheight' b2maxheight' maxheightconjuction'

2' 3' 465.333259967083' 22.1128203868866' 19.3379504680634' 36.1127364635468'

As we can see, between a and b there is one building has more height than a and also b. That situation causes a

problem. In some cases, it a or b might be taller than max height, so we should get the max of these three height

to find height of our route.

Firstly, our drone will go up in vertical direction till maximum height of conjunction then will direct to target building

at horizontal then will land target building. So we have to define 4 different points for departure, turning horizontal,

turning vertical then arrival. It can be more understandable image on below:

We are going to use ST_MakePoint function to create new points:

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 ST_3DClosestPoint(a.geom,b.geom) AS Point1,

ST_MakePoint(ST_X(ST_3DClosestPoint(a.geom,b.geom)),ST_Y(ST_3DClosestPoint(a.geom,b.geom)
),36.1127364635468) AS Point2,

ST_MakePoint(ST_X(ST_3DClosestPoint(b.geom,a.geom)),ST_Y(ST_3DClosestPoint(b.geom,a.geom)
),36.1127364635468) AS Point3,
 ST_3DClosestPoint(b.geom,a.geom) AS Point4

 /*MAX(ST_ZMax(c.geom)) AS MaxHeightConjuction*/

 FROM berlin_alexander AS a, berlin_alexander AS b, berlin_alexander AS c

 WHERE a.gid=2 AND b.gid=3 AND b.gid<21 AND c.gid<1124

 AND c.gid <> a.gid
 AND c.gid <> b.gid

 AND ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5)=TRUE

 GROUP BY Building1, Building2,Distance3Dmeter, Point1, Point2,Point3, Point4

Unfortunately, PostgreSQL doesn’t allow users to make an ORDER BY statement with function, so we had to use

real values of maxHeight in ST_MakePoint function. This process might be time consuming and not practical for

bigger cases.

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

building1' building2' distance3dmeter' point1' point2' point3' point4'

2' 3' 465.333259967083'

01010000A0

FC0B000000

0000008C9D

8240000000

00B0747C40

030000AC83

543240'

0101000080

000000008C

9D82400000

0000B0747C

4007000026

6E0E4240'

010100008

000000000

503882400

0000000A0

C38C4007

0000266E0

E4240'

01010000A0

FC0B000000

0000005038

8240000000

00A0C38C4

0040000CC

CC4C3340'

Above SQL code and results seem like correct but indeed they are not. Since we create new points in our query,

new points are not in “our berlin_alexander” table and they don’t have any SRID value. Not to get errors in further

operations we need to define SRID and update our query as following:

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 ST_3DClosestPoint(a.geom,b.geom) AS Point1,

ST_SetSRID(ST_MakePoint(ST_X(ST_3DClosestPoint(a.geom,b.geom)),ST_Y(ST_3DClosestPoint(a.g
eom,b.geom)),36.1127364635468), Find_SRID('public','berlin_alexander', 'geom')) AS
Point2,

ST_SetSRID(ST_MakePoint(ST_X(ST_3DClosestPoint(b.geom,a.geom)),ST_Y(ST_3DClosestPoint(b.g
eom,a.geom)),36.1127364635468), Find_SRID('public','berlin_alexander', 'geom')) AS
Point3,
 ST_3DClosestPoint(b.geom,a.geom) AS Point4

 /*MAX(ST_ZMax(c.geom)) AS MaxHeightConjuction*/

 FROM berlin_alexander AS a, berlin_alexander AS b, berlin_alexander AS c

 WHERE a.gid=2 AND b.gid=3 AND b.gid<21 AND c.gid<1124

 AND c.gid <> a.gid

 AND c.gid <> b.gid
 AND ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5)=TRUE

 GROUP BY Building1, Building2,Distance3Dmeter, Point1, Point2, Point3, Point4

Just to be more flexible in our model, we get the SRID value from existing table with Find_SRID function which

takes table and column as input.

In order to convert to points into route, we benefit from ST_MakeLine functions. This function takes 2 3D-Points or

array of 3D points as input to create a line.

