Northwind Database

Extraction Transformation Load

[Employees

Customer Employee
Demographics Orders Terﬁto?'/ies
CustomerTypelD OrderlD EmployeelD »| EmployeelD
CustomerDesc Customer|D FirstName TerritorylD
A EmployeelD LastName
OrderDate Title N
Customer RequiredDate TitleOfCourtes -
CustomerDemo Shi(:apedDate | BirthDate Y Territories
CustomerID ShipVia "| HireDate TerritorylD
CustomerTypelD Freight Address TerritoryDescription
ShipName City RegionlD
Y ShipAddress Region
Customers < Sh?pCity_ PostalCode N
ShipRegion Country Regions
CustomerlD | ShipPostalCode HomePhone
CompanyName ShipCountry Extension RegionID
ContactName N Photo RegionDescription
ContactTitle gotesrt T
Address ; eports 10
City Order Details PhotoPath
Region OrderlD Suppliers
PostalCode Product!D
Country UnitPrice > Products SupplierlD
Phone Quantity CompanyName
Fax Discount ProductiD ContactName
ProductName » ContactTitle
SupplierlD Address
CategorylD City
Categories |« QuantityPerUnit Region
Shippers <« UnitPrice PostalCode
CategorylD UnitsInStock Country
ShipperlD CategoryName UnitsOnOrder Phone
CompanyName Description ReorderLevel Fax
Phone Picture Discontinued Homepage

Figure 1: Schema of the Northwind operational database

Figures 1 and 2 represent, respectively, the schema of an operational database and
the schema of its associated data warehouse. Implement in Integration Services 2005 the
ETL process that allows to load the data warehouse.

For the dimension DimTime, create an Excel file that will contain the data. The time
interval of this dimension must cover the dates contained in the table Orders of the
operational database.

The data for the hierarchy DimState, DimCountry, DimArea is input from an XML
file called Territories.xml that begins as follows:

<?xml version="1.0" encoding="IS0-8859-1"7>
<Areas>
<Area>
<AreaName>Europe</AreaName>
<Country>
<CountryName>Austria</CountryName>
<CountryCode>AT</CountryCode>
<CountryCapital>Vienna</CountryCapital>

1

DimCustomer » DimGeography > DimState > DimCountry
CustomerKey GeographyKey StateKey CountryKey
CustomerAlternateKey City StateName CountryName
CompanyName StateKey EnglishStateName |«— CountryCode
Address PostalCode StateType CountryCapital
Phone X StateCode Population
Fax < StateCapital Subdivision
GeographyKey RegionName
AK: DimSupplier gegiotnCKode v
CustomerAlternateKey Supplierke ountryRey DimArea

GeographyKey AreaK
CompanyName DimEmployee me
Address ploy
Phone EmployeeKey
DimTi Fax FirstName
imiime Homepage | LastName L DimTerritory
TimeKey A Title .
TitleOfCourtesy TerritoryKey
DateAlternateKey i TerritoryAlternateKe
DayNumberOfWeek L FactSales Bl.rthDate TerritozDescription ’
DayNameOfWeek HireDate StateKe
DayNumberOfMonth | CustomerKey Address - y
DayNumberOfYear | EmployeeKey City AK:
WeekNumberOfYear | OrderDateKe II§eg|o|n TerritoryAlternateKey
MOnt:mumber RequiredDateKey Cgitr?trc;/Ode A
onthName < i L
<« pp! Y
Quart Sh! edDateKe HomePhone P FactEmployee
uarter ShipperKey i < Territo
Semester Extension ry
ProductKe)
. SupervisorKey EmployeeKey
Year Supplierkey e
AK: DateAlternateKey OrderNo —ermioryaey
OrderLineNo .
UnitPrice DimProduct
Quantity Productkey
s Discount ProductName .

