

Activity 2: Vessels

AIS, standing for Automatic Identification System, is the location-
tracking system for sea vessels. AIS equipment on board of ships
produces data that are collected by a shore-based AIS system operated
by the Danish Maritime Authority. AIS data are published in CSV file
format. Check the site https://dma.dk/safety-at-sea/navigational-
information/ais-data for more details.

You must be aware that this information is produced by the ships'
own instruments and contains errors, such as erroneous ship's speeds
and/or positions. We should analyze data quality and, if necessary, define
and apply some rules to fix or discard data with problems (ETL).
Trajectories will be built from raw AIS Data.

In this assignment we propose to analyze trajectory patterns to
learn some basic MobilityDB functionality. Whenever possible we also
visualize data in some GIS tool such as QGIS.

Exercise 1. Creating and populating the database

1.1 Create a mobilityDB-enabled database

CREATE DATABASE vessels;

Choose it and run the following sentence:

CREATE EXTENSION IF NOT EXISTS MobilityDB CASCADE;

Download the file aisdk-2024-03-01.zip, which contains temporal data
for March 1st, 2024.

You must create the table that stores the information in the csv.

For this, execute the following sentence:

https://dma.dk/safety-at-sea/navigational-information/ais-data
https://dma.dk/safety-at-sea/navigational-information/ais-data
https://web.ais.dk/aisdata/aisdk-2024-08-07.zip

CREATE TABLE AISInput(

T timestamp,

TypeOfMobile varchar(50),

MMSI integer,

Latitude float,

Longitude float,

navigationalStatus varchar(60),

ROT float,

SOG float,

COG float,

Heading integer,

IMO varchar(50),

Callsign varchar(50),

Name varchar(100),

ShipType varchar(50),

CargoType varchar(100),

Width float, Length float,

TypeOfPositionFixingDevice varchar(50),

Draught float,

Destination varchar(50),

ETA varchar(50),

DataSourceType varchar(50),

SizeA float,

SizeB float,

SizeC float,

SizeD float,

Geom geometry(Point)

);

1.1.2. Populate the table.

Note that the COPY sentence is server oriented. Thus, the path needs to
be solved on the server side. Be sure that the timestamp format is the
correct one according to the data in the csv file. If the file is on the server,
we can use the following sentence to import data to the target table. Run
it. After some minutes, we will obtain more than one million tuples
(change the path accordingly).

SET TimeZone = 'UTC';

SET DateStyle = 'ISO, DMY';

COPY AISInput(T, TypeOfMobile, MMSI, Latitude, Longitude,

NavigationalStatus, ROT, SOG, COG, Heading, IMO, CallSign,

Name, ShipType, CargoType, Width, Length,

TypeOfPositionFixingDevice, Draught, Destination,

ETA, DataSourceType,SizeA, SizeB, SizeC, SizeD)

FROM '/tmp/aisdk-2024-03-01.csv' DELIMITER ',' CSV HEADER;

-- You must replace '/tmp/aisdk-2024-03-01.csv' with your path to the
file

 When the size of the file is huge, it is convenient to follow these
steps: put the file in the server and use the server-oriented COPY
command.

 If the file were small, we could use the client-side oriented \COPY
command. In this case, the file path should be found on the client side.
The problem with this is that, to load the data into the table, the file
should be transferred from the client to the server during the execution
of this command.

Exercise 2. Cleaning the database

The csv file has at least two major problems:

• Missing values: The 'Unknown' text is used for representing null
values. We need to convert this text into the NULL database value.

• Points as latitude-longitude values: The csv does not contain points.
Latitude and longitude values are stored in two table columns. For
spatial queries we must transform the lat/lon pairs into Point
geometries. To fix this problem, we added an extra column geom,
which we did not populate. Two PostGIS functions allow
constructing a Point data value from lat/lon: ST_MakePoint and
ST_Point.

At this point, it is important to remark that PostGIS offers
geography and geometry data types. The former is based on a spherical
model and uses a geodetic coordinates (lat/lon) system (unit of
measurement: degrees). The latter uses the Cartesian coordinate system
(unit of measurement: meters/feets). The execution performance of
functions such as distance, area, intersects, among others, are less
complicated when working on the plane than on the spherical mode
because the underlying mathematics used is simpler. Although PostGIS
offers conversion between these both types, fewer functions are defined
on geography than on geometry types.

