
1

Introduction to Graph Databases

Activity – Implementing Graphs using Relational Databases

Google released, in 2002, a subset of the structure of the WWW. In this dataset, web

pages are represented by graph nodes such that when a web page A contains a hyperlink to web

page B, a directed edge is created from node A to node B.

 In this activity, we will focus on the performance of different queries. Therefore,

we will use three PostgreSQL tables, which are subsets of different sizes of the web structure

released by Google:

• webgraph1 table: 605 nodes (web pages) and 1521 edges (hyperlinks)

• webgraph2 table: 1622 nodes (web pages) and 6288 edges (hyperlinks)

• webgraph3 table: 4122 nodes (web pages) and 14356 edges (hyperlinks)

If you are using your own local PostgreSQL database, you need to create and populate it. Use the
three files provided.

CREATE TABLE webgraph1 (fromnode int, tonode int);

COPY webgraph1 FROM 'X:..\webgraph1.txt'

CREATE TABLE webgraph2 (fromnode int, tonode int);

COPY webgraph2 FROM 'X:..\webgraph2.txt'

CREATE TABLE webgraph3 (fromnode int, tonode int);

COPY webgraph3 FROM 'X:..\webgraph3.txt'

2

Below, we show the list of different uses cases we want to analyze:

Use Case A: For each pair of connected nodes, find the 1-hop paths. Include four columns in the resultset:

fromNode, toNode, length, path, which correspond to the source node, target node, length of the path,

and visited nodes, respectively. Exclude repeated nodes in the path. That is, if A -> A, do not consider that

A, A, 1, A-A is a valid 1-path from A to A.

Use Case B: For each pair of connected nodes, find the 2-hop paths. Include four columns in the resultset:

fromNode, toNode, length, path, which correspond to the source node, target node, length of the path

and the visited nodes, respectively. Exclude repeated nodes in the path. That is, if A -> B and B->A, do not

consider that A, A, 2, A-B-A is a valid 2- path from A to A.

Use Case C: For each pair of connected nodes, find the 3-hop paths. Include four columns in the resultset:

fromNode, toNode, length, path, which correspond to the source node, target node, length of the path

and the visited nodes, respectively. Exclude repeated nodes in the path. That is, if A -> B, A->C and B->A,

do not consider that A, C, 3, A-B-A-C is a valid 3-path from A to C.

Use Case D: for each pair of connected nodes, find the N-hop paths (the value of N is not known in

advance). Include four columns in the result set: fromNode, toNode, length, path, which correspond to

the source node, target node, length of the path and the visited nodes, respectively. Exclude repeated

nodes in the path like in case “C”.

Exercise 1

1.1) Show the SQL queries that solve each use case. Use an alias for the table, such that it can be easily

rewritten for different table names.

Use Case SQL (use an alias for the table in the from clause – Replace webgraph1 as
needed)

A (1-hop)
select wg.fromnode, wg.tonode, 1 long, wg.fromnode ||'-'|| wg.tonode path
from webgraph1 wg
where wg.fromnode <> wg.tonode

B (2-hop) select w1.fromnode, w2.tonode, 2 long, w1.fromnode ||'-'|| w2.fromnode
|| '-' || w2.tonode as path
from webgraph3 w1, webgraph3 w2
where w1.tonode = w2.fromnode and
w1.fromnode <> w1.tonode and w2.fromnode <> w2.tonode and
w1.fromnode <> w2.tonode

3

C (3-hop) select w1.fromnode as initial, w1.tonode
||'-'|| w2.tonode as path, w3.tonode as final, 3 length
from webgraph3 w1, webgraph3 w2, webgraph3 w3 where w1.tonode =
w2.fromnode and w2.tonode = w3.fromnode
and
w1.fromnode <> w1.tonode and
w2.fromnode <> w2.tonode and
w3.fromnode <> w3.tonode and
w1.fromnode <> w2.tonode and
w1.fromnode <> w3.tonode and
w2.fromnode <> w3.tonode

D (N-hop) with recursive auxi(fromnode, tonode, long, path) as
(
 select wg.fromnode, wg.tonode, 1, '-'|| wg.fromnode ||'-'|| wg.tonode
 from webgraph1 wg
 where wg.fromnode <> wg.tonode
 union
 select auxi.fromnode, wg.tonode, 1 + long , path ||'-'|| wg.tonode
 from auxi, webgraph1 wg
 where auxi.tonode = wg.fromnode
 AND wg.fromnode <> wg.tonode
 AND position('-'|| wg.tonode || '-' in auxi.path) = 0
)
select * from auxi

1.2) Run each query in Part 1.1., against tables of different sizes. For each run, record the execution time

and the size of the result set (number of tuples), and complete the following comparative tables.

