Activity 3: Flight Data

The data used for this assignment is provided by The OpenSky
Network. We will use data from a 24hr-period corresponding to June
1, 2020 (dataset link). The raw data are provided in separate CSV
documents for each hour of the day.

As in the previous assignment, we analyse the data quality and,
if necessary, define and apply some rules to fix or discard data with
problems (ETL). Again, we build trajectories from the raw data.

Exercise 1. Creating and populating the database

1.1 Create a mobilityDB-enabled database

CREATE DATABASE OpenSky;

Choose it and run the following sentence:

CREATE EXTENSION IF NOT EXISTS MobilityDB CASCADE;

1.1.1 Download the data from the link above https://opensky-
network.org/datasets/states/2020-06-01/

The raw data will be stored in a table called flights, with the following
structure:

CREATE TABLE FlightsInput (

Et BIGINT,
ICAO24 VARCHAR (20),
Lat FLOAT,

Lon FLOAT,
Velocity FLOAT,

Heading FLOAT,

https://opensky-network.org/
https://opensky-network.org/
https://opensky-network.org/datasets/states/2020-06-01/
https://opensky-network.org/datasets/states/2020-06-01/
https://opensky-network.org/datasets/states/2020-06-01/

VertRate FLOAT,

CallSign VARCHAR(10),
OnGround BOOLEAN,

Alert BOOLEAN,

SPI BOOLEAN,

Squawk INTEGER,

BaroAltitude NUMERIC(7,2),
GeoAltitude NUMERIC(7,2),
LastPosUpdate NUMERIC (13, 3),

LastContact NUMERIC (13, 3)

) ;

1.1.2. Populate the flights table.

Load the data into the database using the following command. Replace
the <path_to_file> with the actual path of the CSV file. Do this for all
files (change the path, if necessary)

COPY FlightsInput (et, icao24, lat, lon, velocity, heading,

vertrate, callsign, onground, alert, spi, squawk,
baroaltitude, geocaltitude, lastposupdate, lastcontact)
FROM '<path_to_file>' DELIMITER ',' CSV HEADER;

You can also run the following script which iterates over the 23 files
and executes dynamic SQL statements:

If you are using Docker:

docker cp "/your path/." mobilitydb:/tmp

DO

SSDECLARE

prefixpath text= 'your-path/states 2020-06-01-"';
path text;

BEGIN
FOR rec in 0..23 LOOP
path:= prefixpath || trim(to char(rec, '09')) ||
'.csv'; -- fill with Os
EXECUTE format ('COPY flights(et, icao24, lat, lon,
velocity, heading, vertrate, callsign,
onground, alert, spi, squawk, barocaltitude,
geoaltitude, lastposupdate, lastcontact)
FROM %L WITH DELIMITER '','' CSV HEADER', path);
COMMIT;
Raise Notice 'inserting %', path;
END LOOP;
END
$S;

All the times in this dataset are in Unix timestamp (an integer) with
timezone being UTC. Thus, we need to convert them to PostgreSQL
timestamp type. This is done as follows:

ALTER TABLE FlightsInput
ADD COLUMN EtTs TIMESTAMP,
ADD COLUMN LastPosUpdateTs TIMESTAMP,
ADD COLUMN LastContactTs TIMESTAMP;
UPDATE FlightsInput SET
EtTs = to timestamp (Et),
LastPosUpdateTs = to timestamp (LastPosUpdate),

LastContactTs = to_ timestamp (LastContact);

Check the size of the database with:

SELECT pg size pretty

(pg_total relation size('FlightsInput'));

Exercise 2. Cleaning the database

2.1 Delete the NULL values for latitude.

-- 1icao24 with null lat is used to indicate the list of
rows to be deleted

WITH icao24 with null lat AS (
SELECT icao24, COUNT (lat)

FROM FlightsInput

GROUP BY icao24

HAVING COUNT (lat) = O

)

DELETE
FROM FlightsInput
WHERE icao24 IN
-— this SELECT statement is needed for the IN statement to
compare against a list
(SELECT icao24 FROM icao24 with null lat);

CREATE INDEX icao24 time index ON

FlightsInput (ICAO24, EtTs);

DELETE FROM FlightsInput WHERE Squawk IS NULL;

2.2. Explore the database and propose and execute new cleaning tasks
(in what follows we assume that only the cleaning tasks in 2.1. have
been done).