SELECT a.gid AS Building1, b.gid AS Building2,

 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 /*ST_3DClosestPoint(a.geom,b.geom) AS Point1,*/

/*ST_SetSRID(ST_MakePoint(ST_X(ST_3DClosestPoint(a.geom,b.geom)),ST_Y(ST_3DClosestPoint(a
.geom,b.geom)),36.1127364635468), Find_SRID('public','berlin_alexander', 'geom')) AS
Point2,*/

/*ST_SetSRID(ST_MakePoint(ST_X(ST_3DClosestPoint(b.geom,a.geom)),ST_Y(ST_3DClosestPoint(b
.geom,a.geom)),36.1127364635468), Find_SRID('public','berlin_alexander', 'geom')) AS
Point3,*/

 /*ST_3DClosestPoint(b.geom,a.geom) AS Point4*/

 ST_MakeLine(ARRAY[

 ST_3DClosestPoint(a.geom,b.geom),

ST_SetSRID(ST_MakePoint(ST_X(ST_3DClosestPoint(a.geom,b.geom)),ST_Y(ST_3DClosestPoint(a.g
eom,b.geom)),36.1127364635468), Find_SRID('public','berlin_alexander', 'geom')),

ST_SetSRID(ST_MakePoint(ST_X(ST_3DClosestPoint(b.geom,a.geom)),ST_Y(ST_3DClosestPoint(b.g
eom,a.geom)),36.1127364635468), Find_SRID('public','berlin_alexander', 'geom')),

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

 ST_3DClosestPoint(b.geom,a.geom)
]) AS Route

 FROM berlin_alexander AS a, berlin_alexander AS b, berlin_alexander AS c

 WHERE a.gid=2 AND b.gid=3 AND b.gid<21 AND c.gid<1124

 AND c.gid <> a.gid

 AND c.gid <> b.gid
 AND ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5)=TRUE

 GROUP BY Building1, Building2,Distance3Dmeter, Route

Our route will be as given:

b1' b2' distance3dmeter' route'

2' 3' 465.333259967083'

01020000A0FC0B000004000000000000008C9D824000000000B0747C

40030000AC83543240000000008C9D824000000000B0747C40070000

266E0E4240000000005038824000000000A0C38C40070000266E0E42

40000000005038824000000000A0C38C40040000CCCC4C3340'

If we want to compare minimum distance and our route, we can use such query:

SELECT a.gid AS Building1, b.gid AS Building2,
 ST_3DDistance(a.geom, b.geom) AS Distance3Dmeter,

 ST_3DMaxDistance(a.geom, b.geom) AS MaxDistance3Dmeter,

 ST_3DLength(

 ST_MakeLine(ARRAY[

 ST_3DClosestPoint(a.geom,b.geom),

ST_SetSRID(ST_MakePoint(ST_X(ST_3DClosestPoint(a.geom,b.geom)),ST_Y(ST_3DClosestPoint(a.g
eom,b.geom)),36.1127364635468), Find_SRID('public','berlin_alexander', 'geom')),

ST_SetSRID(ST_MakePoint(ST_X(ST_3DClosestPoint(b.geom,a.geom)),ST_Y(ST_3DClosestPoint(b.g
eom,a.geom)),36.1127364635468), Find_SRID('public','berlin_alexander', 'geom')),
 ST_3DClosestPoint(b.geom,a.geom)

])

) AS RouteLength

 FROM berlin_alexander AS a, berlin_alexander AS b, berlin_alexander AS c

 WHERE a.gid=2 AND b.gid=3 AND b.gid<21 AND c.gid<1124
 AND c.gid <> a.gid

 AND c.gid <> b.gid

 AND ST_3DDWithin(ST_3DShortestLine(a.geom, b.geom),c.geom,5)=TRUE

 GROUP BY Building1, Building2,Distance3Dmeter, RouteLength

Result looks very close to minimum distance between buildings with only a 35 meters difference.

building1' building2' distance3dmeter' maxdistance3dmeter' routelength'

2' 3' 465.333259967083' 473.368103891547' 499.927588071262'

Results and thoughts

As we tried to explain above part, we can use PostGIS for such problems that aim to find a solution of 3D-related

objects. However, even in such a simple case which includes almost 1000 buildings, calculations take a lot of time

to compute. With more joins between tables and some harder tasks it might take days to find solutions for real

problem which is probably quite time consuming for them.

In our simple case, we presented a possible route calculation for Amazon Droids. We should mention that these

calculations purely depend on our assumption. We choose the way which is going through maximizing the value

of height as much as possible. In real life that might not give feasible solutions since it’s known that Amazon

Drones can fly at maximum height of nearly 120 meters (400 feet) according to news. 3D route calculations might

3D Spatial Databases and PostGIS Tzu-Jou Hsiao

 Bahadır Han Akyüz

be much harder and time consuming than 2D route calculations because they have more possible solutions and

need more calculations.

Conclusion
As we can see the details in above part with application, PostGIS provides many functions for 3D data but it has

also some absences. We can conclude that in order to easily get the results of given questions, we need

additional functions:

● Is a 3D object covered by another 3D object?

● Does a 3D object cover another 3D object?

