
Course Notes on SQL

SQL: Summary of Presentation

• Bases of SQL

• Discussion of SQL features through examples

• Criticism of SQL

• Standardization

1

SQL, October 9, 2008 – 1

SQL: Introduction

• SQL =

3 another syntax for expressions of DRC, TRC, and the relational algebra

3 + a data definition language

3 + some extensions

• SQL was defined in the mid 70’s, after the relational algebra and calculi (early
70’s): SQL was meant to be simpler (this is not obvious)

• SQL uses a vocabulary different from that of the usual relational model

3 “relation” → “table”

3 “tuple” → “row”

3 “attribute” → “column”

• A major difference with the relational model: tables can have identical rows in
SQL

2

SQL Features: Summary

• Data definition language

• General form of queries

• Join

• Variables

• Redundancy, variants

• Duplicate tuples

• Functions

• Group by ... having

• Evaluation, claimed advantages, criticisms of SQL

• Standardization

3

SQL, October 9, 2008 – 2

Data Definition: Relation Schema Declaration

CREATE TABLE

relation name

list of attributes + data types

each attribute can be declared "not null"

PRIMARY KEY attribute(s)

UNIQUE attribute(s)

FOREIGN KEY attribute REFERENCES

relation name (attribute)

4

Relation Schema Declaration: Example

CREATE TABLE Employee (

SSN CHAR(9) NOT NULL,

FName VARCHAR(15) NOT NULL,

MInit CHAR,

LName VARCHAR(15) NOT NULL,

BDate DATE,

Address VARCHAR(30),

Sex CHAR,

SALARY DECIMAL(10,2),

SuperSSN CHAR(9),

DNo INT NOT NULL,

PRIMARY KEY (SSN)

FOREIGN KEY (SUPERSSN) REFERENCES Employee(SSN)

FOREIGN KEY (DNo) REFERENCES Department(DNumber));

5

SQL, October 9, 2008 – 3

Other Data Definition Commands

• Relation suppression: DROP TABLE relation name

• Relation structure modification

ALTER TABLE relation name

ADD attribute + data type

ALTER TABLE relation name

DROP attribute

• View definition

CREATE VIEW relation name + list of attributes

AS SQL query

6

• Evaluation of SQL DDL:

3 Any operational DBMS needs a DDL language

3 Compared with relational query languages, the operations and structure of a
relational DDL are simple and leave little room for variations

3 The “SQL DDL” borrows little from the query part of SQL

SQL, October 9, 2008 – 4

General Form of SQL Queries

SELECT attributes

FROM relations

WHERE condition

• This is just a skeleton, with many variants
• Give the birthdate and address of employees named John Smith

SELECT BDate, Address

FROM Employee

WHERE FName = ’John’ and LName = ’Smith’

• Semantics
(1) evaluate the Cartesian product of relations mentioned in FROM clause
(2) apply the condition (algebra selection)
(3) retain attributes mentioned in SELECT clause (projection with duplicates)

7

• Compare with the structure of the same query in TRC:

3 {t.BDate, t.Address | Employee(t) ∧ t.FName = John ∧ t.LName = ‘Smith’}
3 What is the major difference between SQL and TRC for this query?

SQL, October 9, 2008 – 5

A Simple Syntactic Shortcut

Give the data about employees named John Smith

SELECT *

FROM Employee

WHERE FName = ’John’ and LName = ’Smith’

8

• Not a good idea in a multi-user database

3 The number of attributes of the tuples in the answer will change if the relation
schema of Employee changes (if attributes are added or deleted), without the
query having changed: this is a violation of logical data independence

3 The text of the query does not make explicit the structure of the result (lack of
self-documentation)

SQL, October 9, 2008 – 6

Join

(1) Give name and address of employees who work in the Research department

SELECT LName, Address

FROM Employee, Department

WHERE DName = ’Research’ and DNumber = DNo

(2) For each project located in Brussels, list project number, number of controling
department, and name and address of department manager