Exercise 3. Raw data visualization using QGIS

We now visualize the raw data using different tools. For example, we
visualize the points of a single flight using QGIS as follows.

Load the Waze(world) map service and run

SELECT row number () over () as ctid, st setsrid(geom, 4326)
AS geom

FROM (

SELECT etts, icao24, ST MAKEPOINT (lat, lon) AS geom

-—- TABLESAMPLE SYSTEM (n) returns only n% of the data from

-- the table.

FROM FlightsInput TABLESAMPLE SYSTEM (5)

WHERE icao24 IN ('738286') AND
etts between '2020-06-01 2:30:00' and '2020-06-01
4:30:00") as Subgl

The results looks like this:

Damascus IRAQ Baghdad
Tel Aviv-Yafo I
ISAEL yoRpAN
®o owAT
(&]
(=]
o
%ORnyddh TR
SAUDI ARABIA® um
®
Jeddah OO
Makkah %

ERITREA YEMEN

toum Sanaa

Exercise 4. Mobility Database Creation

We now create the MobilityDB database for flight trajectories. We first
create a geometry point. We did this in the SELECT clause of the QGIS
query in Exercise 3.1. This treats each latitude and longitude as a point
in space. 4326 is the SRID.

ALTER TABLE FlightsInput
ADD COLUMN geom geometry (Point, 4326);
UPDATE FlightsInput SET
geom = ST SetSRID(ST MakePoint(lon, lat), 4326);

4.1. Airframe trajectories

Each “icao24” field in the dataset represents a single airplane. We
create a composite index on icao24 (unique to each plane) and et_ts
(timestamps of observations) to help improving the performance of the
trajectory generation.

CREATE INDEX icao24 time index ON FlightsInput (icao24,
etts);

We first create trajectories for a single airframe (the plane itself), later
on we create another trajectory table for flights (that is, a single
aircraft is used for different flights in the same day, and this will be
identified by icao24, CallSign

CREATE TABLE FlightDay(ICAO24, Trip, Velocity, Heading,
VertRate, CallSign, Alert, GeoAltitude) AS (

SELECT ICAOZ24,

tgeompointSeq(array agg (tgeompoint (Geom, EtTs)
ORDER BY EtTs)
FILTER (WHERE Geom IS NOT NULL)),

tfloatSeg(array agg(tfloat (Velocity, EtTs) ORDER BY EtTs)
FILTER (WHERE Velocity IS NOT NULL)),

tfloatSeg(array agg(tfloat (Heading, EtTs) ORDER BY EtTs)
FILTER (WHERE Heading IS NOT NULL)),

tfloatSeqg(array agg(tfloat (VertRate, EtTs) ORDER BY EtTs)
FILTER (WHERE VertRate IS NOT NULL)),

ttextSeqg(array agg(ttext (CallSign, EtTs) ORDER BY EtTs)

FILTER (WHERE CallSign IS NOT NULL)),

tboolSeqg(array agg(tbool (Alert, EtTs) ORDER BY EtTs)

FILTER (WHERE Alert IS NOT NULL)),

tfloatSeg(array agg(tfloat (GeoAltitude, EtTs) ORDER BY EtTs)

FILTER (WHERE GeoAltitude IS NOT NULL))

FROM FlightsInput

GROUP BY ICAO0Z24);

This is what we did with AIS data (Assighment 2), that is:

tgeompoint: Combines each geometry point(lat, long) with the
timestamp where that point existed

array agg: aggregates all the instants together into a single
array for each item in the group by. In this case, it will create
an array for each icao24

tgeompointseq: Constructs the array as a sequence which can
be manipulated with mobilityDB functionality. In general,
tbaseseq constructs a temporal base type from an array of
sequences of a temporal base type tbase. For example, we build
a temporal integer type tint invoking the corresponding
constructor. With this, we build the sequence.

4.2. Flight trajectories

In table FlightDay we have, in a single row, an airframe’s (where an
airframe is a single physical airplane) entire day’s trip information.

For example, if we write

SELECT icaoZ24,

startValue (unnest (segments (callsign))) AS
start value callsign,
unnest (segments (callsign)) ::tstzspan AS

callsign segment period

FROM FlightDay

WHERE icao24='a6eOdc'

We obtain

icao24 & start_value_callsign 8 callsign_segment_period

character varying (20) text tstzspan
1 abeldc SCX3001 [2020-06-01 00:03:40+00, 2020-06-01 03:10:00+00)
2 abeldc SCX4001 [2020-06-01 03:10:00+00, 2020-06-01 16:16:00+00)
3 abeldc SCX3005 [2020-06-01 16:16:00+00, 2020-06-01 22:37:00+00)
4 abeldc | SCX3001 l [2020-06-01 22:37:00+00, 2020-06-01 23:55:30+00]

That is, the icao24="a6e0dc' had the same callsign ‘'SCX3001" in two
different time instants

[2020-06-01 00:03:40+00, 2020-06-01 03:10:00+00)
and

[2020-06-01 22:37:00+00, 2020-06-01 23:55:30+00]

In the same day, one flight took 3hours 6min 20 secs to complete, and
the other one took 1hour, 18min 30secs.

SELECT duration('[2020-06-01 00:03:40+00, 2020-06-01
03:10:00400) ': :tstzspan)

SELECT duration ('[2020-06-01 22:37:00+00, 2020-06-01
23:55:30+00] '::tstzspan)

These are two different flights, so we must split them.

Note: We could have tried to create the table “flight_traj” by simply
including “callsign” in the GROUP BY statement in the query used to
create the previous airframe_traj table (GROUP BY icao24, callsign).

The problem with this solution is that it would put the trajectory data
of two distinct flights where the airplane and flight number are the
same in a single row, which is not correct.

We will now partition this information per flight (an airframe flying
under a specific callsign). The following query segments the
airframe trajectories (in temporal columns) based on the time period
of the callsign. Below we show and explain the query.

CREATE TABLE Flight (ICA0O24, CallSign,

Velocity, Heading, VertRate, Alert,

SELECT ICAO024,

(Rec) .Value AS CallSign,

(Rec) .Time AS FlightPeriod,
atTime (Trip, (Rec) .Time),
atTime (Velocity, (Rec).Time),
atTime (Heading, (Rec) .Time),
atTime (VertRate, (Rec) .Time),
atTime (Alert, (Rec) .Time),
atTime (GeoAltitude, (Rec) .Time)

FROM FlightDay f, unnest(f.CallSign)

AS Rec;

FlightPeriod,
GeoAltitude) AS

Trip,

Exercise 5. Querying the Mobility Database

5.1. Compute the average velocity per flight

The query which computes this is:

SELECT callsign, twavg(velocity) AS average velocity
FROM Flight
WHERE twavg (velocity)IS NOT NULL AND /*drops rows
without velocity data*/
twavg (velocity) < 1500 -- removes erroneous data
ORDER BY twavg(velocity) desc;

Twavg computes the time-weighted average of a temporal value.

5.2. Compute the flights taking-off in Australia between 8 a.m. and
9 a.m.

-—- Bounding box around Australia
WITH Australia (AustEnv) AS (
SELECT ST MakeEnvelope (113.338953078, -43.6345972634,
153.569469029,-10.6681857235, 4326)),
-—- Span for determining ascending planes
AscSpan (Span) AS (SELECT floatspan '[1,50]'),
-- Time period we are interested in
TimeInterval (Period) AS (
SELECT tstzspan '[2020-06-01 08:00:00, 2020-06-01
09:00:00) "),
-— Planes over Australia in the given time period
AUFlight (ICAO24, CallSign, RestFlight, RestGeoAlt,
RestVertRate) AS (
SELECT ICA0O24, CallSign,
atTime (Trip, Period),
atTime (GeoAltitude, Period),
atTime (VertRate, Period)
FROM Flight, Australia, TimelInterval

