Graph Databases

Activity 3 - Cypher

You will be querying three Neo4j databases, provided to you. These
databases are: (1) A graph representation of the Northwind operational
database, denoted northwindhg.db; (2) A graph representation of the
MusicBrainz database, called MusicBrainz.db. This database contains a
portion of the data in the web site of the same names, representing
releases and events performed by artists, either individually or in
collaborations; (3) A rivers database, with data from the Flanders river
system, in Belgium.

Before starting the Neo4j server, you need to choose the database you
will work with. For this, you go to the conf folder, and edit the neo4j.conf
file. You will find something like this:

#dbms .default database=minigraphweb
#dbms .default database=musicbrainz
#dbms.default database=northwindhg
#dbms.default database=northwindoltp
dbms.default database=rivers

#dbms .default database=neo4j

#dbms .default database=webgraph3
#dbms.default database=webdb

#dbms .default database=minigraphweb

Since dbms.default_database =rivers is unmarked, to change the database
to northwindhg, you mark #dbms.default_database =rivers, and unmark
dbms.default_database = northwindhg. Save the changes, and quit the
file. Thenyourun: ./bin/neo4j console to startthe Server. Then,
open a browser, and type the following url: localhost:7474. Now you can
start writing Cypher queries.

Exercise 1.

Consider the Northwind database, whose schema is:

Regions
Customers Orders Territories »|RegionlD
RegionDescription
CustomeriD) OrderiD TerritorylD
CompanyName B CustomeriD TerritoryDescription
ContactName EmployeelD RegionlD < $Qgt'g¥g§
ContactTitle OrderDate
Address RequiredDate)
City ShippedDate (0,1) Shippers TerritorylD
Region (0,1) ShipVia 4,
PostalCode (0,1) Freight ShipperlD [
Country ShipName > CompanyName Employees
Phone ShipAddress Phone
Fax (0,1) ShipCity
ShipRegion (0,1) g:m:x
ShipPostalCode (0,1) - Title
Suppliers ShipCountry " e TitleOfCourtesy
OrderlD BirthDate
SupplieriD Products < ProductiD HireDate
CompanyName UnitPrice Address
ContactName ProductiD Quantity City
ContactTitle ProductName Discount Region (0,1)
Address QuantityPerUnit PostalCode
City UnitPrice Country
Region (0,1) UnitsinStock N R HomePhone
PostalCode «— UnitsOnOrder > Categories Extension
Country ReorderLevel CategorylD Photo (0,1)
Phone Discontinued CategoryName Notes (0,1)
Fax (0,1) SupplieriD Description PhotoPath (0,1)
Homepage (0,1) CategorylD Picture ReportsTo (0,1)

This database has been exported to Neo4j, and you can find it at:
Y- /data/databases/northwindhg. The graph schema is:

® ® ©®

Database Information

Node Labels
$ call db.schema

@ m Category(1) Customer(1) Product(1) <
Graph «
Relationship Types (/ A " Q BelongsTo
() \ues
A A 4 Customer
Text b % 5
3

@ - Q

o
e
g
3
foBae0sEH

Property Keys °

Category

Werite in Cypher the following queries over the northwindhg.db
database:

Query 1 - List products and their unit price.
Query 2 - List information about products 'Chocolade’' & 'Pavlova'.

Query 3 - List information about products with names starting with a "C”, whose
unit price is greater than 50.

Query 4 - Same as 3, but considering the sales price, not the product’s price.

Query 5 - Total amount purchased by customer and product.

Query 6 - Top ten employees, considering the number of orders sold.

Query 7 - For each employee, list the assigned territories.

Query 8 - For each city, list the companies settled in that city.

Query 9 - How many persons an employee reports to, either directly or transitively?
Query 10 - To whom do persons called “Robert” report to?

Query 11 - Who does not report to anybody?

Query 12 - Suppliers, number of categories they supply, and a list of such categories
Query 13 - Suppliers who supply beverages

Query 14 - Customer who purchases the largest amount of beverages

Query 15 - List the five most popular products (considering number of orders)

Query 16 - Products ordered by customers from the same country than their
suppliers

Answer: In the lecture slides

Exercise 2.

Switch to the MusicBrainz database, doing the same steps as in
Assignment 2. Now, the database is musicbrainz. The schema is:

Graph
T REFERS_TO
A erers 10
T [

REFERS TO
g
3
(<)
z
2
%
@
[
2
IS_PART_OF

o RELEASED_ON

> w
Ko “E_Eﬁg)

Rel RELEASED_BY
RELEASED_IN

Query 1. Compute the total number of releases per artist.

MATCH (r:ReleaseFact)-[]->(a:ArtistCredit)-[]->(al:Artist)
RETURN a1, count(r)

Query 2. Compute the total number of releases per artist and per year.

MATCH (r:ReleaseFact)-[r1:RELEASED_BY]->(a:ArtistCredit)-[]->(al:Artist),
(d:Date)<-[rd:RELEASED_ON]-(r)

RETURN al.name, d.year, count(r) ORDER BY al.name ASC,d.year ASC
Query 3. Compute the total number of events per artist.

MATCH (e:EventFact)-[r:PERFORMED_BY]->(a:Artist)
RETURN a.name, count(e)

Query 4. Compute the number of times the artist performed in each event.

MATCH (el:Event)<-[:REFERS_TO]-(e:EventFact)-[:PERFORMED_BY]->(a:Artist)
RETURN el.name,a.name, count(e) ORDER BY el.name ASC, a.name ASC

Query 5. For each (event, artist, year) triple, compute the number of times the artist
performed in an event on an year.

MATCH (el:Event)<-[r1:REFERS_TO]-(e:EventFact)-[r:HAPPENED_ON]->(d:Date)
WITH e,d,el

MATCH (e)-[p:PERFORMED_BY]->(a:Artist)

RETURN el.name, a.name, d.year, count(*)

ORDER BY el.name asc, d.year asc, a.name asc

Query 6. Same as Query 5, for artists in the United Kingdom and events happened
after year 2006.

MATCH (el:Event)<-[r1:REFERS_TO]-(e:EventFact)-[r:HAPPENED_ON]->(d:Date)
WHERE d.year > 2006

WITH e,d,el

MATCH (e)-[p:PERFORMED_BY]->(a:Artist)-
[IS_FROM]->(c:Country{name:'United Kingdom'})

RETURN el.name, d.year,a.name, count(*)

ORDER BY el.name asc, d.year asc, a.name asc

Query 7. Compute the number of releases, per language, in the UK.

MATCH (rd:Release)<-[REFERS_TO]-(r:ReleaseFact)
-[r1:RELEASED_IN]->(c:Country{name:'United Kingdom'})
RETURN rd.language,count(*) as nbr

ORDER BY nbr desc

Query 8. Compute, for each pair of artists, the number of times they have performed
together at least twice in an event.

MATCH (al:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)

WHERE al.id < a2.id

WITH al, a2, COLLECT(e) AS events WHERE SIZE(events) > 1
RETURN al.name, a2.name, SIZE(events)

ORDER BY SIZE(events) desc

Query 9. Compute the triples of artists, and the number of times they have
performed together in an event, if this number is at least 3.

MATCH (al:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)

WHERE al.id < a2.id

WITH al,a2,COLLECT(e) AS events WHERE SIZE(events) > 2
MATCH (al:Artist)<-[]-(el:EventFact)-[]->(a2:Artist)

MATCH (a3:Artist)<-[]-(e1) WHERE a2.id < a3.id

WITH al.name as namel, a2.name as name2,a3.name as name3,
COUNT(el.idEvent) as nbrTimes WHERE nbrTimes > 2

RETURN namel,name2,name3, nbrTimes ORDER BY nbrTimes DESC

Query 10. Compute the quadruples of artists, and the number of times they have
performed together in an event, if this number is at least 3.

MATCH (al:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)

WHERE al.id < a2.id

WITH al,a2,COLLECT(e) AS events

WHERE SIZE(events) > 1

MATCH (al:Artist)<-[]-(el:EventFact)-[]->(a2:Artist)

MATCH (a3:Artist)<-[]-(e1) WHERE a2.id < a3.id

WITH al, a2,a3,collect(el) as events1 WHERE size(events1) > 1

MATCH (al:Artist)<-[]-(e2:EventFact)-[]->(a2:Artist)

MATCH (a3:Artist)<-[]-(e2:EventFact)-[]->(a4:Artist)

WHERE a3.id < a4.id

WITH al.name as namel, a2.name as name2, a3.name as hame3,
ad.name as name4, COUNT(e2.idEvent) as nbrTimes WHERE nbrTimes > 2
RETURN namel,name2,name3,name4,nbrTimes ORDER BY nbrTimes DESC

Query 11. Compute the pairs of artists that have performed together in at least two
events and that have worked together in at least one release, returning the number
of events and releases together.

MATCH (al:Artist)<-[]-(e:EventFact)-[]->(a2:Artist)
WHERE al.id < a2.id

WITH al, a2, COLLECT(e) AS events

WHERE SIZE(events) > 1

WITH al, a2, events

MATCH (al)<-[:INCLUDES]-(ac:ArtistCredit)-[:INCLUDES]->(a2)
WITH al, a2, ac, events

MATCH (r:ReleaseFact)-[:RELEASED_BY]->(ac)
WITH al, a2, events, collect(r) AS releases
WHERE SIZE(releases) > 0

RETURN al.name, a2.name, SIZE(events),
SIZE(releases) AS nbrReleases

ORDER BY nbrReleases DESC

Query 12. Compute the number of artists who released a record and performed in at
least an event, and the year(s) this happened.

MATCH (a:Artist)<-[PERFORMED_BY]-(e:EventFact)-[:HAPPENED_ON]->(d:Date)
WITH distinct a,d.year as year

MATCH (r:ReleaseFact)-[r1:RELEASED_BY]->(a2:ArtistCredit)-[]->(a),
(r)-[r2:RELEASED_ON]->(d1:Date) WHERE d1.year=year

RETURN DISTINCT a.name, year

Exercise 3.

We will query the Flanders river system depicted in Figure 1. The schema and properties
are shown in Figures 2 to 4. Segments are represented as nodes, with label :Segment
(and their corresponding properties), and the relation between the nodes is called
:flowsTo, defined as follows: there is a relation :flowsTo from node A to node B if the
water flows to segment B from segment A. This is stored in the rivers database.

Database Information rivers$

To enjoy the full Neo4j Browser experience, we advise you to use ~ Neo4j Browser Sync

Use database

call db.schema.visualization £3

Node Labels " +(1) |

>q L *(1)
o et -

B8
Relationship Types ek

A flowsTo
Property Keys

O

Figure 2. Schema

Graph
.
Table {
"identity": 23715,

f\ "labels": [
Text

"Segment"
1,
e "properties": {

"kwaldoel": 110,

"gid": 45346,

"wtrlichc": "NG_L217_0601",

"source": 45686,

"geom": "SRID=31370;MULTILINESTRING((91163.005400002
213959.5757,91164.0419000015

Figure 3. Properties

MATCH (n:Segment) RETURN n LIMIT 25 >

N n
Graph ey e
Eii 214144 .799400002,91215.6618999988 214145.390700001))",
. "Iblkwal": "Produktie drinkwater",
able

"source_long": 3.5263787509275333,
f\ "oidn": 117936,
Text

"geo": 1,
"vhas": 4520093,
Lo "target_long": 3.527102449351701,

"beheer": "P4.045",

"beknr": 2,

"vhazonenr": 84,
"catc": 9,
"uidn": 635422,
"lengte": 193.33,

Figure 4. Properties

Property vhas is the segment iD.

Property lengte is the length of the river
Property geom is the geometry of the segment
Property catc is the category of the segment

Query 1. Compute the average segment length.

MATCH (n:Segment)
RETURN avg(n.lengte) AS avglength

Query 2. Compute the average segment length by segment category

MATCH (n:Segment)
RETURN n.catc as category, avg(n.lengte)
AS avglength order by category asc

Query 3. Find all segments that have a length within a 10% margin of the
length of segment with ID 6020612.

MATCH (n:Segment {vhas:6020612})

WITH n.lengte as length

MATCH (m:Segment)

WHERE m.lengte < length*1.1 and m.lengte > length*0.9
RETURN m.vhas, m.lengte;

Query 4. For each segment find the number of incoming and outgoing segments.

MATCH (src:Segment)-[:flowsTo]->(n:Segment)-[:flowsTo]->(target:Segment)
RETURN n.vhas as nodenbr, COUNT(DISTINCT src) as segln,
COUNT (DISTINCT target) as segOut

Query 5. Find the segments with the maximum number of incoming segments.

MATCH (n:Segment)

OPTIONAL MATCH (src:Segment)-[:flowsTo]->(n)

WITH n, COUNT(distinct src) as indegree

WITH COLLECT ([n, indegree]) as tuples, MAX(indegree) as max
RETURN [tin tuples WHERE t[1] = max |t]

Query 6. Find the number of splits in the downstream path of segment 6020612

MATCH (n:Segment {vhas:6020612})

CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD
path AS pp

UNWIND NODES(pp) as p

MATCH (p)-[:flowsTo]->(r:Segment)

WITH p, count(DISTINCT r) as co WHERE co > 1
RETURN count(p)

Here, the spanningTree function from the APOC library is used. This function
computes all simple paths that can be reached starting from a node in the graph, using
breath-first search by default. This is done visiting nodes only once. The
relationshipfilter is “flowsTo >"}, indicating that the path must traverse only this
relation, in downstream direction. The function can be parametrised in many ways, for
example, indicating the minimum and maximum levels in the path (here, the latter is
omitted). A collection of paths is returned (pp), which is then flattened as a table with
UNWIND statement. All reachable nodes are obtained. For each node in this table, it is
tested if this node has more than one outgoing segments. If this is the case, there is a
split. The node with vhas:6020612 is chosen for the test because it is one of the
farthest from the sea, thus its flow downstream is one of the longest ones.

Query 7. Find the number of in-flowing segments in the downstream path of
segment 6020612.

MATCH (n:Segment {vhas:6020612})

CALL apoc.path.spanningTree(n,{relationshipFilter:
"flowsTo>", minLevel: 1}) YIELD path AS pp

WITH [p in NODES(pp) | p.vhas] as ids

UNWIND ids as id

WITH collect(DISTINCT id) as ids

MATCH (s:Segment)-[:flowsTo]->(p)

WHERE NOT s.vhas in ids AND p.vhas <> 6020612
AND p.vhasin ids

RETURN count(DISTINCT s) as inflows

Query 8. Determine if there is a loop in the downstream path of segment 6031518.

MATCH (n:Segment {vhas:6031518})
CALL apoc.path.spanningTree(n, {relationshipFilter:
"flowsTo>", minLevel: 1}) YIELD path AS pp
WITH [p in NODES(pp) | p] as nodelist
UNWIND nodelist as p
CALL apoc.path.expandConfig(p, {relationshipFilter:"flowsTo>", minLevel: 1,
terminatorNodes:[p], whitelistNodes:nodelist}) yield path as loop
RETURN count(loop) >0 as loops

Query 9. Find the length, the # of segments, and the IDs of the segments, of the
longest branch of upstream flow starting from a given segment.

MATCH (n:Segment {vhas:6020612})

CALL apoc.path.expandConfig(n,{relationshipFilter:"<flowsTo", minLevel: 1}) YIELD
path AS pp

WITH reduce(longi= tofloat(0), n IN nodes(pp)| longi+ tofloat(n.lengte)) AS blength,
Length(pp) as alength, [p in NODES(pp) | p.vhas] AS nodelist

WITH blength, alength, nodelist[size(nodelist)-1] as id

WITH id, max(blength) as ml, collect([id,blength,alength]) as coll

WITH id, ml, [p in coll WHERE p[0]=id AND p[1]=ml|p[2]] AS Ihops

UNWIND Ihops as hops

RETURN id,ml,hops order by id desc;

Query 10. How many paths exist between two given segments X and Y?

MATCH (n:Segment {vhas:6020612}),(m:Segment {vhas: 7036554})

CALL apoc.path.expandConfig(n,{relationshipFilter:"<flowsTo", minLevel: 1,
terminatorNodes:[m]}) yield path as pp

RETURN count(pp) as paths

Query 11. Find all segments reachable from the segment closest to Antwerpen’s
Groenplaats

CALL apoc.spatial.geocodeOnce('Groenplaats Antwerpen Flanders Belgium') YIELD
location as ini

MATCH (n:Segment)

WITH n, ini,distance(point({longitude:n.source_long, latitude:n.source_lat}),
point({longitude:ini.longitude, latitude:ini.latitude})) as d

WITH n, d order by d asc limit 1

CALL apoc.path.spanningTree(n,{relationshipFilter:"flowsTo>", minLevel: 1}) YIELD
path as pp

UNWIND NODES(pp) as p

RETURN p.vhas;

ist)