● Difference between two 3D object?

● Volume of a 3D object? (It already gives length of 3D lines)

● Surface area of a 3D object or area of a 3D object in a specific height?

As we can understand, PostGIS helps us to use 3D objects for many purposes since it has a limit for scale and

applicability. When we are deciding about 3D spatial data and databases, we should firstly know that “Do we

really need 3rd dimension”. If we don’t need 3rd dimension at all, there is no point to work on 3D spatial data

since it takes more time to query and gives less flexibility. Then, the next question is that “which DB solution suits

well for our particular project?” These steps look so basic, however, in order to work on 3D data, we should firstly

answer those since needs vary a lot for different projects.

Sources
1. Towards a True 3D GIS, Ellul Claire, University College London, UK 3DGIS Special Interest Group

presentation.

2. 3D Geo-Information Sciences, Di Jiyeong Lee,Siyka Zlatanova

3. http://en.wiki.quality.sig3d.org/index.php/Modeling_Guide_for_3D_Objects_-

_Part_2:_Modeling_of_Buildings_%28LoD1,_LoD2,_LoD3%29

4. http://www.diva-gis.org/Data

5. http://www.oslandia.com/pages/postgis-mise-en-oeuvre-en.html

6. http://revenant.ca/www/postgis/workshop/index.html

7. http://www.citygmlwiki.org/index.php/Open_Data_Initiatives

8. https://en.wikipedia.org/wiki/Shapefile

9. https://www.e-education.psu.edu/geog585/node/691

10. http://www.citygml.org/index.php?id=1523

11. https://docs.oracle.com/cd/E17952_01/refman-5.5-en/spatial-extensions.html

12. http://www.oracle.com/technetwork/database/enterprise-edition/spatial-opensource-097629.html

13. https://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_webserv_intro.htm

14. http://www-03.ibm.com/software/products/en/db2-connect-family

15. https://3d.bk.tudelft.nl/szlatanova/pdfs/3D_geometries_in_spatial_DBMS.pdf

16. https://en.wikipedia.org/wiki/IBM_DB2

17. http://www-01.ibm.com/support/docview.wss?uid=swg27009474

18. http://www-01.ibm.com/support/docview.wss?uid=swg21168270

19. https://www.gaia-gis.it/spatialite-2.1/SpatiaLite-manual.html

20. http://www.spatialdbadvisor.com/

21. http://boundlessgeo.com/press-release/boundless-ccri-launch-opengeo-suite-geomesa/

22. http://www.geomesa.org/

23. https://en.wikipedia.org/wiki/Well-known_text

24. http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html

25. https://www.gaia-gis.it/spatialite-3.0.0-BETA/GeoNotations.pdf

http://en.wiki.quality.sig3d.org/index.php/Modeling_Guide_for_3D_Objects_-_Part_2:_Modeling_of_Buildings_%28LoD1,_LoD2,_LoD3%29
http://en.wiki.quality.sig3d.org/index.php/Modeling_Guide_for_3D_Objects_-_Part_2:_Modeling_of_Buildings_%28LoD1,_LoD2,_LoD3%29
http://www.diva-gis.org/Data
http://www.oslandia.com/pages/postgis-mise-en-oeuvre-en.html
http://revenant.ca/www/postgis/workshop/index.html
http://www.citygmlwiki.org/index.php/Open_Data_Initiatives
https://en.wikipedia.org/wiki/Shapefile
https://www.e-education.psu.edu/geog585/node/691
http://www.citygml.org/index.php?id=1523
https://docs.oracle.com/cd/E17952_01/refman-5.5-en/spatial-extensions.html
http://www.oracle.com/technetwork/database/enterprise-edition/spatial-opensource-097629.html
https://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_webserv_intro.htm
http://www-03.ibm.com/software/products/en/db2-connect-family
https://3d.bk.tudelft.nl/szlatanova/pdfs/3D_geometries_in_spatial_DBMS.pdf
https://en.wikipedia.org/wiki/IBM_DB2
http://www-01.ibm.com/support/docview.wss?uid=swg27009474
http://www-01.ibm.com/support/docview.wss?uid=swg21168270
https://www.gaia-gis.it/spatialite-2.1/SpatiaLite-manual.html
http://www.spatialdbadvisor.com/
http://boundlessgeo.com/press-release/boundless-ccri-launch-opengeo-suite-geomesa/
http://www.geomesa.org/
https://en.wikipedia.org/wiki/Well-known_text
http://www.geoapi.org/apidocs/org/opengis/referencing/doc-files/WKT.html
https://www.gaia-gis.it/spatialite-3.0.0-BETA/GeoNotations.pdf