SELECT PNumber, DNum, LName, Address

FROM Project, Department, Employee

WHERE DNum = DNumber and MgrSSN = SSN

AND PLocation = ’Brussels’

9

• DNumber = DNo (join condition) in (1) signals a join in SQL, between a relation with
attribute DNumber (Department) and a relation with attribute DNo (Employee)

• Example (2) has two joins (and thus two join conditions)

SQL, October 9, 2008 – 7

Relation Names Used as Variables

Name and address of all employees who work in the Research department

(1) SELECT LName, Address

FROM Employee, Department

WHERE DName = ’Research’ and DNumber = DNo

(2) SELECT LName, Address

FROM Employee, Department

WHERE DName = ’Research’

and Department.DNumber = Employee.DNumber

(3) SELECT Employee.LName, Employee.Address

FROM Employee, Department

WHERE Department.DName = ’Research’

and Department.DNumber = Employee.DNumber

10

• Join condition DNumber = DNo in (1) is clearly decoded : DNumber and DNo are unique
in relations Employee and Department

• If the attribute name DNumber is chosen in both relations to reference the domain of
departments, then SQL must formulate the query as (2)

• (3) is a more general and systematic formulation

• Relation names can thus be used as variables that are quite similar to the tuple
variables of TRC

• Strategies for choosing attribute names during database design

3 use the same name (e.g., DNumber) for the same objects appearing in different
relations

3 leave freedom for attribute names (e.g., if the database schema is large and not
designed by a single person)

SQL, October 9, 2008 – 8

Variables in SQL

Give the name of employees and the name of their supervisor

SELECT E.LName,S.LName

FROM Employee E, Employee S

WHERE E.SuperSSN = S.SSN

Give the name and address of employees who work in the Research department

(1) SELECT E.LName, E.Address

FROM Employee E, Department D

WHERE D.DName = ’Research’

and D.DNumber = E.DNo

(2) {e.LName, e.Address | Employee(e) ∧
∃d (Department(d) ∧ d.DName = ‘Research’ ∧ d.DNumber = e.DNo)}

11

• The first SQL query above is the general form concerning the use of variables, of which
the previous examples are special cases

• When the same relation is invoked more than once in the same query, then SQL uses
variables exactly like TRC

3 (1) is very similar to TRC, except that D is explicitly existentially quantified in
TRC

3 (2) is the TRC formulation

• SQL designers tried to avoid variables as much as possible

3 the resulting language offers special simpler formulations for simple queries

3 but the language definitions has become bigger (because of the need to describe
the special cases and the general case)

3 the question is for which kind of users that decision represents a real simplication
(a difficult issue for language design in general)

SQL, October 9, 2008 – 9

Duplicate Control

• List salaries of employees
SELECT Salary

FROM Employee

SELECT DISTINCT Salary

FROM Employee

30000

40000

25000

43000

38000

25000

25000

55000

30000

40000

25000

43000

38000

55000

• Unorthodox, unclear semantics in general

12

EXISTS

Name and address of employees who work in the Research department

SELECT E.FName, E.LName

FROM Employee E

WHERE EXISTS (SELECT *

FROM Department D

WHERE D.DNumber = E.DNo

AND D.DName = ’Research’)

13

SQL, October 9, 2008 – 10

• Another way to express a join

• “Exists (...)” is closer to a test “{...} 6= ∅” (i.e., the test that the result of Exists is
not the empty set) than to the existential quantification of logic

EXISTS and NOT EXISTS

(1) List the name of employees with at least one dependent

SELECT FName, LName

FROM Employee

WHERE EXISTS (SELECT *

FROM Dependent

WHERE SSN = ESSN)

(2) List the name of employees with no dependent

SELECT FName, LName

FROM Employee

WHERE NOT EXISTS (SELECT *

FROM Dependent

WHERE SSN = ESSN)

14

• Here, the intuition of (1) extends well to the negated query (2)

SQL, October 9, 2008 – 11

Union

List project names of projects for which an employee whose last name is Smith is a
worker or a manager of the department that controls the project