DimShipper < SalesAmount > CategoryKey » DimCategory
ShipperKey Freight QuantityPerUnit CategoryKey
CompanyName AK: (OrderNo, UnitPrice CategoryName
Phone OrderLineNo) Discontinued Description

Figure 2: Schema of the Northwind data warehouse

<Population>8316487</Population>

<Subdivision>Austria is divided into nine Bundesl&nder,
or simply L&nder (states; sing. Land).</Subdivision>

<State type="state">
<StateName>Burgenland</StateName>
<StateCode>BU</StateCode>
<StateCapital>Eisenstadt</StateCapital>

</State>

<State type="state">
<StateName>K&drnten</StateName>
<StateCode>KA</StateCode>
<EnglishStateName>Carinthia</EnglishStateName>
<StateCapital>Klagenfurt</StateCapital>

</State>

The schema of the XML file is shown in Figure 3. Notice that type is an attribute of

2

1.

1

AreaName CountryName 1.1
CountryCode 1.1 StateName
Areas Area 1.n Country 11
CountryCapital = StateCode
Population 0.1 EnglishStateName
Subdivision 1.1 StateCapital
0..1 .
State RegionName
0.1 RegionCode

Figure 3: XML Schema of the file Territories.xml

State and that EnglishStateName, RegionName, and RegionCode are optional.

The DimGeography dimension is obtained from the City, Region, PostalCode, and
Country from both Customers and Suppliers. Notice that the attribute Region contains
in fact a state name (e.g., Québec) or a state code (e.g., CA); similarly, the attribute
Country contains a country name (e.g., Canada) or a country code (e.g., USA). To identify
to which state corresponds a city the file cities.txt is used. The file contains three
fields separated by tabs and begins as follows:

Atlanta — Georgia — USA
Austin — Texas — USA
Beachwood — Ohio — USA
Bedford — Indiana — USA
Bellevue — Kentucky — USA

This file is also used to identify to which state correspond the attribute TerritoryDescription
in DimTerritory, which in fact contains city names from the United States.
For the FactSales table, the following transformations are needed.

e The OrderLineNo must be generated in ascending order of ProductID.

e The SalesAmount must be calculated taking into account the unit price, the dis-
count, and the quantity.

e The Freight, which in the operational database is related to the whole order, must
be equally distributed among the lines of the order.

Integration Services 2005

Solution
CH| Dimdrea DimCounkry s
& DimState Load A
L 3
; | Temparary
DiirniZat] -
{;:IJ ngda =aery i Tables Load ™
¥

w

LH jJ DimTerrit DirnProduct ‘ﬂ,flj DimGeagraphy
. imTerritory L|J\;:|J - Lli;:lj imProduc 2 Load
Load DimnShipper Load Load T

| ¥
DimErmployes L.E _Tl . Lli,jl DimCuskamer LIL,:H CimSupplier
‘ﬂ,ﬁl’l Load 1 CimTime Load n Load N Load
¥ ¥ J Y Y ¥ ¥ l

Lli,j] FactEmploves
v Territary Load 1 FactSales Load

Figure 4: Overall view of the ETL process

Figure 4 shows the overall ETL process. It is composed of ten data flow tasks and two
sequence container tasks connected by precedence constraints.

L, Morthwind
Cateqgaries

OLE DB
Destination

Figure 5: Loading of the DimCategory dimension

Most data flow tasks are simple, an example for loading the DimCategory is given
in Figure 5. These data flow tasks are composed of an OLE DB Source task that reads
the entire table from the operational database and an SQL Server Destination task that
receives the output from the previous task.

In these simple data flow tasks it is necessary to determine whether the operational
database already contains a key that can be reused in the data warehouse. This is the case
for all dimensions that do not have an alternate key. Depending on whether the key can
be reused in the data warehouse, the mapping of colums in the SQL Server Destination
tasks should be done as shown in Figure 6 (a) or (b).

4

B SOL Destination Editor

Configure the propetties used ko bulk copy data into a lacal instance of the Database Engine.