Both data types above are associated with a Spatial Reference
System (SRS) via a Spatial Reference System Identifier (SRID) which
defines how the object is referenced to locations on the Earth’s surface.
On the one hand, Geodic SRS uses angular coordinates (lat/lon) which
map directly to the surface of the earth. On the other hand, Projected
SRS uses a mathematical transformation to flatten the spherical surface
onto the plane. In general, the last one needs to be limited to a bounded
area to avoid distortions.

For our extra column we may use geography or geometry type.
SRID 4326 is used for worldwide geodesic shapes and SRID 25832 is used
for geometries that belong to Denmark zone.

Fig 1- (https://epsg.io/25832) bounded zone for SRID 25832

2.1. We now generate points from the lat/lon values. Note that since
longitude and latitude come in degrees, you MUST set the initial SRID to
4326 with the ST_SetSRID statement and THEN transform to the 25832
SRID using ST_Transform. You CAN’T set the SRID directly to 25832.

We can create the points in two ways: using ST_MakePoint and using
ST_Point. The former does not accept the SRID as a parameter, thus we
must use ST_SetSRID for this. ST_Point accepts SRID as a parameter.

Try the following queries.

a) Using ST_MakePoint

SELECT ST_Transform(

 ST_SetSRID(ST_MakePoint(Longitude, Latitude), 4326), 25832)

b) Using ST_Point

SELECT ST_Transform(

 ST_Point(Longitude, Latitude, 4326), 25832)

In both cases you will get an error because there are points outside
the limits of the SRID 25832 zone. In the next section we explain how
to solve this problem.

https://epsg.io/25832

2.2. Now, we fix null values and other problems.

we would obtain an error because the ST_Transform function checks that
latitude and longitude ranges from -90 to 90 and from -180 to 180,
respectively. Run the following query and check that there are values
outside the expected range.

SELECT min(latitude) as minlatitude, max(latitude) as maxlatitude,

 min(longitude) as minlongitude, max(longitude) as maxlongitude

FROM aisInput

Thus, we need to exclude those values.

But, in fact, there exist other points that are outside the minimum
bounding box corresponding to Denmark. According to
https://epsg.io/25832 the limits should be

Latitude: 40.18 and 84.73

Longitude: -16.1 and 32.88

If we now run the queries above limiting the values above, we will not get
errors.

a) SELECT ST_Transform(

 ST_SetSRID(ST_MakePoint(Longitude, Latitude), 4326), 25832)

 FROM AISInput

 WHERE latitude between 40.18 and 84.73 AND

 longitude between -16.1 AND 32.88

b) SELECT ST_Transform(ST_Point(Longitude, Latitude, 4326),
 25832)

 FROM AISInput

 WHERE latitude between 40.18 and 84.73 AND

 longitude between -16.1 AND 32.88

https://epsg.io/25832

We clean these errors from the data together with other cleaning tasks
(e.g., replacing unknown values with NULL) running the following
statement:

UPDATE AISInput

SET

 NavigationalStatus = CASE NavigationalStatus

 WHEN 'Unknown value' THEN NULL END,

 IMO = CASE IMO WHEN 'Unknown' THEN NULL END,

 ShipType = CASE ShipType WHEN 'Undefined' THEN NULL END,

 TypeOfPositionFixingDevice = CASE TypeOfPositionFixingDevice

 WHEN 'Undefined' THEN NULL END,

 Geom = ST_Transform(ST_SetSRID(ST_MakePoint(longitude,

 latitude), 4326), 25832)

WHERE latitude between 40.18 and 84.73 AND

 longitude between -16.1 AND 32.88

The execution takes approximately 10 minutes on standard hardware.

