
Course Notes on

The Bases of the Relational Model

Bases of the Relational Model: Summary

• Relations

• Constraints

• Update operations

• Data manipulation (later chapters)

3 algebra

3 tuple relational calculus

3 domain relational calculus

3 SQL

1

Bases of the Relational Model, October 9, 2008 – 1

Intuitive View of Relations

• Popular view of the relational model = information is structured as 2-dimen-
sional tables of simple values (with lines, or rows, or tuples, and columns, or
attributes)

• Relations are tables with some restrictions

3 the order of rows is immaterial

3 the order of columns is immaterial

3 relations have no duplicate rows ⇒ each relation has one or more key

• A relation can also be seen as a predicate, i.e., a set of properties, assertions

• Database = collection of relations, but

3 relational data structures are richer than tables

3 a data model is not just data structures but also operations for manipulating
the data structures

2

• The order of rows and columns is immaterial = manipulating (querying or updating)
relations cannot depend or rely on relations being ordered

• In fact, a relation is a set of tuples (row or lines in a table)

• Sets are unordered ⇒ the tuples in a relation are unordered (there is no notion of
“first” tuple or “next” tuple)

• If the output of a program or of a query must be ordered, this should be explicitly
requested in the program or query

• The elements of a set are all distinct ⇒ there are no duplicate tuples in a relation (but
SQL allows duplicate tuples)

• A set may be implemented as a file (i.e., as some kind of table or sequential structure),
but this is a physical implementation, and the order of records in a file (or of rows in
a table) is not be visible to users, i.e., may not be exploited in application programs
(physical data independence)

Bases of the Relational Model, October 9, 2008 – 2

ER Schema for the Company Example

WorksFor

(1,1)

(4,n)

Employee

SSN

Name

 FName

 MInit

 LName

BDate

Sex

Salary

Address

Department

Number

Name

Locations (1,n)

/NoEmployees

Controls

Project

Number

Name

Location

WorksOn

hours

Supervision

(1,n)

(1,n)

(1,n)

(1,1)

(1,1)

(0,1)

(0,1)(0,n)

SuperviseeSupervisor

Manages

startDate

Name

Sex

BDate

Relationship

DependOf

(0,n)
(1,1)

Dependent

3

Relational Schema for the Company Example

Employee

SSN FName LName BDate Address Sex Salary SuperSSN DNo

Department

DNumber DName DMgr MgrStartDate

DeptLocations

DNumber DLocation

Project

PNumber PName PLocation DNumber

WorksOn

PNo ESSN Hours

Dependent

ESSN DependentName Sex BDate Relationship

4

Bases of the Relational Model, October 9, 2008 – 3

• In terms of entities and relationships:

3 there are 4 entities represented as relations Employee, Department, Project, and
Dependent

3 DeptLocations represents a multivalued attribute of Department

3 WorksOn represents a M-N relationship between Employee and Project

3 Dependent merges a relationship and a less important entity

Relational Data Model

• A data model provides mechanisms (languages) for defining

3 data structures

3 operations for retrieval and modification

3 integrity constraints

• The relational data model provides

3 mechanisms for defining domains and the structure of relations

3 several data-manipulation languages (DML): relational algebra, domain re-
lational calculus, tuple relational calculus, update operations

3 mechanisms for specifying particular constraints (e.g., key, referential in-
tegrity) + a language for specifying arbitrary constraints

5

Bases of the Relational Model, October 9, 2008 – 4

Relation Schema and Relation Value

• Relation = Schema + Value

• Relation schema: R(A1 : D1, . . . , An : Dn)

3 R = name of the relation

3 domains (D1, . . . , Dn) = sets of atomic values; domains in R are not neces-
sarily all distinct

3 attributes A1, . . . , An, all distinct in R

3 structure (A1 : D1, . . . , An : Dn) (i.e., the data type of relation tuples)

• Tuple: {A1 : d1, . . . , An : dn} = a set of 〈attribute, value〉 pairs

• Relation value: set of tuples ⊆ { {A1 : d1, . . . , An : dn} | di ∈ Di}

6

• Some notations leave domains implicit: R(A1, . . . , An) (but domains must be specified
in the relation schema, i.e., CREATE TABLE in SQL)

• Some notations leave attributes implicit: {〈d1, . . . , dn〉 | di ∈ Di}, but attributes are
essential because the same domain can appear several times in the same relation

When attributes are omitted in the notation, the idea is that relation columns are
ordered (i.e., that relation columns can be identified by their position): this is not the
correct definition of the relational model

• A precise definition of the basis of the relational model:

3 relations, and algebraic and calculus operations on them can be naturally formal-
ized in terms of an indexed Cartesian product of domains = A1 : D1×. . .×An : Dn

3 the value of a relation = a subset of the indexed Cartesian product

3 see, e.g., A Precise Definition of Basic Relational Notions and the Relational
Algebra, A. Pirotte, ACM SIGMOD Record, 13-1, 1982, pp. 30-45

Bases of the Relational Model, October 9, 2008 – 5

Domains

• Domains carry important structural information

• Domains define comparability of values: attribute values can only be meaning-
fully compared if they range on the same domain (= typing checking in pro-
gramming languages)

• Domains have been underused: in SQL and RDBMSs in general, domains are
restricted to the data types of traditional programming languages (e.g., integer,
real, character) and date

• In more modern languages (e.g., object-oriented), domains are application de-
pendent (e.g., employee names, salaries)

7

• Relations are value-based: elementary values are the smallest units of information

• Domain = a named set of atomic values, a set of possible values for an attribute

• Domains could be viewed as conceptual user-defined data types (e.g., part numbers,
city names, person names, dates, weights), carrying more application semantics than
their representation at a lower level as traditional data types (e.g., integer, real, char-
acter)

• For example

3 city names and person names may both be represented as character strings

3 city names and person names can be represented as domains in the relational
model (not in SQL)

3 a language that would support application-oriented domains could forbid (by
type checking), for example, to compare for equality a city name with a person
name (SQL cannot forbid that)

• Such comparability information is not representable in RDBMSs: it is implicit and
may lead to incorrect application programs

• A richer version of domains could include

3 conversion functions, a set of applicable operations on domain values (e.g., com-
putation, ordering) like abstract data types (ADTs)

3 operations to combine values from different domains

3 application-dependent structures not possible with RDBMSs (e.g., geometric fig-
ures, design objects): this is one advantage of object-oriented systems

Bases of the Relational Model, October 9, 2008 – 6

Relation Keys

• Superkey = one (or more) attributes that (together) possess the property of
unique tuple identification

3 their values always uniquely identify at most one tuple in the relation

3 unicity constraint = no two tuples with the same value for those attributes

• The set of all attributes of a relation is a superkey (because the value of a relation
is a set of tuples)

• Key = minimal superkey, i.e. a group of attributes that loses the property of
unique identification if any one attribute is removed from the group

• In general, a relation has several keys (candidate keys)

• The definition of keys is intensional information (i.e., it belongs to the schema)
⇒ it must be satisfied by all all legal extensions of the relation

8

Bases of the Relational Model, October 9, 2008 – 7

Primary Key

• Commercial RDBMSs and SQL require that each relation have one primary key

• If a relation has several keys, one of them is privileged as primary key

• The values of a primary key should always be known (while the value of nonpri-
mary keys may be null)

• In practice, the primary key is the most useful candidate key, which is naturally
suggested by database design from the application domain (e.g., how are em-
ployees, projects identified in practice in the enterprise, by name, by number?)

• For relations that express a relation (e.g., WorksOn), the primary key is the
combination of primary keys of entity relations involved in the relationship

9

• The concept of relation key (primary or not) should not be confused with that of
indexes (also sometimes called ”keys” in traditional data management)

3 a key is a semantic concept, that serves to identify objects in the application
domain

3 an index is a physical concept used for performance optimization

3 a key may or may not be indexed, and an index may or may not be a key

Bases of the Relational Model, October 9, 2008 – 8

Relational Database

• Relational database ≈ collection of relations

• Relational database schema = relation schemas + integrity constraints

• Database value, extension = collection of relation values

• Several schemas

3 conceptual: information content from the real world (typncally, entity-
relationship or class diagrams of object models)

3 logical: information expressed in the data model of the DBMS (typically
relational)

3 physical: information organized for storage media

10

Relational Constraints

• Constraint = any prescription (or assertion) on the schema (i.e., valid for all
database extensions) not defined in the data-structure part of the schema

• Constraints cannot be deduced from the current extension of the database (they
are part of the database schema)

• Relational constraints can be classified as

3 keys (candidate keys, primary key)

3 various dependencies (functional, multi-valued, etc.): see later

3 referential integrity

3 ”ad-hoc” constraints (all the constraints specific to an application domain)

11

Bases of the Relational Model, October 9, 2008 – 9

• Constraint = all that you would like to express at the level of the structure of the
database (i.e., the schema) and that you cannot express with the mechanisms for
structure description available in the data model

• The traditional term is “integrity constraint”, although “consistency constraint” or
“schema constraint” would be better terms

• Remember that constraints are properties of data, valid for all the applications that
use the data. They are part of the database schema rather than of applications (they
are valid for all applications of the database)

• Some constraints have a similar form and occur frequently (e.g., referential con-
straints); recent versions of DBMSs allow to specify those constraints declaratively,
and let the DBMS generate programs to check for possible constraint violations when-
ever updates to the database are attempted

Referential Integrity

• Relational constraint involving two relations R1 and R2 (or twice the same re-
lation); there must exist in R2 attribute(s) A2 such that

3 A2 has (have) the same domain as the primary key of R1

3 each value of A2 in a tuple of R2 occurs as value of the primary key in a tuple
of R1

• Referential integrity is typically relational, ubiquitous in relational DBs

3 results from expressing links with equality of values

3 expresses comparability information (like domains) for two different attributes.

3 expresses information that is taken care of by the data structure (entities and
relationships) in entity-relationship schemas

12

• A2 is sometimes called foreign key in R2

• But A2 is not a key in R2, it is put in correspondence with A1 which is a key in R1

Bases of the Relational Model, October 9, 2008 – 10

Referential Integrity in the Company Schema

WorksOn

FName

DNumPLocation

ESSN

MInit DNo

PName

Department

SexLName BDate Address Salary SuperSSNSSN

MgrStartDateMgrSSNDNumberDName

DeptLocation

DNumber DLocation

Project

PNumber

ESSN PNo Hours

Dependent

DependentName Sex BDate Relationship

13

• Examples:

3 Employee[DNo] ⊆ Department[DNumber] (the set of values of attribute DNo in
relation Department is included in the set of values of attribute DNumber of
relation Department

3 all the values of attribute ESSN of relation WorksOn must appear as values of at-
tribute SSN of relation Employee; interpretation: all the employees that are reported
to work on a project must be registered in the main list of employees in relation Em-
ployee

• Referential integrity constraints are very frequent in relational schemas

• Why are there so many referential integrity constraints in relational schemas?

3 because the relational model expresses links between pieces of information as
equalities of values (example: equality between a value of SSN in a tuple of relation
Employee and a value of ESSN in a tuple of WorksOn)

3 equality is a symmetric link, while what is really intended is a pointer from a
tuple of WorksOn to a tuple of Employee.

3 thus a referential integrity contraint forces a symmetric link to be a directed link.

3 pointers are present in almost all data models (e.g., object-oriented models) but
they were banned from the relational model

Bases of the Relational Model, October 9, 2008 – 11

Adhoc Constraints

• Application-dependent constraints, of arbitrary complexity

3 structural constraints

∗ the salary of each employee is smaller than that of his/her supervisor

∗ department managers are employees of the department that they manage

∗ department managers are supervisors

∗ there are at least 4 employees in each department

3 transition constraints (concern two successive states of the database)

∗ salaries are nondecreasing

∗ the sex of an employee does not change

14

Special Names for Constraints

• Structural aspects of the relational model are presented as constraints

3 key integrity: each relation has a primary key + possibly candidate keys

3 domain integrity: attributes must obey the definition of their domain (i.e.,
specific set of values and of applicable operations)

3 entity integrity: primary-key values may not be null

3 candidate key integrity (= key uniqueness): key values must be unique

3 column integrity: a constraint that supplements domain integrity (e.g.,
MgrStartDate is a date after 1970)

3 row integrity: concerns a single tuple (e.g., if BDate is before 1950, then

Salary is at least 40000)

15

Bases of the Relational Model, October 9, 2008 – 12

Constraints versus Data Structures

• There is no fundamental difference of nature between constraints and data
structures: the distinction depends on the power of the data-structuring mech-
anisms

• The same piece of information can be modeled as fact or as constraint, de-
pending on its stability (e.g., headquarters are located in Houston)

16

Base and Derived Relations

• Base relations are those in the community schema, they are stored on disk

• Derived relations (views or external schemas) are defined from combining base
and other derived relations by operations of the relational model

• The definition of derived relations and their correspondence with base relations
are part of the database schema

17

Bases of the Relational Model, October 9, 2008 – 13

Derived Relations: Views

• Derived relations can be presented as views to application programs (ANSI
external schemas)

• Views are redundant and consistent with the underlying base relations

• Views simplify application programs

• Views may or may not be materialized (i.e., stored on disk): this is an efficiency
issue that should be under the control of the DBMS and invisible to users

• Storing them

3 introduces physical redundancy and complicates integrity enforcement

3 accelerates querying and slows updating

18

Derived Relations: Snapshots

• Derived relations that are not synchronized at all times with base relations

• Refreshed from base relations at regular intervals

• Users of snapshots accept to work with data that is not up-to-date to gain
efficiency in access times (particularly for distributed data)

• To easily establish consistency at refreshing times, snapshots may be restricted
to read-only access

19

Bases of the Relational Model, October 9, 2008 – 14

Operations of the Relational Model

• Data Definition Language: declare a relation, specify a constraint, define
physical structures

• Data Manipulation Language (DML) for access and retrieval

3 algebra, domain calculus, and tuple calculus are generally considered to be
part of the model

3 SQL has redefined the corresponding operations and defined some extensions,
notably for aggregate functions

• Update operations:

3 update of tuples in the current value of a relation (insert, delete, modify)

3 update of the schema: create or delete a relation, add or suppress an attribute

20

Programming Tuple Insertion

• If insertion violates a constraint, then

3 either reject insertion

3 or correct violation

• Examples

3 tuple to be inserted has a null value for primary key: ask user for a value and
proceed with insertion

3 value for a foreign key does not exist in the relation where the attribute(s) is
primary key: ask user for a new tuple in that relation (possibility of cascading
updates)

21

Bases of the Relational Model, October 9, 2008 – 15

Programming Tuple Suppression

• If suppression violates a referential constraint, then

3 either reject suppression

3 or propagate suppression to the tuples that reference the suppressed tuples

3 or set to null the attribute values that reference the suppressed tuple (unless
these attributes are part of the primary key)

Examples

• suppress a department ⇒ suppress its locations

• suppress an employee ⇒ suppress his/her dependents

• suppress a department ⇒ set to null the reference to a department in projects, until

projects are assigned to another department

22

• Options for tuple insertion and tuple suppression can be specified declaratively in the
database schema of current RDBMSs

Bases of the Relational Model, October 9, 2008 – 16