WHERE atTime (Trip, Period) IS NOT NULL AND

ST Intersects (AustEnv, trajectory(atTime(Trip,
Period)))),
-— Ascending planes
AUFlightAscent (ICAO24, CallSign, AscTrip, AscVertRate) AS (
SELECT ICA0O24, CallSign,
atTime (RestFlight,
timeSpan (sequenceN (atValues (RestVertRate, Span), 1))),
atTime (RestVertRate,
timeSpan (sequenceN (atValues (RestVertRate, Span), 1)))
FROM AUFlight, AscSpan
WHERE atValues (RestVertRate, Span) IS NOT NULL)
-— Result
SELECT ICA0O24, CallSign, trajectory(AscTrip) AS Geom
FROM AUFlightAscent, Australia

WHERE atGeometry (AscTrip, AustEnv) IS NOT NULL;

The first CTE builds a MBB for Australia. The AscSpan and
TimeInterval CTEs are used to state the value and time spans,

respectively, that are used in the query to extract the portions of
interest of the flight. The CTE AUFlight restricts the spatiotemporal
Trip, the GeoAltitude and the vertical speed vertRate to the selected
time and vertrate intervals respectively; the conditions in the WHERE
clause guarantee that only trips in the required zone and time intervals
are considered in the computation. Finally, the AUFlightAscent CTE
selects the take-off portions of the flight and the GeoaAltitude and
VertRate during such segments. In the expression

atTime (RestFlight,
timeSpan (sequenceN (atValues (RestVertRate, Span),1)))

the atvalues function restricts the function to the instants where the
VertRate parameter is between 1 and 50. Since this returns a
sequence set, sequenceN obtains the first sequence, and tstzspan
retrieves the time interval of this element. Finally, at Time obtains the
take-off part of the trip. The final query clips the result to the Australian
territory using the atGeometry function and finally we compute the
spatial projection (trajectory(ascendingTrip)) .

5.3. Compute the flights over Australia between 8:00 and 9:00 a.m.
on June 1st, 2020.

WITH Australia (AustEnv) AS (
SELECT ST MakeEnvelope (113.338953078, -43.6345972634,
153.569469029,-10.6681857235, 4326)),
TimeInterval (Period) AS (
SELECT tstzspan '[2020-06-01 08:00:00, 2020-06-01
09:00:00) ")
SELECT ICA0O24, trajectory(atGeometryTime (Trip, AustEnv,
Period)) AS Traj
FROM Flight, Australia, TimelInterval
WHERE eIntersects (Trip, AustEnv) IS NOT NULL AND

atGeometryTime (Trip, AustEnv, Period) IS NOT NULL;

In the query above, we start defining in the first CTE a MBB that
corresponds to Australia and in the second CTE the time period in which
we are interested. In the SELECT clause, atGeometryTime restricts
the trip to Australia’s MBB and to the period indicated in the query.
This function is a shorthand for the combination of the functions
atGeometry and atTime. Finally, the spatial projection is computed
with the function trajectory. In the WHERE clause, we ensure that
trip actually intersected Australia’s MBB and the specified time period.
The result looks in QGIS:

TIMOR LESTE

Exercise 6. Write the following queries and display their result in
QGIS .

6.1. Trajectories of the flights of the aircraft ‘000001".

SELECT ROW_NUMBER() OVER() as cid, icao24,callsign, traj

FROM (

SELECT icao24, callsign, trajectory(trip) AS traj

FROM flight

WHERE icao24='000001"' and callsign > 'A" AND
ST_GeometryType(trajectory(trip))='ST_LineString'

) as subql

6.2. Altitude of aircraft icao24="'06a0af' during take-off in the
interval 2020-06-01 03:00:00, 2020-06-01 04:00:00.

This query allows reviewing important functions
WITH

flight_traj_time_slice (icao24, callsign, time_slice_trip, time_slice_geoaltitude,
time_slice_vertrate) AS(

SELECT icao24,callsign,
atTime(trip, '[2020-06-01 03:00:00, 2020-06-01
04:00:00)": :tstzspan),
atTime(geoaltitude, '[2020-06-01 03:00:00, 2020-06-01 04:00:00)": :tstzspan),
atTime(vertrate, '[2020-06-01 03:00:00, 2020-06-01 04:00:00)': :tstzspan)
FROM Flight
WHERE icao24='0100a3"' AND atTime(trip, '[2020-06-01 03:00:00, 2020-06-01
04:00:00)"::tstzspan) IS NOT NULL
)
-- ASCENDING PLANES

flight_traj_time_slice_ascent(icao24, callsign, ascending_trip,
ascending_geoaltitude, ascending_vertrate) AS

(SELECT icao24, callsign,

atTime(time_slice_trip, sequenceN(atValues(time_slice_vertrate,

'[1,20]"::floatspan), 1)::tstzspan),

atTime(time_slice_geoaltitude, sequenceN(atValues(time_slice_vertrate,
'[1,20]"::floatspan),1)::tstzspan),
atTime(time_slice_vertrate, sequenceN(atValues(time_slice_vertrate,
'[1,20]"::floatspan), 1)::tstzspan)
FROM flight_traj_time_slice
WHERE
atTime(time_slice_trip, sequenceN(atValues(time_slice_vertrate,
'[1,20]"::floatspan), 1)::tstzspan) IS NOT NULL),

StatsTable AS(

SELECT icao24, callsign, unnest(instants(ascending_geoaltitude)),
startTimestamp(unnest(instants(ascending_geoaltitude))) AS timeasc,
getValue(unnest(instants(ascending_geoaltitude))) AS altitude

-- instants return the (value,time) pairs as an array

-- unnest them as single value@time

-- getValue gets the value

-- startTimestamp obtains the initial timestamp (in this case, the only one)
-- startValue obtains the initial value (=getValue for a simple element)
FROM flight_traj_time_slice_ascent)

SELECT timeasc,altitude

FROM StatsTable

6.3. Duration of all flights over Australia, showing the trajectory, the
number of points in the trajectory, and the duration computed in two
different ways: using timespan and using duration.

WITH
Australia AS (SELECT ST_Transform(ST_makeEnvelope
(-1758447, -4666808,2281883,-1535490,3112),4326) AS Australia)
SELECT icao24, atGeometry(trip,australia)::tstzspan,
numtimestamps(atGeometry(trip,australia)),
duration(atGeometry(trip,australia)), timespan(atGeometry(trip,australia)),
trajectory(atGeometry(trip,australia))

FROM Flight, Australia

WHERE eintersects(trip,australia) IS NOT null AND atGeometry(trip,australia) IS
NOT NULL

6.4. Duration of flight icao24= 'c0175a' over Australia, together with
the distance travelled within the country.

WITH
Australia AS (SELECT ST_Transform(ST_makeEnvelope
(-1758447, -4666808,2281883,-1535490,3112),4326) AS Australia)
SELECT icao24,length(transform((atGeometry(trip,australia)), 3112)),
st_length(st_transform(trajectory(atGeometry(trip,australia))::geometry,
3112)),
atGeometry(trip,australia)::tstzspan,
timespan(atGeometry(trip,australia)),
trajectory(atGeometry(trip,australia))
FROM Flight, Australia
WHERE eintersects(trip,australia) IS NOT NULL AND
atGeometry(trip,australia) IS NOT NULL AND icao24="'c0175a'

6.5. Compute the distance between two planes at all instants and
visualize the results in QGIS. Use planes with icao24="'06albc' and
icao24="'040039'.
WITH mindist AS(
SELECT transform(sl.trip, 3112) <-> transform(s2.trip,3112) AS distance
FROM Flight s1, Flight s2
WHERE sl.icao24 > s2.icao24 AND atMin(transform(sl.trip,3112) <->
transform(s2.trip,3112)) IS NOT NULL AND s1l.icao24="'06albc' AND
s2.icao24='040039")
SELECT startTimestamp(unnest(instants(distance))) as time,
getValue(unnest(instants(distance)))/1000 as distance
FROM mindist

transform(s1.trip,3112) transforms the geometries in the trip to the SRID of
Australia.

<-> returns the distance between two moving points at all timestamps in the
trajectory

atMin(sl.trip <-> s2.trip) returns the minimum distance between two moving
objects and the moment when that occurred

instants(distance) converts the sequence into an array that can later be
unnested to build the series.

6.6. Compute the aircraft flying at altitudes between three and eight
thousand meters

WITH TimeAltitude(Period,AltSpan) AS (
SELECT tstzspan '[2020-06-01 08:00:00, 2020-06-01 09:00:00)',
floatspan '[3000,8000)'),

FlightTimeSlice(ICAO24, CallSign, TripTimeSlice, AltitudeTimeSlice) AS (
SELECT ICAQ24, CallSign, atTime(Trip, Period), atTime(GeoAltitude, Period)
FROM Flight, TimeAltitude

WHERE atTime(Trip, Period) IS NOT NULL),

FlightTimeSliceCruising(ICAO24, CallSign, CruisingTrip,
CruisingGeoAltitude) AS (

SELECT ICAQ24, CallSign,
atTime(TripTimeSlice, timeSpan(sequenceN(atValues(AltitudeTimeSlice,
AltSpan), 1))), atTime(AltitudeTimeSlice, timeSpan(sequenceN(
atValues(AltitudeTimeSlice, AltSpan), 1)))

FROM FlightTimeSlice, TimeAltitude

WHERE atTime(TripTimeSlice, timeSpan(sequenceN(atValues(AltitudeTimeSlice,

AltSpan), 1))) IS NOT NULL),

FinalOutput AS (

SELECT ICAO24, CallSign,
getValue(unnest(instants(CruisingGeoAltitude))) AS GeoAltitude,
ST_X(getValue(unnest(instants(CruisingTrip)))) AS Lon,
ST_Y(getValue(unnest(instants(CruisingTrip)))) AS Lat

FROM FlightTimeSliceCruising)

SELECT *
FROM FinalOutput
WHERE GeoAltitude IS NOT NULL;

6.7. Compute the flight landing in the world between 8 a.m. and 10
a.m.

-- Span for determining descending planes
WITH DescSpan(Span) AS (SELECT floatspan '[-20,0]"),

-- Time period we are interested in
Timelnterval(Period) AS (
SELECT tstzspan '[2020-06-01 08:00:00, 2020-06-01 10:00:00)"),

-- Planes in the given time period
WorldFlight(ICAO24, CallSign, RestFlight, RestGeoAlt, RestVertRate) AS (
SELECT ICAO24, CallSign, atTime(Trip, Period), atTime(GeoAltitude, Period),

atTime(VertRate, Period)
FROM Flight, Timelnterval
WHERE atTime(Trip, Period) IS NOT NULL),

-- Descending planes
WorldFlightDescent(ICAO24, CallSign, RestGeoAlt, DescTrip, RestVertRate) AS (
SELECT ICAO24, CallSign, RestGeoAlt, atTime(RestFlight, timeSpan(
sequenceN(atValues(RestVertRate, Span), 1))),
atTime(RestVertRate, timeSpan(sequenceN(atValues(RestVertRate,
Span), 1)))
FROM WorldFlight, DescSpan
WHERE atValues(RestVertRate, Span) IS NOT NULL),

FinalOutput AS (
SELECT ICAO24, CallSign, getValue(unnest(instants(RestGeoAlt))) AS
GeoAltitude, getValue(unnest(instants(RestVertRate))) AS VertRate,
ST_X(getValue(unnest(instants(DescTrip)))) AS Lon,
ST_Y(getValue(unnest(instants(DescTrip)))) AS Lat
FROM WorldFlightDescent)

SELECT ICAO24, CallSign, GeoAltitude, VertRate, Lon, Lat

FROM FinalOutput

WHERE VertRate IS NOT NULL AND GeoAltitude IS NOT NULL AND
GeoAltitude < 1000;