When the process finishes the points inside the boundaries will contain
null values (about 100,000 tuples in total). Check with

SELECT

 NavigationalStatus,

 IMO,

 ShipType,

 TypeOfPositionFixingDevice,

 geom

FROM AISInput

WHERE latitude between 40.18 and 84.73 AND

 longitude between -16.1 and 32.88

or

SELECT

 NavigationalStatus,

 IMO,

 ShipType,

 TypeOfPositionFixingDevice,

 geom

FROM AISInput

WHERE geom is not null

Exercise 3 Visualization and data exploration

3.1. Download QGIS V 3.22 from

https://www.qgis.org/en/site/forusers/download.html

Open the QGIS Desktop application.

To add a map layer we first need to add the QuickMapServices QGIS
complement.

Choose the option Install Complement:

To visualize services such as Google ESRI, among others, choose the
“Web-QuickMapServices-Settings” sub-menu.

https://www.qgis.org/en/site/forusers/download.html

In the pop-up dialog choose the “Get Contributed Pack” option.

In the “Visibility” panel you can see the new enabled services. You can
choose which ones to use. Close the dialog box.

Now, the sub menu “Web-QuickMapServices” displays enabled services.

3.2. Add the Waze World map layer or the ESRI Topo map layer

3.3. Generate a remote PostGIS connection

3.4. Add the geographic layers

To create a layer from an SQL query, we need to make sure that there
exist at least two special columns: one that identifies each feature to be
drawn and one to be displayed (geometry).

If a table contains a Primary Key/Unique and a geometry column the
process is straightforward. However, in our case study, we do not have a
primary key. Thus, we need to generate an ID ad hoc. Select the SQL
option:

First, we run the query.

We need at least two columns: ctid (the ID) and the geometry (geom).

SELECT row_number() over () AS ctid, geom, latitude, longitude

FROM

(select geom, latitude, longitude

 from aisinput

 where geom is not null -- exclude points outside Denmark zone

) AS _subq_1_

Once the execution is finished, we need to load the result in a layer. Check
the “Column with unique values” and “Geometry Column” boxes and
choose ctid and geom. Then click the “Load Layer” option. This can take
a while.

3.5. Due to the lack of a data quality analysis, there are other problems
that have not been detected and should be fixed before generating the
trajectories.

The MMSI is the vessel identifier. Thus, it is not possible that the same
vessel can report more than one position at the same instant. To find out
the vessels with more than one location at the same time instant, we run
the following query:

SELECT mmsi, t, count(geom)

FROM aisinput

WHERE geom is not null

GROUP BY mmsi, t

HAVING count(geom) > 1

We can see that many tuples have problems.

3.6. Calculate the percentage of vessels with this problem

SELECT count (distinct mmsi)

FROM aisinput

WHERE geom is not null /

SELECT count(distinct mmsi)

FROM (

 SELECT mmsi, t, count(geom)

 FROM aisinput

 WHERE geom is not null

 GROUP BY mmsi, t

 HAVING count(geom) > 1

) as a

3.7. The analysis scenario could be divided in two cases:

• If a vessel (MMSI) at the same time reports the same location several
times, the solution is straightforward: keep only one of them.

Check that:

SELECT mmsi, t, count(geom)

FROM aisinput

WHERE geom is not null

GROUP BY mmsi, t

HAVING count(distinct geom) = 1 AND count(geom) > 1

How many tuples that have this problem do you obtain, and the number
of vessels involved.

• If a vessel (MMSI) at the same time reports more than one location,
not necessarily the same one, the solution is more involved.

We now analyze some possible solutions. In each option, we generate a
new table, named AISInputFilteredX, which contains the fixed tuples

• Option A: Assuming that the values are close to each other, we can
consider a representative lat/lon pair as the average of latitudes and
the average of longitudes, respectively. The query for this, reads:

CREATE TABLE AISInputFiltered1 AS

select t, max(typeofmobile) as typeofmobile, mmsi,

avg(latitude) as latitude, avg(longitude) as longitude,

max(navigationalstatus) as navigationalstatus,

max(rot) as rot, max(sog) as sog, max(cog) as cog,

max(heading) as heading, max(imo) as imo, max(callsign) as callsign,

max(name) as name, max(shiptype) as shiptype,

max(width) as width, max(length) as length,

max(typeofpositionfixingdevice) as typeofpositionfixingdevice,

max(draught) as draught, max(destination) as destination,

max(eta) as eta, max(datasourcetype) as datasourcetype,

ST_Transform(ST_SetSRID(ST_MakePoint(avg(Longitude), avg(Latitude)
), 4326), 25832) as geom