Use Case A (1-hop)

Table Execution Time (msec) Resultset Size (#tuples)

1521 tuples 1521

6288 tuples 6288

14356 tuples 14356

Use Case B (2-hop)

Table Execution Time (msec) Resultset Size (#tuples)

1521 tuples 10164

6288 tuples 60954

4

14356 tuples 138318

Use Case C (3-hop)

Table Execution Time (msec) Resultset Size (#tuples)

1521 tuples 90393

6288 tuples 649111

14356 tuples 1647065

Use Case D (N-hop)

Table Execution Time (msec) Resultset Size (#tuples)

1521 tuples ?

6288 tuples ?

14356 tuples ?

Exercise 2

2.1) Probably, some queries above will run indefinitely. Analyze the strategy used by PostgreSQL for

executing each query. More precisely, find out the query plan chosen for the largest table (webgraph3),

for each one of the use cases. Complete the following table.

Answer: Run EXPLAIN SELECT ….

Use case Query Plan for webgraph3

A (1-hop) Seq Scan on webgraph3 wg (cost=0.00..457.71 rows=14284 width=44)
 Filter: (fromnode <> tonode)

B (2-hop) Hash Join (cost=211.31..2246.32 rows=33130 width=44)
 Hash Cond: (w1.tonode = w2.fromnode)
 Join Filter: (w1.fromnode <> w2.tonode)
 -> Seq Scan on webgraph3 w1 (cost=0.00..133.85 rows=6197 width=8)
 Filter: (fromnode <> tonode)
 -> Hash (cost=133.85..133.85 rows=6197 width=8)
 -> Seq Scan on webgraph3 w2 (cost=0.00..133.85 rows=6197 width=8)
 Filter: (fromnode <> tonode)

5

C (3-hop) …

D (N-hop)
…

2.2) Briefly sketch the idea behind the query plans proposed by PostgreSQL .

Needs to JOIN tables.
For this, always a TABLE SCAN is performed. Then, sometimes a Hash is performed. If there are
multiple joins, the stategy normally is to run MERGE operations pairwise. For this, both tables
must be sorted, thus a SORT is run. As the comparison between join attributes is done, a FILTER
is applied for the other conditions.

Exercise 3

 In Exercise 1, probably N-hop queries over table webgraph3 ran indefinitely. However, note that

a 3-hops query could also be solved by an SQL recursive query limited to N=3.

3.1) Rewrite the recursive SQL query over the webgraph3 table, limiting it to retrieve only 3-Hops.

Verify the result, checking that you obtained the same results as with the 3-hop non-recursive version,

that is, your SQL recursive query limited to N=3 is equivalent to a non-recursive triple join query.

with recursive auxi(fromnode, tonode, long, path) as

(

 select wg.fromnode, wg.tonode, 1, wg.fromnode ||'-'|| wg.tonode

 from webgraph3 wg

 where wg.fromnode <> wg.tonode

 union

 select auxi.fromnode, wg.tonode, 1 + long , path ||'-'|| wg.tonode

 from auxi, webgraph3 wg

 where auxi.tonode = wg.fromnode

 AND wg.fromnode <> wg.tonode

 AND position('-'|| wg.tonode || '-' in auxi.path) = 0 AND long < 3

)

select * from auxi where long = 3

6

3.2) Now, we want to study if the execution time could be improved using indexes. We will take into

consideration both query variations, i.e. 3-Hops (triple join), and SQL recursive limited to obtain 3-Hops.

3.2.1) Which index could be useful for avoid the TableScan+Sort? Which index would be useful for the

Merge Operator? Write the SQL syntax for creating the index/es proposed.

Answer:

create index f1 on webgraph3(fromnode)

create index f2 on webgraph3(tonode)

3.2.2) Create the index/es proposed. Run both queries. Compare the result against the 3-hop

performance in exercise 1. Complete the following table. Did you obtain any improvement?

Use Case C (3-hop)

Table with index/es Execution time (sec) Resultset size (#tuples)

14356 tuples

Use Case D (N-hop) - SQL recursive limited by N=3

Table with index/es Execution time (sec) Resultset size (#tuples)

14356 tuples

3.3.3) Analyze the query plan for both queries (with indexes). Complete the following table:

Use case Query plan with index/es for webgraph3

C (3-hop)

D (N-hop)
limited by
N=3

7

3.3.4) Did PostgreSQL use the same strategy in both queries? Explain the reason in detail.

Answer
Typically, in the 3-hop query, both indexes should be used. It doesn’t require a table scan and sort.
The merge is still performed.
In the N-Hop query, the index can only be used in the first iteration. Since the recursive table is a
temporary one, there is no index on it. It must be sorted each time a MERGE is performed. Thus, the
index doesn’t help here.

Exercise 4

 When looking for N-paths, where N is large (>3) or unknown, we need to use Recursive SQL.

Execute the recursive SQL query and find the longest N value that allows us to obtain a result set in less

than 5 minutes, for the webgraph3 table.

Answer:

