. () L
Instituto Tecnoldgico
de os Aires

-
Buen

Graph Databases Seminar

Part 2 — Fundamentals & Implementation

Alejandro Vaisman
avaisman@itba.edu.ar

8/10/19 Graph DBs Seminar

Graph database models

* Typesof relationshipssupported by graph data models

10/8/19

Attributes

» Properties,

+ Mono- or multi-

valued.

Standard
abstractions

» Part-of,
composed-by,
n-ary
associations.

Entities
- ~
» (Groups of real-

world objects.

Derivation and
inheritance

*» Subclasses and
superclasses,

 Relations of
instantiations.

Bases de datos de grafos - ITBA

Neighborhood
relations

» Structures to

represent
neighborhoods

of an entity.

Mested
relations

* Recursively
specified
relations.

The abstract data type Graph (w/properties)

G=(V, E, Z L)is a graph:

\ is a finite set of nodes or vertices,
e.9. V={Term, forOffice, Organization, ...}

= [s aset of edges representing binbry‘"" -

L 1 forodfice }mnﬂ-l Organizatian .
relationship between elements in V. 11, / \
e.g. E=|{(forOffice, Term) \ e e | - comny
(forOffice, Organization),(Office, Organization).. .} |
Vo
* Iisa setof labels, e oo |

e.g., £ ={domain, range, sc, type, ...}

L is a function: VxV = Z
e.g., L={((forOffice, Term),domain), ((forOffice, Organization),range)... |

10/8/19

Bases de datos de grafos - ITBA

The abstract data type Multigraph

G=(V. E, Z L) is a multi-graph:

= Vs a finite set of nodes or vertices, . '

e.g. V={Term, forOffice, Organization,...] irg;p.-f”” m"m“iw'
.

. - 1
range

o .l." - — - b -
= Eis a set of edges representing binbrf"“ J‘— o | e
relationship between elements in V, \ = AN

e.q. E={{forOffice, Term) I". e Ofce | S \
(forOffice,Organization),(Office, Organization)...} |

\
\
||_ .

| fondftice |

= Yisa set of labels, lL::l 2

| S
forQrganization

e.g., Z =[{domain, range, sc, type, ...}

= L is a function: V x V =2 PowerSet(2),
e.g., L={{{forOffice, Term), {domain}), ((forOffice, Organization),[range}),
((_idD,AZ) [forOffice, forOrganization}). .. }

10/8/19 Bases de datos de grafos - ITBA

Basic operations

10/8/19

Given a graph G, the following are operations over G:

AddNode(G,x): adds node x to the graph G.
DeleteNode(G,x): deletes the node x from graph G.
Adjacent(G,x,y): tests if there is an edge from x to y.
Meighbors(G,x): nodes y s t. there is anedge from x to y.
AdjacentEdges(G,x,y): set of labels of edges from x to y.
Add(G,x,y,l): adds an edge between x and y with label |.
Delete(G,x,y,|): deletes an edge between x and y with label |.
Reach(G,x,y): tests if there a path from x to y.

Path(G,x,y): a (shortest) path from x to y.

2-hop(G,x): set of nodes y s.t. there is a path of length 2 from x to y, or from
y to X

n-hop(G,x): set of nodes y s.t. there is a path of length n from x to y, or from
y to x.

Bases de datos de grafos - ITBA

Graph generalization: (multi)Hypergraphs

H=(X,E), where Xis aset of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E < P(X), whereP (X)is the power set of X.

Let X =(v1,..,vn), E = (el,....em).

w Every hypergraph has an m x nincidence
I’ matrix A = (a;;) where

Undirected
{ 1 ifvy; € €;
aij = .
0 otherwise.
o 1 {1 (10 [0 o0 [0

’ 0 1. 1 0 0 0 O
X={v19v2:v3sv4sv5yv6av7} 0 0 1 0 1 1 0
FE = {61,62, 63,64} — {{vl,v2,v3},{V2;V3}) {VB; VS;VG}) {v4}} 0 0 0 1 0 0 0

10/8/19 Bases de datos de grafos - ITBA 6

Graph generalization: (multi)Hypergraphs

H=(X,E), where Xis aset of nodes, and E is a set of non-empty subsets of X called hyperedges =>
E is a subbag of P (X) x P(X), where P (X) is the power set of X.

et . I
O,

Graphically, S,T © X; A hyperedge is denoted S ->T

In the example:

X=1{1,2,3,4}
E ={{1}->{2,4},{2}-> {3}, {3}->{2,3}}

10/8/19 Bases de datos de grafos - ITBA

Implementation

Adjacency
List

_V For each node a list
of neighbors.

7
If the graph is
directed,

| | adjacency list of i
containg only the
outgoing nodes of
i

Cheaper for
obtaining the
neighbors of a
node.

\ J

s '\‘
Not suitable for
checking if there
— i3 an edge
between two
es.

|l\

10/8/19 Bases de datos de grafos - ITBA

Implementation: adjacency list

LAdjaoency "' L2 @ L3 @ V1
List V1

_"For each node a list \ Ve
(of neighbors. L1 (Vi.{Lz2p) | (va({L3})

) . V3

If the graph is
directed, V4
| | adjacency list of i Va

containg only the
putgoing nodes of
i

(v1,{L1ph

Cheaper for
obtaining the
neighbors of a
node.

™
Not suitable for

checking if there

— i3 an edge
between two
nodes.

J
\ 7

10/8/19 Bases de datos de grafos - ITBA

Implementation: adjacency list

L

Adjacency
List

| For each node a list
of neighbors.

/ N
If the graph is
directed,

| | adjacency list of i
containg only the
outgoing nodes of
i
Cheaper for
obtaining the
neighbors of a
node.

N >
™\
\

Not suitable for

10/8/19

checking if there

— i3 an edge
between two
nodes.

J
\ 7

V1

L1

@

Bases de datos de grafos - ITBA

V1
V2

(V1.{L2}) | (vs.{L3})
V3
V4 (V1,{L1})

10

Implementation: adjacency list

* Complexity

» Storage

A: |V| X]|E]|

* Isthere anode from Xto Y?
Answer: O(V)

* OQut-degree of all nodes
Answer:O(|V| +|E|)

* In-degree of all nodes
Answer:O(|V]| x|E|) OR

O(V +E) plus additional storage: an array of length | V|, initialized to0
* Add an edge between two nodes

Answer:O(|V])

8/10/19 El Paradigma NoSQL: Bases de Datos de Grafos - ITBA 11

Implementation

Adjacency Incldence
List List
_V For each node a list Vertices and edges
of neighbors. — are stored as records
: of objects.
e N\ h
gitr:fng:fph © | | _Eat_:h vertex stores
| | adjacency listof i incident edges.
contains only the -
putgoing nodes of p .
- |_ Each edge stores
~ incident nodes.
Cheaper for
obtaining the
neighbors of a
node.
4 Y
Not suitable for
checking if there
— i an edge
between two

S8,

|l\

10/8/19 Bases de datos de grafos - ITBA

Implementation: incidence list

— are stored as records

l.of objects.

| Each vertex stores
incident edges.

anh edge stores
|n0|dent nodes.

”Venioee and edges “

10/8/19

Properties:

Storage: O(|V|+|E|+|L|)
Adjacent(G,x,y): O(|E|)
Neighbors(G,x): O(|E|)

Vi (destination,L1)
Y
2 (source,2) (source,lL3)
@ e

— destination,L3) >
V4

wt| (source,L1)
L1 » (V4,V1) .
L2 » (V2,V1) -

| |

L3 > (V2.V3) .

Bases de datos de grafos - ITBA

AdjacentbEdges(G,x,y): O(|E|)
Add(G,x,y,1): O(|E|)
Delete(G,x,y,1): O(|E|)

Implementation

Adjacency Incldence Adjacency
List List Matrix

_V For each node a list Vertices and edges . . '
of neighbors. — are stored as records Bidimensional

. of objects. graph .

p . representation.
gitr:fng:;ph ° | Each vertex stores .-

| | adjacency list of i klnoudent edges. .‘ Rows represent
containg only the ! source vertices.
outgoing nodes of . . |
. |_ Each edge stores

~ incident nodes. r ~
(3 - / Columns represent
Cheaper for destination vertices.
obtaining the \ J
neighbors of a .
node.

\ y Each non-null

h that there o an
Not suitable for || edge fere ';ae"
pheok:eg ifthoro source nede to

— is an edge e
between two trf:dgestlnatlon
N |

10/8/19 Bases de aatos ae gratos - 11BbA

L

mplementation: adjacency matrix

Adjacency |
Matrix

Bidimensional

graph

representation.
J

_‘ Rows represent
‘source vertices.