FROM aisinput

WHERE geom is not null

GROUP BY mmsi, t

• Option B: Ignore those points. We assume that the vessels’
instruments had problems during the transmission. The decision is to
ignore those tuples where for the same MMSI there is more than one
location reported (either the same or not), considering that
instruments were not reliable at those instants. We run the following
query:

CREATE TABLE AISInputFiltered2 AS

SELECT *

FROM aisinput

WHERE geom IS NOT NULL AND

(mmsi, t) IN

(

 SELECT mmsi, t

 FROM aisinput

 WHERE geom IS NOT NULL

 GROUP BY mmsi, t

 HAVING count(geom) = 1

)

• Option C: Choose one representative element. For instance, for those
(MMSI, t) pairs with more than one location, choose the first one. The
Postgres SQL: “SELECT DISTINCT ON (expression) LISTAATTR from
TABLE” returns the first tuple in each group. If we want to control which
tuple we want to keep, an ORDER BY clause should be used. Usually,
we sort the table with respect to the time dimension, and keep the first
occurrence. But in our case, that is not useful because the temporal
attribute “t” is part of the grouping attributes. Thus, we cannot write
“SELECT DISTINCT ON(MMSI, T) * FROM AISInput ORDER BY t”

In our case, there is no information that can help us to decide which
tuple is preferable to keep. Thus, we do not use ORDER BY clause. The
query for this solution is as follows:

CREATE TABLE AISInputFiltered3 AS

SELECT DISTINCT ON(MMSI,T) *

FROM AISInput

WHERE geom IS NOT NULL

Exercise 4 Trajectory generation

For a specific MMSI, the list of 2D-points, sorted by their timestamp
values, defines a trip. We assume that the vessel located at position pi at
instant ti moved linearly to position pi+1 at instant ti+1.

Any of the previously AISInputFilteredX could be used, and
we choose the last one, namely AISInputFiltered3.

To represent ships and their spatiotemporal trajectory (trip) we
select the following attributes of interest from AISInputFiltered3:

• MMSI: integer invariant
• geom: geom changes over time. We use the mobilityDB temporal data

type tgeompoint. From tgeompoints we can build trajectories.
• sog: float that changes over time. We use the mobilityDB tfloat.
• cog: float that changes over time. We use the mobilityDB tfloat

As we discussed in “Mobilitydb data model”, the table Ships should be
defined as follows:

CREATE TABLE Ships(

MMSI integer,

Trip tgeompoint,

SOG tfloat,

COG tfloat

)

The three attributes Trip, SOG and COG represent the evolution of a
value during a sequence of time instants where the values between
these instants are obtained using linear interpolation. Thus, we use
the MobilityDB sequence subtype when populating these attributes.

4.1. Run the following query which builds temporal sequences for each
MMSI value:

CREATE TABLE Ships(MMSI, Trip, SOG, COG) AS

SELECT MMSI,

 tgeompointseq(array_agg(

 tgeompoint(geom , t) ORDER BY t)),

 tfloatseq(array_agg(

 tfloat (SOG, t) ORDER BY t

) FILTER (WHERE SOG IS NOT NULL)),

 tfloatseq(array_agg(

 tfloat (COG, t) ORDER BY t

) FILTER (WHERE COG IS NOT NULL))

FROM AISInputFiltered3

GROUP BY MMSI;

Finally, to display the trajectories in QGIS, we need to generate a geom
column (QGIS does not interpret temporal data types). Let us name this
column traj and populate it with the geometry of each trip.

4.2. Generate a column to store the trajectory of the ships, that is, the
spatial projection of the spatiotemporal trip. Run the following query:

ALTER TABLE Ships ADD COLUMN Traj geometry;

UPDATE Ships SET Traj= trajectory(Trip);

4.3. We can compute, for example, the length or speed of trips.

Next, we list the vessels whose trips have the maximal length among all
trips.

SELECT mmsi, length(trip)

FROM ships

WHERE length(trip) = (SELECT max(length (trip)) FROM ships)

4.4. We now classify vessels by their trip length. Show a histogram where
for different ranges of trip lengths (measured in Km), and display number
of vessels in each bucket. We want to obtain the following output:

We run the following query:

WITH

buckets (bucketNo, RangeKM) AS (

 SELECT 1, floatspan '[0, 0]'

 UNION SELECT 2, floatspan '(0, 50)'

 UNION SELECT 3, floatspan '[50, 100)'

 UNION SELECT 4, floatspan '[100, 200)'

 UNION SELECT 5, floatspan '[200, 500)'

 UNION SELECT 6, floatspan '[500, 1500)'

 UNION SELECT 7, floatspan '[1500, 10000)'),

 histogram AS

 (SELECT bucketNo, RangeKM, count(MMSI) as freq

 FROM buckets LEFT OUTER JOIN

 Ships ON (length(Trip)/1000) <@ RangeKM

-- The operator “<@” tests if the first argument is contained in the second one.

 GROUP BY bucketNo, RangeKM

 ORDER BY bucketNo, RangeKM)

SELECT bucketNo, RangeKM, freq, repeat('#', (freq::float / max(freq)

 OVER () * 30)::int) AS bar

FROM histogram;

4.5. There are trips that are too long, outside the range above. To
compute them, we write:

SELECT mmsi, traj

FROM ships

WHERE length(trip) > 1500000

Also trips with length 0 should be excluded.

Run the following SQL query. 321 tuples where deleted (either with trips
of length 0 or too long trips.

DELETE FROM Ships

WHERE length(Trip) = 0 OR length(Trip) >= 1500000;

The trips to be considered are visualized as follows:

4.6. We can calculate the speed of the ships from the trip column and
compare the results against the stored SOG value. Calculated speed is
measured in m/s whereas SOG is expressed in knots (1 knot is equivalent
to 1.852 km/h). We convert both to the same unit: km/h.

Since time interval durations differ from each other, we use the speed
time-weighted average for comparing them. The mobilityDB function
twavg computes the time-weighted average.

Run the following query

SELECT ABS(twavg(SOG) * 1.852 - twavg(speed(Trip))* 3.6)
SpeedDifference

FROM Ships

ORDER BY SpeedDifference DESC;

You should obtain something like:

Null

Null

…

107.86110006787943

83.01385241476066

…..

You will note that the first tuples in the result, show a difference either
NULL of greater than 100 km/h. We show these trajectories:

They do not seem to be real trajectories. Thus, we delete them and check
that they were deleted:

DELETE

FROM Ships

WHERE

ABS(twavg(SOG) * 1.852 - twavg(speed(Trip))* 3.6) IS NULL

OR

ABS(twavg(SOG) * 1.852 - twavg(speed(Trip))* 3.6) > 100

Exercise 5 Querying

5.1. We analyze trips between the ports of Rodby and Puttgarden.

Check that the UTM coordinates of the port of Rodby are 652129 6059729

https://geohack.toolforge.org/geohack.php?pagename=R%C3%B8dbyh
avn¶ms=54_39_43_N_11_21_31_E_type:city_region:DK-85

We can build a rectangle very close to the entrance of the harbour with:

ST_MakeEnvelope(651135, 6058230, 651422, 6058548).

Analogously, the UTM coordinates of the port of Puttgarden are
643543 6041415.

https://geohack.toolforge.org/geohack.php?pagename=Puttgarden&par
ams=54_30_N_11_13_E_region:DE_type:city

We can build a rectangle very close to the entrance of the port:

ST_MakeEnvelope(644339, 6042108, 644896, 6042487)

The PostGIS statement next, corresponds to the definition of both
rectangles:

SELECT -- Rodby harbour

1 as id, ST_MakeEnvelope(651135, 6058230, 651422, 6058548, 25832)
as g

UNION ALL

SELECT -- Puttgarden port

2 as id, ST_MakeEnvelope(644339, 6042108, 644896, 6042487, 25832)
as g

https://geohack.toolforge.org/geohack.php?pagename=R%C3%B8dbyhavn¶ms=54_39_43_N_11_21_31_E_type:city_region:DK-85
https://geohack.toolforge.org/geohack.php?pagename=R%C3%B8dbyhavn¶ms=54_39_43_N_11_21_31_E_type:city_region:DK-85
https://geohack.toolforge.org/geohack.php?pagename=Puttgarden¶ms=54_30_N_11_13_E_region:DE_type:city
https://geohack.toolforge.org/geohack.php?pagename=Puttgarden¶ms=54_30_N_11_13_E_region:DE_type:city

We want to analyze the trajectories that intersect both places above.

WITH Ports(Rodby, Puttgarden) AS

(SELECT ST_MakeEnvelope(651135, 6058230, 651422, 6058548,
25832), ST_MakeEnvelope(644339, 6042108, 644896, 6042487, 25832)
)

SELECT S.*, Rodby, Puttgarden

FROM Ports P, Ships S

WHERE eintersects(S.Trip, P.Rodby) AND eintersects(S.Trip,
P.Puttgarden)

Notice that the MobilityDB eintersects function checks whether a
temporal point has ever intersected a geometry. We obtain four ships
that continuously go from one port to the other. The figure above shows
the trajectories of these four ships.

Spatiotemporal queries can be improved if an appropriate spatiotemporal
index has been created. Build a GiST index over trajectories and rerun
the query:

CREATE INDEX Ships_Trip_Idx ON Ships USING GiST(Trip);

5.2. The previous result set contains four vessels and their trips.
Calculate how many times each of these ships repeated a one-way trip.

 We can ask, for each trip, how many times the vessel touches both
ports. For this, MobilityDB has two functions: atGeometry and
numSequences. The former restricts the temporal point to the parts
where it is inside the given geometry and returns sequence set values.
The latter returns the number of sequences. For example, we can see that
MMSI = 219000431 has a sequence set containing 32 sequences:

{[0101000020E8640000C33ED38D36E123410D0300008D1C5741@201
8-04-01 04:16:42.423054-03,…],

…,

[…,
0101000020E86400003E866CAAC3E02341FA667A63791C5741@2018-
04-01 20:01:49-03,
0101000020E8640000D2EA9DA408E123418C3C2415811C5741@2018-
04-01 20:01:59-03,
0101000020E8640000F9B6FFFF3BE123415176C7A0861C5741@2018-
04-01 20:02:08.000808-03]

}

Below, we display the last three points within the last sequence:

In red we show the zone around the port of Rodby. In green, we can see
three points of the same sequence. The ship then moves to another zone
that has no intersection with the red zone. Later, it enters the zone around
the other port, although we are no displaying this.

Thus, we have as many sequences as times when the ship intersects
one of those zones. In this case 16 sequences correspond to the port of
Rodby and 16 sequences to the port of Puttgarden.

We can check how many sequences correspond to Rodby or Puttgarden
running the following query

WITH Ports(g) AS (

SELECT ST_MakeEnvelope(651135, 6058230, 651422, 6058548, 25832)

UNION

SELECT ST_MakeEnvelope(644339, 6042108, 644896, 6042487, 25832))

SELECT MMSI, array_length(sequences(atGeometry(S.Trip,g)),1),

 sequences(atGeometry(S.Trip, g))

FROM Ports P, Ships S

WHERE eintersects(S.Trip, g)

ORDER BY MMSI

We show only a portion of the result set:

The previous query does not check that the same trajectory intersects
both ports. For example, the ship with MMSI 219000431 has intersected
both zones, but the MMSI 219016144 has not.

The correct solution must check both intersections and can be expressed
as follows (note the use of cross product instead of union):

WITH Ports(Rodby, Puttgarden) AS (

SELECT ST_MakeEnvelope(651135, 6058230, 651422, 6058548, 25832),
ST_MakeEnvelope(644339, 6042108, 644896, 6042487, 25832))

SELECT MMSI, (numSequences(atGeometry(S.Trip, P.Rodby)) +

 numSequences(atGeometry(S.Trip, P.Puttgarden)))/2.0

 AS NumTrips

FROM Ports P, Ships S

WHERE eintersects(S.Trip, P.Rodby) AND eintersects(S.Trip,

 P.Puttgarden)

We obtain

5.3. The zone between both ports is frequently visited by many vessels.
This zone could be dangerous if two vessels become at less than 300m
from each other at some point in time.

Considering the rectangles at the entrance of the ports, we can restrict
the analysis of trajectories to a region defined by a rectangle between
them.

This rectangle can be built with the expression ST_MakeEnvelope
(640730, 6058230, 654100, 6042487, 25832).

Restrict the analysis of trajectories exclusively to this zone.

SELECT MMSI, atGeometry(S.Trip, belt) AS Trip,

 trajectory(atGeometry(S.Trip, belt)) AS Traj

FROM Ships S, ST_MakeEnvelope(640730, 6058230, 654100,
6042487, 25832) as belt

WHERE eintersects(S.Trip, belt)

Or, alternatively

WITH B(Belt) AS (SELECT ST_MakeEnvelope(640730, 6058230,
654100, 6042487, 25832))

SELECT MMSI, atGeometry(S.Trip, belt) AS Trip,

 trajectory(atGeometry(S.trip, belt)) AS Traj

FROM Ships S, b Belt

WHERE eintersects(S.Trip, belt)

We obtain

5.4. We now compute the trajectories that have been at less than 300
meters from each other.

In the visualization, we want to highlight the minimum distance
between ships at some point in time (probably, ships had been close
to each other many times during the trajectory). To show this situation,
we compute and draw the shortest line between ships.

WITH

B(Belt) AS (SELECT ST_MakeEnvelope(640730, 6058230, 654100,
6042487, 25832)),

BeltShips AS

(

SELECT MMSI, atGeometry(S.Trip, B.Belt) AS Trip,

 trajectory(atGeometry(S.Trip, B.Belt)) AS Traj

FROM Ships S, B WHERE eintersects(S.Trip, B.Belt)

)

SELECT S1.MMSI || '..' || S2.MMSI as both, S1.MMSI, S2.MMSI,

 S1.Traj,

 S2.Traj, shortestLine(S1.trip, S2.trip) Approach

FROM BeltShips S1, BeltShips S2

WHERE S1.MMSI > S2.MMSI AND edwithin(S1.trip, S2.trip, 300)

The method “edwithin” is other “ever relationship”, i.e., the
generalization of the st_dwithin for temporal points. It returns “true”
if the ships have ever been at 300m from each other at some point in
time.

Exercise 6.

6.1. Compute and display the ships that enter or leave the port of

Göteborg.

6.2. Compute and display the ships that, between 19:00:00 and
23:30:00 were at less than 300m from each other and when did this
happen. The answer should include the vessels, the time and the
distance between the ships.

6.3. Compute and display the trajectories of the ships passing through
the ports of Helsinborg or Malmo.

6.4. Compute and display the trajectories of the ships that enter or
leave the port of Kobenhavn. You must be able to distinguish the
incoming and outgoing trips.

6.5. Consider the ports of Åalborg, Göteborg, Helsinborg, Copenhagen
and Malmo . Compute the number of trips passing through these ports,
and use some graphic mechanism (colour, shape, size, etc) to indicate
that number. For example, if you use colour, use different intensities to
indicate the variation from the most to the least crowded port.

Exercise 7

 Summarize the most important MobilityDB functions we have
used. Explain briefly their objective and enumerate all the item exercises
where we have used them.

Function Goal Used in
items…

speed(tpoint): tfloat_seqset

length(tpoint): float

eintersects({geo,tpoint},{geo,tpoint}):
Boolean

edwithin({geo,tpoint},{geo,tpoint},float):
Boolean

atGeometry(tgeompoint,geometry):
tgeompoint

shortestLine({geo,tpoint},{geo,tpoint}):
geo

twAvg(tnumber): float

sequences(ttype_seqset): ttype_seq[]

or in a more general form:

sequences({ttype_seq,ttype_seqset}):
ttype_seq[]

numSequences(ttype_seqset): integer

or in a more general way

numSequences({ttype_seq,ttype_seqset}):
integer