Connection Manager
Mappings
Advanced
M arme
Categomkey
CategorpMame CategomM ame
Description Description
Ficture
Input Column Destination Column
CategoryID Cakegorykey
CategoryMame CakegoryMarne
Description Description
(a)

B SOL Destination Editor

Configure the properties used to bulk copy data into a local instance of the Database Engine,

Connection Manager
Advanced YT —————
ailable Destination ...
Termitaryk. ey
TenitaybliemateKey
mTenitoryDescription Temitoryl ezcription
RegionlD Regionk.ey
Input Calurnn Destination Column
<ignare > Territarykey
TerritaryID Territorvalernatekey
TerritaryDescription TerritoryDescripkion
ReqgionIl Regionkey
(b)

Figure 6: Mappings of the source and destination columns, depending on whether the key
in the operational database is reused in the data warehouse

The data flow task that loads the DimTime dimension is shown in Figure 7 (a). After
loading the source Excel file, a data conversion transformation is needed to convert the
data types from the Excel file into the data types of the database. Figure 7 (b) shows the
data flow task that loads the hierarchy composed of DimArea, DimCountry and DimState.
A Sequence Container is used for the three data flows that load the tables of the hierarchy.
The data composed for loading the table DimArea is given in Figure 7 (c¢). Conversion

= | Excel Source

e DimTime

" ¥ Data

o< Conversion

j':! DimTirne
(a)

(me]

&

DirnArea DimCounkry
DimState Load

Fa)
Fa

T Dimérea Load

I

‘ﬂ;jj DirncCounkry
Load

I

" Dim3tate Load

B

(=3

Temporary Tables
Load

Fa)
Fa

'1 Create Temp

= ﬂ Tables

I

o TempCities Load

I

‘ﬂ;jj TempGeographey
Load

I

TempGeographey
Full Load

(a)

(b)

TempCities

City
State
Country

TempGeography

City

State
PostalCode
Country

TempGeography
Full

City

State
PostalCode
Country
StateKey
CountryKey

(b)

*_—I" AML Source

Area I

" % Data
O Canversion

I

j-'-‘ Dimarea

()

Figure 7: (a) Loading of the DimTime dimension; (b) Loading of the hierarchy composed
of DimArea, DimCountry, and DimState; (c) Loading of the DimArea dimension

| = Flat File Source
'; cities

]

~—
= Data
O Canversion

]

j-'-‘ TempCities

()

Figure 8: (a) Loading of the temporary tables needed for the DimGeography dimension;

(b) Structure of the temporary tables; (¢) Loading of the TempCities table

transformations are needed to convert the data types from the XML file into the data
types of the database.

Figure 8 (a) shows the Sequence Container used for loading the temporary tables
needed for the DimGeography dimension. Figure 8 (b) shows the structure of the tem-
porary tables. The first task in the sequence executes an SQL script that creates the
temporary tables. Figure 8 (c) shows the data flow used for loading the TempCities table
from the text file cities.txt. A data conversion transformation is needed to convert the
default types obtained from the text file into the database types.

L, Suppliers and
Customer Data

I

O
_|""'—I Conditi ' % TempEeography
onditional Split Lookup A
- State null Skate not Found =" BadData
Skate not null T

) Temp
Union all é Gengraphy

]

Figure 9: Loading of the TempGeography table

Figure 9 shows the data flow for loading of the TempGeography table. The source data
is obtained from the following SQL query.

select distinct City, Region as State, PostalCode, Country
from Suppliers

union

select distinct City, Region as State, PostalCode, Country
from Customers

Since some of the rows obtained have a null valued in the State attribute a lookup is
needed to complete them using the data from the TempCities table.

Figure 10 shows the data flow for loading the TempGeographyFull table. This data
flow completes the the TempGeography table with the corresponding StateKey and CountyKey.
For this, four look up tasks are needed as follows.

1. The first look up process records from TempGeographyFull where State appears in
DimState.StateName. An example of such a state is Loire-Atlantique.

2. The second look up process records from TempGeographyFull where State appears
in DimState.EnglishStateName. An example of such a state is Lower Saxony
whose German name is Niedersachsen.

3. The third look up process records from TempGeographyFull where State and
Country correspond, respectively, to StateCode and CountryCode of the lookup
table defined by the following query

|
j Tempaeagraphsy

I

= "il Lookup with \j:' TempEeography

j Statehame Full Bad Drata

w
Mok Found
Mok Found

. - _
B Lookup with B Lookup with Ll Lookup '-';Ith
] lishStateMame r StateCode i StateCode
ol Enale petpcind - CountryCode Mok Found Countryhlame

0
Wl . TempEeography
;:i Union all +—' _ﬁﬂ Full

Figure 10: Loading of the TempGeographyFull table

select S.*, CountryName, CountryCode
from DimState S join DimCountry C
on S.CountryKey = C.CountryKey

An example of State and Country values captured in this look up are AK and USA
that correspond to Arkansas and United States of America.