Columns represent

destination vertices.

|

Each non-null

entry represents
that there is an

— edge from the
source node to
the destination
node.

\

10/8/19

\.

Vi

V3

V4

Vi v2 v V4
{L2) {L3}
{L1}

Bases de datos de grafos - ITBA

L2 L3
Vi

L1

@

15

Implementation: adjacency matrix

* Complexity

* Storage

Answer: |V| X |V]

* Isthere an edge from XtoZ?
Answer: O(1)

* Compute the out-degree of Z
Answer:O(|V])

* Compute the in-degree of Z
Rta:O(|V])

* Add an edge between two nodes
Rta:0(1)

* Compute all paths of length 4 between any pair of nodes (4-hop)
Answer: O(|V]*).

8/10/19 El Paradigma NoSQL: Bases de Datos de Grafos - ITBA

Implementation

Adjacency
List

of neighbors.

| For each node a list

If the graph is
directed,

| | adjacency list of i
containg only the
outgoing nodes of
i

Cheaper for
obtaining the
neighbors of a
node.

N
Not suitable for
checking if there
— i3 an edge
between two
nodes.

J
\ 7

10/8/19

e \

J
/

|

Incldence
List

7]

Vertices and edges
— are stored as records

‘ofobjeots.

| Each vertex stores
incident edges.

|_ Each edge stores
incident nodes.

. adia -
Matrix

J

Bidimensional
graph)
representation.

\ /

|| Rows represent
source vertices.

Columns represent
destination vertices.

4 N

Each non-null
entry represents
that there is an
— edge from the
source node to
the destination
node.

AN /

Bases de oatos ae gratos - 11 BA

»

|

Incidence
Matrix

— represent

— represent

7 N\

Bidimensional

— graph

representation.

)
\ /

Rows
vertices. ,
~ ™\

Columns

edges

\ o

A non-null entry represents

- that the source vertex is

incident to the edge.

\

17

| Incidence
{ Matrix

— graph

'Rows
— represent
vertices.

Columns
— represent
edges

\

Bidimensional

repressentation.

7 \

/

10/8/19

vi

V2

V3

V4

A non-null entry represents
that the source vertex is
incident to the edge.

L1 L2 L3
destination | destination
source source
destination
source

Bases de datos de grafos - ITBA

mplementation: incidence matrix

L2 L3
Vi

L1

@

Incidence
Matrix

\

Bidimensional
— graph
repressentation.

'Rows
— represent
vertices.

Columns
— represent
edges

A non-null entry represents
- that the source vertex is
incident to the edge.

10/8/19

VA

V2

V3

V4

L1

L2 L3

destination | destination

source source

destination

source

Properties:

Storage: O(|V|x|E|)
Adjacent(G,x,y): O(|E|)
Neighbors(G,x): O(|V|x|E|)
AdjacentEdges(G,x,y): O(|E|)
Add(G,x,y,l): O(|V])
Delete(G,x,y,1): O(|V])

Bases de datos de grafos - ITBA

mplementation: incidence matrix

L2 L3
Vi

L1

@

19

Implementation

Incldence

Adjacency
List List
_V For each node a list Vertices and edges
of neighbors. — are stored as records
: of objects.
e N\ h
gitr:fng:fph © | | _Eat_:h vertex stores
| | adjacency listof i incident edges.
contains only the -
putgoing nodes of P
- |_ Each edge stores
~ —~ incident nodes.
Cheaper for
obtaining the
neighbors of a
node.
4 Y
Not suitable for
checking if there
— i an edge
between two

S8,

|l\

10/8/19

. adia -
Matrix

J

Bidimensional
graph)
representation.

o rep . m
source vertioes.

Columns represent
destination vertices.

Each non-null
entry represents
that there is an
— edge from the
source node to
the destination
node.

N J

Bases de oatos ae gratos - 11 BA

Incidence Compres ‘
Matrix Matrix
Bidimensional Differential

— graph encoding
representation. between two

consecutive
nodes

'Rows

— represent

\vertices.

Columns

— represent

edges

(

A non-null entry represents

- that the source vertex is
incident to the edge.

\

20

8/10/19

Implementations

Graph DBs Seminar

21

Graph databases — Representative approaches

Neo4j Reference Card

http://www.neo4).org

http://www_sparsity-technologies.com/

8/10/19 Graph DBs Seminar 22

Some graph databases

Sparksee ‘ HyperGraphDB Neod;j
Java library for L Implements the Metwork
management of onented model

hyper graph

— peraistent and data model.

temporary
graphs.

— where relationa
are firast-class
objecta.

Implementation Mative disk-

reliea on | | based storage

bitmaps and manager for
~ | secondary grapha.

structures (B+-

tres)

Framewark for
raph trave

e Some graph db implement an API ratherthan a query language

8/10/19 Graph DBs Seminar

23

Property graph model reminder

M Bt
| role=Bill
: ref = IMDb

,163 ¢ acts_:'m:—\I
role=Delilah ,
ref = IMDb :

ni1 : Person

I

- |

no : Movie \
}

name =Clint Eastwood

gender =male title=Unforgiven J:

8/10/19 Graph DBs Seminar

ny : Person

name = Anna Levine
gender = female

24

Neo4| (Robinsonet al., 2013)

* Labelledattributed multigraph

 Nodes and edges can have properties (property graphs)
* No restrictionsonthe # of edges between nodes
 Loopsallowed

* Different typesof indexes: nodes and relationships

* Different types of traversal strategies

* APIs for Javaand Python

e Embeddableand server

* Full ACID transactions

8/10/19 Graph DBs Seminar 25

Neo4| (Robinsonet al., 2013)

* Native graph processing and storage
* Characterized by index-free adjacency:
* Node keeps direct reference to adjacent nodes
e Acts like a micro-index(or local index)
 Makes query time independent from graph size for many queries
* Non-nativegraph DBs rely on global indices
* Joinsare “precomputed” and stored as relationships
* In non-nativegraph DBs, joins must be computed

8/10/19 Graph DBs Seminar 26

Neo4| (Robinsonet al., 2013)

* Native graph storage
* Storinggraphsinfiles

* Loadinggraphsintomain memory
* Cachinggraphs for fast querying

8/10/19 Graph DBs Seminar

27

Neo4j - architecture

Robinson et al., 2013

Traverser APl

Core AP

Cypher

Object Cache

File System Cache

Transaction Management

Record Files

Transaction Log

Disks

8/10/19

Graph DBs Seminar

28

File storage

inUse
nextRelld nextPropld
1 5 9
Relationship (33 bytes)
inUse firstPrevRelld secondNextRelld
firstNode secondNode relationshipType firstNextRelld secondPrevRelld nextPropld
1 5 9 13 17 21 25 29 33

e Graphsstoredin store files
* Nodes (neostore.nodestore.db)
* Relationships (neostore.relationshipstore.db)
* Properties (neostore.propertystore.db)

8/10/19

Graph DBs Seminar

29

File storage: nodes

inUse
nextRelld nextPropld

 Stored in node records
* Fixed length (9 bytes) to make search performant (find records with an offset from the node id)
* Findinga nodeis O(1)
* First byte: in-useflag
* 4 bytesfor the address of the first relationship
* 4 bytes for the first property

8/10/19 Graph DBs Seminar 30

File storage: relationships

inUse firstPrevRelld secondNextRelld
firstNode secondNode relationshipType firstNextRelld secondPrevRelld nextPropld

1 5 9 13 17 21 25 29 33

e Storedinrelationship records
* Fixed length (33 bytes)
* First byte: in-use flag
* Organized as a double-linked list
* Each record contains the IDs of the two nodes in a relationship (start and end nodes)
* A pointertothe relationship type
* Foreach node, there is a pointer to the previous and next relationship records
e These form the relationship chain

8/10/19 Graph DBs Seminar

File storage: properties

Stored in property records
* Fixed length
* Each record consists of 4 property blocks and the ID of the next property in the property chain
* Property chains: single-linked list
 Each property: between 1 and 4 blocks
* Each property record holds:
. Property type
 Pointerto the property index file, holding the property name
 Avalue, ora pointer to a dynamic structure (string or array store)

8/10/19 Graph DBs Seminar 32

Properties

File storage: example [
p3 v6 NIL

Relationship P3
Types npl pl vl np2
:R1{p3:v6} yP P
: am)er(T
‘L1{p1:v1,p2:v2} :L1{p1:v3,p4:v4} :L1{p1:v3,p4:v4} np2 pz v2 NIt
ID1 R1 np7 pl v7 NIL
ID2 R2

D
:L2{p8:v9}

Nodes Relationships

10 | SN EN | RT | FP | FN | SP | SN NP
1 A npl .
1 A B ID1 NIL r3 NIL r2 NIL

rl
2 B

r2 1 B C DI nn r4 NIL NIL rp3
3 C

r3 1 A E ID1 rl NIL NIL NIL NIL
4 D

r4 1 B D ID2 r2 NIL NIL NIL NIL
5 E np7

8/10/19 Graph DBs Seminar

Caching

File system cache (writing)

e Cache divides each store into regions (pages)

* Stores a fixed number of pages per file

e Pages are replaced using Least Frequently Used pages

Object cache

* Optimized for reading

* Stores object representations of nodes, relationships, and properties for fast path traversal
* Node objects: contain properties and references to relationships

* Relationship objects: contain only their properties

8/10/19 Graph DBs Seminar

34

Object cache

8/10/19

Rs

ID
¢ X in R1 Rz “ee Rn
e
PR R]~ [R
2 in [RRTR R | -
typeY
» out | R « | R,
type
2 | ID |start | end | type
& | key key; key; key,

O ©® W™ @

n3

Graph DBs Seminar

‘L1{p1:v3,p4:v4}

C

1L2{p8:v9}

IN:rl rl

OUT:r2 r2

OUT:r4

IN:r2 r3
r4

‘L1{p1:v3,p4:v4}

B C R1
(p3,v6)

A E R1

B D R2

35

Some graph databases

Sparksee ‘ HyperGraphDE ‘ Neo4j
Java library for L Implements the Metwork
management of hyper graph onented model
— persigtent and data modal — where relationa
temporary) are first-class
graphs. objecta.
Implementation Mative disk-
iz =7 | based storage
bitmaps and manager for
~ | secondary graphs.
structures (B+-
tres)
| | Framework for

graph traversal.

e Some graph db implement an API ratherthan a query language

8/10/19 Graph DBs Seminar

Sparksee

* Logical model

 Labeled x o
* alabel for each vertex and edge y ~

* Directed e
* fixed direction edges, from tail to head

e Attributed Jghc;;';;;n
 variable# for each vertex)

 Multigraph

* possiblymore than one edge between nodes

e Embeddedgraph dbms
* tightlyintegrated with the application at code level

8/10/19 Graph DBs Seminar

Sparksee

* Nodes and edges have a sparksee-generated OID

* Node, edge and global attributes
 Notrestricted to an edge or node type (e.g., NAME can belongto all node objects)
* Globalattributesbelongto the graph
e Attributes can have differentindexes
* Basicattributes
* Indexed attributes

* Uniqueattributes
* Edgescan index neighborhoods

* Neighborhood index
* Persistentdatabase in a single file

* Can manage very large graphs

Sparksee
 Agraph G=(V,E,L,T,H, A1l,.......,An) is defined as:

 LabelsL={(o,/)| 0 € (VuE)AlEestring}

* HeadsH={(e,h)| e€E A heV}

 TailsT={(et)| ee EAteV}

e Attributes Ai={(o,c)| 0o € (VU E) A c€(int,string,...}

* Thegraph is splitinto multiple lists of pairs
 Thefirst elementin a pairis always an edge or a vertex

Sparksee - architecture

!

SparkseeP hyton Spam.c.n\n Spamnllol T

*SWIG =Simplified Wrapper and Interface Generator. Open source tool used to
connect programs/libraries written in C/C++ with other languages.

8/10/19 Graph DBs Seminar

40

Sparksee — internal representation

“sparsity
 Each vertex and edge is identified with an immutable oid.
e Links: bidirectional
« Asetof OIDs for a value.
e Givenan OID -> a value.
« Two maps: (a) from a value to a vertex or edge set; (b) from a vertex or edge to an oid.
* Maps are B-trees.

8/10/19 Graph DBs Seminar 41

Sparksee — internal representation

Fsparsity

traligii

* A Sparksee Graph is a combination of Bitmaps:

* Bitmap for each node or edge set (type).

* Each positionin the bitmap corresponds to the oid.

* One link for each attribute.

* Two links for each type: Outgoing and in-going edges.
* Maps are B+trees

A compressed UTF-8 storage for UNICODE string.

8/10/19 Graph DBs Seminar

42

Sparksee — example

Article [v1] BABEL e[1] Article [v3] BABEL e[2] Article [v2]

id = 1 ne=°n _,(id=3 nic="en’ id=2

title = ‘Europa’ title = ‘Europa’ title = ‘Europa’
tic =‘ca’ tic =‘en’ tic =fr’

contains €[5]

Image [v5]
id=1
file="europe.png’

REF e[4]

tag="‘contin REF e[3]

contains €[6]
contains e[7] Image [v6]
id= 2
file="bcn.png’

id=4
title = ‘Barcelona;
tic = ‘en’

8/10/19 Graph DBs Seminar

43

Sparksee — example

BABEL ¢e[1]
nic="‘en’

BABEL ¢[2]
nic=‘en’

Article [v1]
id=1

title = ‘Europa’
tic = ‘ca’

Article [v3]
id=3

title = ‘Europa’
tic =‘en’

Article [v2]
id=2

title = ‘Europa’
tic = fr’

" contains e[5]

N Image [v5]
id=1
file="europe.png’

REF e[4]

tag="‘contin REF e[3]

| contains e[6]

id=4 contains e[7] Image [v6]
title = ‘Barcelonay id=2
tic =‘en’ file="bcn.png’

Value sets: group all pairs of the original set with the
same value, as a pair between the value and the set of
objects with that value

8/10/19

Aid

Atitle

Anlc

Afilena
me

Atag

Graph DBs Seminar

v1, ARTICLE), (v2, ARTICLE),
(v3, ARTICLE),
(v, ARTICLE), (vs, IMAGE),

(ve, IMAGE), (e1, BABEL), (e2,

BABEL), (e3, REF), (e4, REF),
(es, CONTAINS),

(es, CONTAINS), (e7,
CONTAINS)

(e1, v1), (e2, v2), (es3, va), (es,
va), (es, v3), (es, v3), (e7, v4)

(e1, v3), (e2, v3), (es3, v3), (e4,
v3), (es, vs), (es, ve), (€7, ve)

(v1, 1), (v2, 2), (v3, 3), (v4, 4),
(vs, 1), (ve, 2)

(v1, Europa), (v2, Europe), (v3,
Europe), (v4, Barcelona)

(v1, ca), (v2, fr), (v3, en), (v4,
en), (e1, en),(ez2, en)

(vs, europe.png), (ve, ben.jpg)

(e4, continent)

(ARTICLE, {v1, v2, v3, v4}),
(BABEL, {e1, ez2}),
(CONTAINS, {es, es, e7}),
(IMAGE, {vs, ve}), (REF, {es,
e4})

(v1, {e1}), (v2, {e2}), (vs, {es,
es}), (v4, {e3, e4, er})

(vs, {e1, e2, es, e4}), (vs, {es}),
(ve, {es, e7})

(1, {v1, vs}), (2, {v2, vs}), (3,
{va}), (4, {va})

(Barcelona, {v4}), (Europa,
{v1}), (Europe, {v2, v3})

(ca, {v1}), (en, {v3, va, e1, e2}),

(fr, {v2})

(ben.jpg, {ve}), (europe.png,
{vs})

(continent, {e4})

44

Sparksee — example

OBJECTS

RELATIONSHIPS

BABEL e[1]

ABEL BABEL e[2]
nic='en

title = ‘Europa’
ic=fr’

contains e[5]

Image [v5]
id=1
file="europe.png’

contains e[6]

Im: ge [v6]
id=D
file="bcn.png’

ai

EEI_I
N EEED

cocoool 1|

DOO0A0OOA0 11 L

00000N0C1 1

8/10/19

eus

000000301
0000000000 11
QUOaCO0J0 L1031

eus

(0OCO01 111
0000 MAL

[(0O000NaC 11

Graph DBs Seminar

oo 1

O

45

Sparksee — example

Graph query examples

— Number of articles
lobjects (LABELS, ‘ARTICLE’)!

— QOut-degree of English article ‘Europe’
lobjects (TAILS, objects(TITLE, ‘Europe’) N objects (NLC, ‘en’) N objects
(LABELS, ‘ARTICLE"))l

— Articles with references to the image with filename ‘ben.jpg’
{lookup(TAILS, x) Ix € objects (HEAD, objects (FILENAME, ’ ben.jpg’)
N objects (LABELS, ' IMAGE'))}

— Count the articles of each language

{(x,y)!lxedomain(NLC) A y =I(objects (NLC, x) n objects {LABELS;
"ARTICLE"))l}

8/10/19 Graph DBs Seminar

46

