# INFO-H-403 Bases de données Séance d'exercices 10 Normalisation

F. Servais et B. Verhaegen

19 décembre 2007

### But de la normalisation

#### **EmpDept**

| ΕN | ame | <u>SSN</u> | BDate | Address | DNumber | DName | DMgr |
|----|-----|------------|-------|---------|---------|-------|------|
|----|-----|------------|-------|---------|---------|-------|------|

- Objectif : construire un schéma relationnel évitant la redondance
- La redondance implique des anomalies lors de
  - ► l'insertion (nouvel employé, nouveau département)
  - la suppression (du dernier employé d'un département)
  - ► la modification (changement de manager)

# Dépendances fonctionnelles (DF)




$$\begin{aligned} \mathsf{DF1} &: \mathit{SSN} \rightarrow \{\mathit{EName}, \mathit{BDate}, \mathit{Address}, \mathit{D\#}\} \\ &\mathsf{DF2} &: \mathit{D\#} \rightarrow \{\mathit{DName}, \mathit{DMgrSSN}\} \end{aligned}$$

Soit 
$$R(A_1,...,A_n)$$
 avec  $X,Y\subseteq\{A_1,...,A_n\}$ 

Il y a une dépendance fonctionnelle  $X \to Y$  (X détermine Y) si pour chaque paire de tuple  $t_1, t_2$  de R, si  $t_1[X] = t_2[X]$  alors  $t_1[Y] = t_2[Y]$ .



## Dépendances fonctionnelles : exemple



 $\begin{aligned} \mathsf{DF1} : \mathit{SSN} &\rightarrow \{\mathit{EName}, \mathit{BDate}, \mathit{Address}, \mathit{D\#}\} \\ \mathsf{DF2} : \mathit{D\#} &\rightarrow \{\mathit{DName}, \mathit{DMgrSSN}\} \end{aligned}$ 

### EmpDept

| EName   | <u>SSN</u> | BDate    | Address | D# | DName    | DMgrSSN |   |
|---------|------------|----------|---------|----|----------|---------|---|
| Smith   | 1234       | 21/07/39 |         | 1  | Research | 1234    | ĺ |
| Narayan | 6668       | 18/01/43 |         | 1  | Research | 1234    |   |
| English | 4534       | 8/05/53  |         | 2  | Account  | 4534    |   |
| Wong    | 9788       | 30/11/49 |         | 3  | Admin    | 9788    |   |
| Zelaya  | 6677       | 23/08/60 |         | 3  | Admin    | 9788    |   |
|         |            |          |         |    |          |         |   |

# Règles d'inférences des DF

### Axiomes d'Armstrong

- ▶ (Réflexivité) Si  $Y \subseteq X$ , alors  $X \to Y$
- ▶ (Augmentation) Si  $X \to Y$ , alors  $XZ \to YZ$  (et  $XZ \to Y$ )
- ▶ (Transitivité) Si  $X \to Y$  et  $Y \to Z$ , alors  $X \to Z$

#### Règles supplémentaires

- ▶ (Décomposition) Si  $X \to YZ$ , alors  $X \to Y$  et  $X \to Z$
- ▶ (Union) Si  $X \to Y$  et  $X \to Z$ , alors  $X \to YZ$
- ▶ (Pseudotransitivité) Si  $X \to Y$  et  $WY \to Z$ , alors  $WX \to Z$

Les 3 dernières règles sont des conséquences des 3 premières.

### Couverture minimale d'un ensemble F de DF

Un ensemble F de DF couvre un ensemble G de DF si on peut inférer chaque DF de G avec les DF de F.

Deux ensembles de DF F et G sont équivalents si F couvre G et G couvre F.

La couverture minimale d'un ensemble F de DF est un ensemble minimal de DF qui est équivalent à F. On parle aussi de graphe minimum des dépendances.

# Couverture minimale: algorithme

#### Trouver une couverture minimale G de F

- (1)  $G \leftarrow F$
- (2) Remplacer chaque DF  $X o \{A_1, \ldots, A_n\}$  dans G par n DF  $X o A_i$
- (3) Pour chaque DF  $X \to A$  dans G, pour chaque attribut B de X si  $(G \{X \to A\}) \cup \{(X \{B\}) \to A\}$  est équivalent à G alors remplacer  $X \to A$  par  $(X \{B\}) \to A$  dans G
- (4) Pour chaque DF  $X \to A$  restante dans G si  $(G \{X \to A\})$  est équivalent à G alors enlever  $X \to A$  de G

### Fermeture d'un ensemble d'attribut X

La fermeture d'un ensemble d'attributs X,  $(X)^+$  représente l'ensemble des attributs de R qui peuvent être déduits de X a partir d'un ensemble F de DF et des règles d'inférences.

Y est inclus dans  $(X)^+$  si et seulement si  $X \to Y$ 

#### Algorithme:

- 1.  $(X)^+ \leftarrow X$
- 2. trouver une DF dans F dont la partie gauche est incluse dans  $(X)^+$
- 3. ajouter dans  $(X)^+$  la partie droite de cette DF
- 4. répéter les opérations 2 et 3 jusqu'à ce que  $(X)^+$  n'évolue plus

### Première forme normale

Une relation R est en première forme normale si :

- R respecte la définition du modèle relationnel
- ► R ne possède pas d'attribut composés ou multivalués

Toutes les relations que l'on a vu jusqu'à présent respectent la première forme normale.

# Première forme normale : exemple

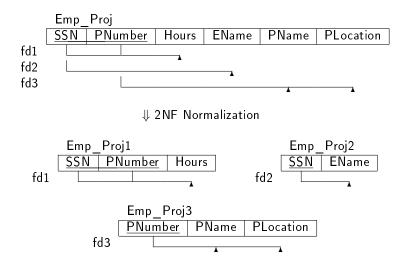
| Department |                 |          |                  |  |  |  |
|------------|-----------------|----------|------------------|--|--|--|
| DName      | <u>D Number</u> | DMgr     | $\{DLocations\}$ |  |  |  |
|            |                 | •        | •                |  |  |  |
| <b>A</b>   |                 | <b>A</b> | <b>A</b>         |  |  |  |

### Department

| DName          | <u>DNumber</u> | DMgr      | {DLocations}                       |
|----------------|----------------|-----------|------------------------------------|
| Research       | 5              | 333445555 | $\{Bellaire, Sugarland, Houston\}$ |
| Administration | 4              | 987654321 | {Stafford}                         |
| Headquarters   | 1              | 888665555 | $\{Houston\}$                      |

#### $\Downarrow 1$ NF Normalization

#### Department

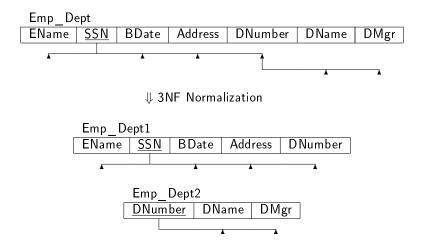

| DName          | <u>DNumber</u> | DLocations | DMgr      |
|----------------|----------------|------------|-----------|
| Research       | 5              | Bellaire   | 333445555 |
| Research       | 5              | Sugarland  | 333445555 |
| Research       | 5              | Houston    | 333445555 |
| Administration | 4              | Stafford   | 987654321 |
| Headquarters   | 1              | Houston    | 888665555 |

### Deuxième forme normale

#### Une relation R est en deuxième forme normale si :

- ▶ *R* est en première forme normale
- ▶ il n'y a pas d'attribut ne faisant pas partie d'une clé qui dépend d'une partie de cette clé

# Deuxième forme normale : exemple




### Troisième forme normale

Une relation R est en troisième forme normale si :

- R est en deuxième forme normale
- ▶ il n'y a pas d'attribut ne faisant pas partie d'une clé qui dépend transitivement de cette clé

# Troisième forme normale : exemple



# Forme normale de Boyce-Codd (BCNF)

Une relation R est en BCNF si :

- R est en troisième forme normale
- ▶ la partie gauche de chaque DF est une clé candidate entière

La plupart des relations en troisième forme normale sont en BCNF.

### Décomposition

Lors de la décomposition, il faut veiller à ne pas perdre d'informations.

Pour cela, il faut utiliser des décompositions ayant la propriété de jointure sans perte (Lossless Join Property) et l'algorithme de décomposition combinée (Combined Decomposition Algorithm) vus au cours.

# Perte d'information (spurious tuples)

### EmpProj

| SSN  | <u>P</u> # | Hours | EName   | PName | PLocation |
|------|------------|-------|---------|-------|-----------|
| 1234 | 1          | 32.5  | Smith   | ProjX | Bellaire  |
| 1234 | 2          | 7.5   | Smith   | ProjY | Sugarland |
| 6668 | 3          | 40.0  | Narayan | ProjZ | Houston   |
| 4534 | 1          | 20.0  | English | ProjX | Bellaire  |
| 4534 | 2          | 20.0  | English | ProjY | Sugarland |



### EmpProj1

| SSN  | <u>P</u> # | Hours | PName | PLocation |
|------|------------|-------|-------|-----------|
| 1234 | 1          | 32.5  | ProjX | Bellaire  |
| 1234 | 2          | 7.5   | ProjY | Sugarland |
| 6668 | 3          | 40.0  | ProjZ | Houston   |
| 4534 | 1          | 20.0  | ProjX | Bellaire  |
| 4534 | 2          | 20.0  | ProjY | Sugarland |

### EmpLocs

| •            |           |
|--------------|-----------|
| <u>EName</u> | PLocation |
| Smith        | Bellaire  |
| Smith        | Sugarland |
| Narayan      | Houston   |
| English      | Bellaire  |
| English      | Sugarland |

# Perte d'information (spurious tuples)

\*

\*

\*

4534

4534

4534

2

|   | <u>SSN</u> | <u>P#</u> | Hours | PName | PLocation | EName   |
|---|------------|-----------|-------|-------|-----------|---------|
|   | 1234       | 1         | 32.5  | ProjX | Bellaire  | Smith   |
|   | 1234       | 1         | 32.5  | ProjX | Bellaire  | English |
|   | 1234       | 2         | 7.5   | ProjY | Sugarland | Smith   |
| ٠ | 1234       | 2         | 7.5   | ProjY | Sugarland | English |
|   | 6668       | 3         | 40.0  | ProjZ | Houston   | Narayan |
|   | 4534       | 1         | 20.0  | ProjX | Bellaire  | Smith   |

ProjX

ProjY

ProjY

Bellaire

Sugarland

Sugarland

20.0

20.0

20.0

EmpProj1 ⋈ EmpLocs

English Smith

English

# Algorithme de décomposition combinée

# Décomposition sans perte d'information et sans perte de dépendance fonctionnelle

- 1. trouver un ensemble minimum G de F
- 2. pour chaque X d'une DF  $X \to A$  de G créer une relation dans D avec les attributs  $\{X \cup A_1 \cup \ldots \cup A_k\}$  où  $X \to A_1, \ldots, X \to A_k$  sont les seules DF de G avec X comme partie gauche (X est la clé de cette relation)
- 3. si aucune des relations de D ne contient une clé de R, créer une relation contenant les attributs qui forment une clé de R