(SELECT PName

FROM Employee, Project, Department

WHERE DNum = DNumber AND MgrSSN = SSN AND LName = ’Smith’)

UNION

(SELECT PName

FROM Employee, Project, WorksOn

WHERE PNumber = PNo AND ESSN = SSN AND LName = ’Smith’)

15

Same Example with Disjunction

SELECT DISTINCT PName

FROM Project

WHERE PNumber IN (SELECT PNumber

FROM Project, Department, Employee

WHERE DNum = DNumber AND MgrSSN = SSN

AND LName = ’Smith’)

OR

PNumber IN (SELECT PNo

FROM WorksOn, Employee

WHERE ESSN = SSN AND LName = ’Smith’)

16

SQL, October 9, 2008 – 12

• The equivalence is based on a classical rule from logic and set theory:

{x | P (x) ∨Q(x)} ≡ {x | P (x)} ∪ {x | Q(x)}
• The fact that two different formulations exist for the same query (with union and

with disjunction) illustrates the mixed origins of SQL, that borrows from both the
relational calculi and the relational algebra

• These examples llustrate “nested queries” in SQL

• SQL also has UNION ALL to retain duplicates (What does that really mean?)

• Union is an ancient mathematical operation defined for SETS, and not tables with
duplicate rows

Variants

List employees with a dependent of sex = F

(1) SELECT SSN

FROM Employee, Dependent

WHERE ESSN = SSN and Dependent.Sex = F
(2) SELECT SSN

FROM Employee

WHERE EXISTS (SELECT *

FROM Dependent

WHERE ESSN = SSN AND Sex = F)
(3) SELECT SSN

FROM Employee

WHERE SSN IN (SELECT ESSN

FROM Dependent

WHERE Sex = F)

17

• TRC formulation of the same query:

{e.SSN | Employee(e) ∧ ∃d ∈ Dependent(e.SSN = d.ESSN ∧ d.Sex = F)}
• Very different perceptions often exist in SQL for the same query

• This may not be a good idea, as learning the language gets more complicated

• (1) is a flat TRC-like formulation

• (2) evokes the TRC structure, but, like (3), is really a mixture of tuple-oriented and
set-oriented formulations

SQL, October 9, 2008 – 13

More Examples with Variants

Give the name of each employee with a dependent of same first name and same sex
as the employee

(1) SELECT E.FName, E.LName

FROM Employee E, Dependent D

WHERE D.ESSN = E.SSN AND E.FName = D.DependentName AND D.Sex = E.Sex

(2) SELECT E.FName, E.LName

FROM Employee E

WHERE EXISTS (SELECT *

FROM Dependent

WHERE E.SSN = ESSN AND E.FName = DependentName AND E.Sex = Sex)

(3) SELECT E.FName, E.LName

FROM Employee E

WHERE E.SSN IN (SELECT ESSN

FROM Dependent

WHERE E.FName = DependentName AND E.Sex = Sex)

18

• Example of join on 3 attributes

SQL, October 9, 2008 – 14

Some Additional Features of SQL

• Test for null value
List the name of employees without a supervisor

SELECT FName, LName

FROM Employee

WHERE SuperSSN IS NULL

• Explicit set of values
List the name of employees who work in departments of number 1, 2, or 3

SELECT FName, LName

FROM Employee

WHERE DNo IN {1,2,3}

This requires a triple disjunction in TRC: DNo = 1 ∨DNo = 2 ∨DNo = 3

19

More Additional Features

(1) Pattern matching
List the name of employees who live in Brussels

SELECT FName, LName

FROM Employee

WHERE Address LIKE ’%BRUSSELS%’

List the name of employees born in the 1950’s

SELECT FName, LName

FROM Employee

WHERE BDate LIKE ’______5_’

(2) Output ordering

SELECT FName, LName, Salary

FROM Employee

WHERE ...

ORDER BY Salary

20

SQL, October 9, 2008 – 15

• Pattern matching is useful, but including it in SQL complicates the language

• Ordering the result of a query is obviously useful, but the way it is done in SQL
jeopardizes closure:

3 ordering should not be done in a query, since the result is not a relation (true
relations are unordered)

3 ordering the tuples in the result of a query should be requested as a function
external to the query part of the language

Universal Quantifier: Element-to-Set Comparison

• List names of employees who make more than all employees in the Research
department

SELECT LName

FROM Employee

WHERE (Salary > all

(SELECT Salary

FROM Employee, Department

WHERE DNo = Dnumber and DName = ’Research’))

21

SQL, October 9, 2008 – 16

Universal Quantifier: Set-to-Set Comparison

• List names of employees who work on all projects controlled by department 5

SELECT LName

FROM Employee

WHERE ((SELECT PNo

FROM WorksOn

WHERE SSN = ESSN)

CONTAINS

(SELECT PNumber

FROM Project

WHERE DNum = 5))

22

• CONTAINS expresses set inclusion, related to universal quantification in logic:

{y | ∀x P (x) → Q(x, y)} ≡ {y | {z | P (z)} ⊆ {x | Q(x, y)}}
• CONTAINS mirrors the division operator of the relational algebra

• CONTAINS was included in early versions of SQL but was suppressed later

• The general version of the universal quantifier of logic and of the relational calculi is
not available in SQL

• There were some attemps to include a more general universal quantifier in earlier
versions of SQL

SQL, October 9, 2008 – 17

Universal Quantifier: Expressing Division in SQL

R
A B
a1 b1
a1 b2
a1 b3
a1 b4
a2 b1
a2 b3
a3 b2
a3 b3
a3 b4
a4 b1
a4 b2
a4 b3

S
B
b1
b2
b3

T = R÷ S
A
a1
a4

SELECT DISTINCT A

FROM R R1

WHERE (SELECT B

FROM R R2

WHERE R1.A = R2.A)

CONTAINS

(SELECT *

FROM S)

23

Universal Quantifier as Negated Existential

SELECT FName, LName

FROM Employee

WHERE NOT EXISTS

(SELECT *

FROM Project P

WHERE DNum = 5

AND NOT EXISTS

(SELECT *

FROM WorksOn W

WHERE W.ESSN = SSN AND W.PNo = P.PNumber))

24

SQL, October 9, 2008 – 18

Correspondence between Universal Quantifier and
Negated Existential Quantifier in TRC

Basic rule:

{y | P (x) → Q(x, y)} ≡ {y | ¬∃x (P (x) ∧ ¬Q(x, y))}

{e.FName, e.LName | Employee(e) ∧
∀p (Project(p) ∧ p.DNum = 5 →

∃w(WorksOn(w) ∧ w.ESSN = e.SSN ∧ w.PNo = p.PNo)) }

{e.FName, e.LName | Employee(e) ∧
∀p (¬Project(p) ∨ p.DNum 6= 5 ∨

∃w(WorksOn(w) ∧ w.ESSN = e.SSN ∧ w.PNo = p.PNo)) }

{e.FName, e.LName | Employee(e) ∧
¬¬∀p (¬Project(p) ∨ p.DNum 6= 5 ∨

∃w(WorksOn(w) ∧ w.ESSN = e.SSN ∧ w.PNo = p.PNo)) }

{e.FName, e.LName | Employee(e) ∧
¬∃p (Project(p) ∧ p.DNum = 5 ∧

¬∃w(WorksOn(w) ∧ w.ESSN = e.SSN ∧ w.PNo = p.PNo)) }

Universal Quantifier as Difference

SELECT FName, LName

FROM Employee

WHERE NOT EXISTS (

(SELECT *

FROM Project P

WHERE DNum = 5)

EXCEPT

(SELECT *

FROM WorksOn

WHERE ESSN = SSN))

25

• This formulation is based on the logical equivalence:

{y | ∀x P (x) → Q(x, y)} ≡ { {y | {z | P (z)} − {x | Q(x, y)} } = ∅

SQL, October 9, 2008 – 19

Aggregate Functions

• Idea: specify mathematical aggregate functions on collections of values from
the database

• SQL Functions: count tuples, compute sum, average, maximum, minimum of
numeric attribute values in relations

3 compute the average or total salary of all employees

• Repeated function application on groups of tuples:

3 for each department, list the name of the department and the average salary
of employees in the department

• There is no agreed-upon notation for specifying aggregate functions in the alge-
bra or the calculi

26

Functions in SQL: Summary

• SQL, the algebra, the calculi (and similar nonprocedural languages) are not well
adapted for computing

• Some simple cases look OK in SQL, but, as complexity increases, SQL breaks
down abruptly

• Moral: computing is best left to algorithmic languages

27

SQL, October 9, 2008 – 20

Some Simple Examples with Functions

• Find the average salary of employees and the maximum salary

SELECT AVG(Salary), MAX(Salary)

FROM Employee

• Find the average salary and the maximum salary for employees in the Research
department

SELECT AVG(Salary), MAX(Salary)

FROM Employee, Department

WHERE DNo = DNumber AND DName = ’Research’

28

Functions: the SQL Syntax is Inadequate

• Queries have to be read entirely to understand what is actually counted

• Functions should explicitly indicate their argument as follows (illegal in SQL)

Find the average salary of employees and the maximum salary

(AVG, MAX) (SELECT Salary FROM Employee)

• The following is not expressible simply in SQL
Find the average salary of all employees (i.e., for the whole company) and the
maximum salary of employees in the Research department

AVG (SELECT Salary FROM Employee),

MAX (SELECT Salary

FROM Employee, Department

WHERE DNo = DNumber AND DName = ’Research’)

29

SQL, October 9, 2008 – 21

Functions: Counting is Tricky

Count the number of projects on which some employee is working

• Incorrect: counts the tuples of WorksOn

SELECT COUNT(PNo)

FROM WorksOn

• Incorrect: counts the tuples of WorksOn

SELECT DISTINCT COUNT(PNo)

FROM WorksOn

• Correct in SQL

SELECT COUNT(DISTINCT PNo)

FROM WorksOn

• The adequate intuition (i.e., COUNT after SELECT DISTINCT PNo) is illegal in SQL

COUNT(SELECT DISTINCT PNo FROM WorksOn)

30

Duplicate Control is Tricky

Give the average salary of employees who work more than 10 hours on some project

(1) SELECT AVG(Salary)

FROM Employee, WorksOn

WHERE SSN = ESSN AND Hours > 10

(2) SELECT AVG(DISTINCT Salary)

FROM Employee, WorksOn

WHERE SSN = ESSN AND Hours > 10

(3) SELECT AVG(Salary)

FROM Employee

WHERE SSN IN

(SELECT ESSN

FROM WorksOn

WHERE Hours > 10)

31

SQL, October 9, 2008 – 22

• Duplicates should be carefully controlled to produce the correct result

• (1) is incorrect: if an employee works for 10 hours on 2 projects, his/her salary will
participate twice in the average

• (2) is incorrect: 2 employees with the same salary will participate only once in the
average

• Thus, with the flat TRC-like formulations (1) or (2) of the join, it is impossible to
correctly control duplicates

• (3) is correct

GROUP BY ... HAVING ...

SELECT ...

FROM ...

WHERE condition1

GROUP BY attribute(s)

HAVING condition2

• Partitions a relation into a set of relations

• Only available at one level, i.e., not to build a set of sets of relations

• Intuitive and adhoc

• Intuitive operational semantics

3 evaluate SELECT ... FROM ... WHERE, without the SELECT part
3 partition the result according to the different values of the attributes appear-

ing in the GROUP BY clause
3 if the HAVING clause is present, apply condition2 to each class of the partition
3 execute the SELECT part

32

SQL, October 9, 2008 – 23

Example of GROUP BY ... HAVING ...