4. Finally, the fourth look up process records from TempGeographyFull where State
and Country correspond, respectively, to StateCode and CountryName of the lookup
table defined above. An example of State and Country values captured in this look
up are BC and Canada that correspond to British Columbia and Canada.

As result, the following two records are rejected

Singapore,NULL,0512,Singapore
Cork,Co. Cork,NULL,Ireland

that correspond to supplier ’Leka Trading’ and customer ’Hungry Owl All-Night Grocers’,
respectively.

The data flow task that loads the DimCustomer dimension is shown in Figure 11. It
includes a lookup transformation that starting from the following SQL query

select T.City, T.PostalCode, T.Country, GeographyKey
from TempGeographyFull T join DimGeography G

on T.City=G.City and T.StateKey=G.StateKey

and T.PostalCode=G.PostalCode

transforms the City, PostalCode, and Country of a customer into its corresponding
GeographyKey of the DimGeography. A similar data flow task is used for loading the
DimSupplier dimension.

Ly Morthwind
_J'\’ Customers

= 'é Lookup \j DirnCustomer
[] iaeographwkey Mot Found —| BadData
j DimCuskamer

Figure 11: Loading of the DimCustomer dimension

L, Morthwind Ernp
Territaries

H 'g Lookup \j:' FackEmpTerr
] Territorykesy Mot Found —| BadData

-9::‘ FactErmployee
Territary Load

Figure 12: Loading of the FactEmployeeTerritory fact table

The data flow task that loads the FactEmployeeTerritory fact table is shown in
Figure 12. It includes a Lookup transformation that transforms the TerritoryID of the
operational database into the TerritoryKey of the DimTerritory.

Finally, the data flow task that loads the FactSales fact table is shown in Figure
13. The first OLE DB Source task includes an SQL query that combines data from the
operational database and the data warehouse. This SQL query is given next.

select

(select [CustomerKey] from [dbo].[DimCustomer] DC

where DC. [CustomerAlternateKey] = 0.[CustomerID]) as [CustomerKey],
EmployeeID as EmployeeKey,
(select [TimeKey] from [dbo].[DimTime] DT

where DT.[DateAlternateKey] = 0. [OrderDate]) as [OrderDateKeyl],
(select [TimeKey] from [dbo].[DimTime] DT

where DT.[DateAlternateKey] = O.[RequiredDate]) as [RequiredDateKey],
(select [TimeKey] from [dbo].[DimTime] DT

where DT.[DateAlternateKey] = O.[ShippedDate]) as [ShippedDateKeyl],
ShipVia as ShipperKey, P.ProductID as ProductKey,
(select [SupplierKey] from [dbo].[DimSupplier] DS

L, Query Sales Data
OLTP & Dy

@ Conditional Spit _ﬂa FactSal
anaitiona | actoales
b F Defaulk

Mull ke values I
\j Fact3ales Bad
— Data

Figure 13: Loading of the FactSales fact table

where DS. [SupplierKey] = P.[SupplierID]) as [SupplierKey],
0.0rderID as OrderNo,
convert(int, ROW_NUMBER() over
(partition by D.0OrderID order by D.ProductID)) as OrderLineNo,
D.UnitPrice, Quantity, Discount,
convert (money, D.UnitPrice * (1-Discount) * Quantity) as SalesAmount,
convert (money, 0.Freight/Count(*) over (partition by D.OrderID)) as Freight
from Northwind.dbo.Orders 0, Northwind.dbo.[Order Details] D,
Northwind.dbo.Products P
where 0.0rderID=D.0rderID and D.ProductID=P.ProductID
order by supplierKey

A conditional split transformation task is then used to select the records obtained from
the previous query that have a null value in the columns CustomerKey, SupplierKey,
or ShippedDateKey and store them in a flat file. These are 206 records that corre-
spond to order details from the rejected supplier ’Leka Trading’, the rejected customer
’Hungry Owl All-Night Grocers’ or that have a null value in ShippedDate. The cor-
rect records are inserted in the data warehouse.

10