• List each department number, the number of employees in the department and
their average salary

SELECT DNo, COUNT(*), AVG(Salary)

FROM Employee

GROUP BY DNo

33

More Examples of GROUP BY

List the numbers of employees who work on more than 3 projects

SELECT ESSN

FROM WorksOn

GROUP BY ESSN

HAVING COUNT (*) > 3

SELECT DISTINCT ESSN

FROM WorksOn w

WHERE (SELECT COUNT (*)

FROM WorksOn w1

WHERE w1.ESSN = w.ESSN)

> 3

34

SQL, October 9, 2008 – 24

GROUP BY is Difficult

For departments with more than 5 employees, list department number and number
of employees with a salary greater than 40k

SELECT DNo, COUNT(*) FROM Employee

WHERE Salary > 40k

AND DNo IN (SELECT DNo

FROM Employee

GROUP BY DNo

HAVING COUNT(*) > 5)

GROUP BY DNo

SELECT DNo, COUNT(*) FROM Employee

WHERE Salary > 40k

GROUP BY DNo

HAVING COUNT(*) > 5

35

The second formulation is incorrect

SQL, October 9, 2008 – 25

Universal Quantifier with GROUP BY et HAVING

List names of employees who work on all projects

SELECT FName, LName

FROM Employee E

WHERE SSN IN (

SELECT W.ESSN

FROM WorksOn W

GROUP BY W.ESSN

HAVING COUNT(DISTINCT W.PNO) =

(SELECT COUNT(*) FROM Project))

36

Universal Quantifier with GROUP BY et HAVING

List names of employees who work on all projects controlled by department 5

SELECT FName, LName

FROM Employee E

WHERE SSN IN (

SELECT W.ESSN

FROM WorksOn W, Project P

WHERE W.PNO = P.PNumber AND P.DNum = 5

GROUP BY W.ESSN

HAVING COUNT(DISTINCT W.PNO) =

(SELECT COUNT(*) FROM Project WHERE DNum = 5))

37

SQL, October 9, 2008 – 26

Updating in SQL

• Single-row insert: Enter a new project
INSERT

INTO Project(PName,PNumber,PLocation,DNum)

VALUES (’Toy’, 36, ’Brussels’, 4)

• Multi-row insert: Copy Brussels projects into R
INSERT

INTO R(PName,PNumber,PLocation,DNum)

SELECT PName,PNumber,PLocation,DNum

FROM Project

WHERE PLocation = ’Brussels’

• Multi-row update: Raise the salary of employees in department 5 by 5%
UPDATE Employee

SET Salary = Salary * 1.05

WHERE DNo = 5

38

Updating in SQL (cont’d)

• Multi-row update: Make Smith the manager of all departments in Brussels

UPDATE Department

SET MgrSSN = (SELECT SSN

FROM Employee

WHERE LName = ’Smith’)

WHERE DNumber IN (SELECT DNumber

FROM DeptLocations

WHERE DLocation = ’Brussels’)

• Multi-row delete: Suppress the dependents of Smith

DELETE FROM Dependent

WHERE ESSN = (SELECT SSN

FROM Employee

WHERE LName = ’Smith’)

39

SQL, October 9, 2008 – 27

SQL versus the Relational Model

• SQL supports a simple data structure, namely tables

• SQL supports project, select and join, and (more or less directly) the other
operators of the relational algebra, and operates on entire relations to generate
new relations

• SQL provides physical data independence to a large extent

3 Indexes may be added and deleted freely

3 Logical data independence is provided through the definitions of appropriate
SQL view

• SQL combines table creation, querying and updating, and view definition into a
uniform syntax

• SQL can be used as a stand-alone query language and embedded within a host
general-purpose programming language

• SQL can be optimized and compiled, or may be interpreted and executed on line

40

• All of the statements above are true

• Yet, they are misleading because they describe the relational model and the relational
approach to data management, rather than specific properties of SQL

• These claimed advantages of SQL really are properties of the relational style of data
management

• They were included in an early edition of a popular textbook, and later withdrawn

SQL, October 9, 2008 – 28

Evaluation and Criticism of SQL

• Compared to what could have been done, much of SQL-specific design was bad

• Unlike calculi, SQL does not have a few powerful constructions that would ac-
count for its power of expression (orthogonality)

• The closure property of algebra and calculi is not realized in the definition of
SQL

• SQL definition is (unnecessarily) large (the definition of calculi is much shorter)

• The limits of SQL are fuzzy: there is no simple way to characterize what can
and what cannot be expressed (e.g., with functions)

• SQL is very redundant, many variants exist for the same query (for example,
SQL essentially contains TRC as a sublanguage)

41

• The acceptance of SQL is not due to its intrinsic qualities

• Some bases of SQL language are flawed

• It was possible to design a much better, easier-to-use language

SQL, October 9, 2008 – 29

What Happened?

• Principles for designing good human computer interfaces are not well understood

• Too little awareness of programming language field (programming language de-
sign field is more mature)

• Prejudice against logic, theory, formalism, algebra, mathematics, etc. thought
to be too complex

• Complexity of query language design was underestimated

• Recursive structure, orthogonality of algebra and calculus were thought to be
too complex for the typical users of relational languages

• Initial incompetence followed by inertia

• Too much advertising

• Standardization goes against evolution

42

Orthogonality in Language Design

• Orthogonality in language design = construct independence or generality
of rules for combining concepts

• Often, orthogonality ⇒ regularity, shorter language definition, simplicity

• Fewer general concepts combined with general rules ⇒ easier to master and
remember (for most people)

43

SQL, October 9, 2008 – 30

• A small number of primitive constructs and a consistent set of rules for combining
them are easier to learn and master than an equivalent larger number of primitives

• Orthogonality systematically exploited in the design of ALGOL 68 (a powerful lan-
guage with a “2-level” syntax equivalent in power to general context-sensitive gram-
mars (Chomsky type-0)

• “Orthogonal design maximizes expressive power while avoiding deleterious superflu-
idities” (ALGOL 68 definition)

• Orthogonality in language design =

3 a relatively small set of well-defined primitive constructs

3 a consistent set of rules for combining constructs

3 every possible combination of constructs with the rules is legal and meaningful

3 combinations of special cases of constructs is systematically prohibited

• Lack of orthogonality entails

3 more complex languages (additional rules are needed to define and document
special cases and exceptions; harder to learn and to teach)

3 less powerful languages (the additional rules prohibit certain combinations of
constructs)

Lack of Orthogonality in SQL: Relation Denotation

• Possible linguistic forms of relation denotation

3 SELECT ... FROM Project WHERE ...

3 a relation name, e.g., Employee

• Orthogonal definition: both expressions can be used in the same places for de-
noting relations, but

3 SELECT ... FROM <relation name> WHERE ... is OK

3 SELECT ... FROM (SELECT ... FROM ...) WHERE ... is illegal in SQL

• Nesting in the FROM part of SELECT-blocks is possible through views

CREATE VIEW R1 AS SELECT ... FROM ... WHERE ...

SELECT ... FROM R1 WHERE ...

44

SQL, October 9, 2008 – 31

Lack of Orthogonality in SQL: Union

• R1 UNION R2 is not allowed in SQL

• (SELECT * FROM R1) UNION (SELECT * FROM R2) is OK

45

SQL, October 9, 2008 – 32

Criticism: Rationale for GROUP BY not Obvious

• GROUP BY: not obviously interesting “packaging” of functionality

• GROUP BY is more procedural than the TRC part of SQL (more specific about
how to execute the query, as opposed to stating properties of the result)

• Effect of GROUP BY is achieved in TRC style with variables

List project numbers, project names and the number of employees that work on
each project

SELECT PNumber, PName, COUNT(*)

FROM Project, WorksOn

WHERE PNumber = PNo

GROUP BY PNumber, PName

{p.PNumber, p.PName, c | Project(p)∧
c = count({w | WorksOn(w) ∧ p.PNumber = w.PNo}) }

46

Criticism: GROUP BY could Have Gone Further

• GROUP BY could be easily adapted to express division, i.e., universal quantifica-
tion

SELECT A

FROM R

GROUP BY A

HAVING SET(B) CONTAINS S

47

SQL, October 9, 2008 – 33

Problems with Duplicate Rows

• SQL views relations as tables where duplicate rows are permitted (not so in the
orthodox relational model)

• Transforming such tables into genuine relations is achieved by a DISTINCT func-
tion

• Problem of meaning: having identical entities in the real world is meaningless
(impossible to talk about them unless something distinguishes them)

• Meaning of deleting a tuple if there are multiple copies?

• Handling duplicate rows suggests introducing order to distinguish them (e.g.,
“the 36th row”)

• This is contrary to the relational model (tuple access is based on values only),
volatile (updates), impractical for large relations

48

Discussion: SQL Starts Easy

• SQL provides simple query forms (e.g., without variables) for the simplest queries

• Whose life has been made simpler?

Calculs

Query complexity

SQL

Query complexity

Pr
og

ra
m

m
in

g
ef

fo
rt

Pr
og

ra
m

m
in

g
ef

fo
rt

49

SQL, October 9, 2008 – 34

• This is often claimed as an advantage of SQL: short initial learning period, with
gradual introduction of complexity

• The learning curve is very different for logic-based languages: the variable and exis-
tential quantification machinery has to be mastered for formulating even the simplest
queries

Where Do Learning Curves Intersect?

• Do users exist that could satisfy their needs in the lower part of the SQL curve?

• We argue that, for many people, the calculi get simpler at some point before
relational completeness

• Strategy for the more complex queries: formulate queries in calculus and trans-
late them into SQL

Calculs

Query complexity

Pr
og

ra
m

m
in

g
ef

fo
rt

SQL

Relational
completeness

50

SQL, October 9, 2008 – 35

Data Independence

or

Quality of Query Optimizer

• Ideally, query optimizers choose the best evaluation strategy

• High level operations, unlike “navigation” programming, leave open opportunity
of global optimization

• Tru optimality can only be realized on average, because true optimum in general
depends on populations

• Data independence is violated when several equivalent queries are evaluated with
different strategies (with different performance)

• Redundancy and nonorthogonality of SQL make full data independence hope-
lessly impossible, because some equivalent queries have very different forms

• Problem: knowledgeable users take advantage of violations

51

SQL History

• SQL was ill-conceived from the beginning: from a technical point of view, the
history of its evolution is essentially uninteresting

• Still, SQL has become practically unescapable

• The bases for the calculi were defined with the relational model (1970)

• First version of SQUARE at IBM Research in 1974

• Numerous successive versions (SEQUEL, SEQUEL/2, SQL) with no clear ratio-
nale for evolution during 70’s

• In parallel, numerous proposals for other similar languages (e.g., QUEL, QUERY
BY EXAMPLE)

• First RDBMSs (1980-1986): ORACLE, SQL/DS then DB2(IBM), INGRES,
SYBASE, INFORMIX, etc.

• SQL became the leading language by mid-80’s

52

SQL, October 9, 2008 – 36

SQL Standardization

• ANSI RTG (Relational DB Task Group) recommendations (1982):

3 identify fundamental concepts of the relational model (representation, ma-
nipulation, constraints)

3 characterize key features of RDBMSs

3 integrate RDM and RDBMS in an architectural framework

3 idea: standardize functionality not syntax

3 hint: do not standardize SQL!

• SQL’86 by ANSI then ISO: essentially the IBM version of SQL

• SQL’89 (SQL1) with provisions for embedded SQL language

• SQL’92 or SQL2 (ANSI, ISO): emphasis on embedded SQL

• SQL3 (now called SQL’99): evolving towards a computationally complete OO
programming language, with user-defined types, object functions, deduction

53

SQL, October 9, 2008 – 37

