
Course Notes on

The Logical Structure of Relational Query Languages

The Logical Structure of Relational Query Languages: Topics

• Overview

• First-order logic

• Tuple Relational Calculus (TRC)

• Domain Relational Calculus (DRC)

1

Relational Calculi, October 9, 2008 – 1

On the Way to SQL: Relational Calculi

• Historically, SQL was a major advance over older database languages (like DL/I
of IMS or DDL, DML of CODASYL DBTG) because SQL is far easier to use

• To effectively master and use SQL up to relational completeness, first mastering
first-order logic makes things significantly easier

2

Logic as a Basis for Database Languages

• First-order logic (predicate calculus) is simple at the level needed for
relational languages

• Strong historical prejudice against logic (and theory) in the user world

• Formal definitions have many advantages

3 the ultimate reference document

3 test of language consistency during design

3 need not be shown to everybody

• Logic has become a basic formalism in informatics for e.g.,

3 assertions in programming

3 integrity formulation and maintenance in DBMS

3 data models of DBMS

3 semantics of programming languages

3

Relational Calculi, October 9, 2008 – 2

Relational Calculi

• More used than the algebra as a basis for user languages

• Directly based on first-order logic ⇒ regular, systematic structure

• Less procedural than the algebra : what versus how

• Relational completeness:

3 DRC, TRC, and algebra have same expressive power

3 SQL is slightly more powerful: some computation, ordering, etc.

4

TRC and DRC

• Domain Relational Calculus (DRC)

3 Most similar to logic as a modeling language

3 Typical modeling formalism in AI and natural-language studies: data is
viewed as objects with properties

• Tuple Relational Calculus (TRC)

3 Reflects traditional pre-relational file structures

3 Closer to a view of relations implemented as files

5

Relational Calculi, October 9, 2008 – 3

A Simple Introduction to Logic

• General form of first-order logic is not necessary

• Logic is applied to a fixed domain of reference: the DB extension

• Formal system =
{

formal language (syntax + semantics)
deductive mechanisms

• Here we basically need the syntax of logic, and a simple “applied” semantics
linked to the DB extension

• The language of logic is used to combine elementary DB facts

6

• Simple and intuitive introductions to logic:

3 Introduction to Logic for Liberal Arts and Business Majors, by S. Waner and R.
Costenoble, http://www.hofstra.edu/ matscw/logicintro.html, July 1996.

3 Sweet Reason: A Field Guide to Modern Logic, by T. Tymoczko and J. Henle,
Springer Textbooks in Mathematical Sciences, ISBN 0-287-98930-7, Springer, 2nd
ed., 1999

Relational Calculi, October 9, 2008 – 4

The Structure of First-Order Logic

• The universe of reference is the current database

• Elementary propositions: express assertions that are true or false in the
universe

• Propositional connectives (∧, ∨, →, ¬, ↔) combine propositions

P Q P ∧Q P ∨Q P → Q ¬P P ↔ Q

T T T T T F T

T F F T F F F

F T F T T T F

F F F F T T T

7

• Elementary propositions:

3 P1 : Smith was born on 09-Jan-55 is true in the current state of the world (i.e.,
of the database)

3 P2 : Smith is female is false

• Compound propositions:

3 P1 ∧ P2 = Smith was born on 09-JAN-55 ∧ Smith is female is false

3 ¬P2 = Smith is not female is true

• Much of the problem with the intuition of logic comes from implication, namely, with
the fact that P → Q is true when P is false

Relational Calculi, October 9, 2008 – 5

Relational Schema for the Company Example

Employee

SSN FName LName BDate Address Sex Salary SuperSSN DNo

Department

DNumber DName MgrSSN MgrStartDate

DeptLocations

DNumber DLocation

Project

PNumber PName PLocation DNumber

WorksOn

PNo ESSN Hours

Dependent

ESSN DependentName Sex BDate Relationship

8

Quantifiers

• Use variables to express more general assertions about the DB:
F1 : there exists an employee who was born on 09-Jan-55 is true
F2 : all employees were born on 09-Jan-85 is false, or

: there is at least one employee who was not born on 09-Jan-85 is true
F3 : all employees born after 1950 earn more than 40k is false, or

: there is at least one employee born after 1950 who earns less than 40k
is true

• More formally
F1 : ∃e (e is an employee ∧ e was born on 09-Jan-55)
F2 : ¬ ∀e (e is an employee → e was born on 09-Jan-55), or

: ∃e (e is an employee ∧ e was not born on 09-Jan-55)
F3 : ¬ ∀e (e is an employee ∧ e was born after 01-Jan-50 →

e earns more than 40k), or
: ∃e (e is an employee ∧ e was born after 01-Jan-50 ∧ e earns less than 40k)

9

Relational Calculi, October 9, 2008 – 6

• ∀ (for all) and ∃ (there exists)

• if you cannot do everything ...

3 that does not mean that there is not anything that you can do ...

3 nor that there is anything that you cannot do ...

Queries

• Free variables of logic are used as query variables

• List the employees who were born on 09-Jan-55

{e | e is an employee ∧ e was born on 09-Jan-55}

• The {e | P (e)} syntax evokes set theory

• A more fancy syntax for the same expression (see later)

SELECT ... FROM ... WHERE ...

10

Relational Calculi, October 9, 2008 – 7

Equivalence Rules

• Allow to replace a formula by another one

P → Q is equivalent to ¬P ∨Q

¬(P ∧Q) ¬P ∨ ¬Q

¬(P ∨Q) ¬P ∧ ¬Q

∀x P (x) ¬(∃x (¬P (x)))
∃x P (x) ¬(∀x (¬P (x)))
∃x (¬P (x)) ¬(∀x P (x))

• Implication rules for quantifiers

∀x P (x) implies that ∃x P (x)
¬(∃x P (x)) ¬(∀x P (x))

but not the converse

11

• This is about all the logic that is needed to master languages of traditional relational
systems

Relational Calculi, October 9, 2008 – 8

Tuple Relational Calculus (TRC)

• Tuple variables:

3 range on (takes as values) tuples of a relation

3 are explicitly linked to a relation

• List employees who make more than 50k

{t | Employee(t) ∧ t.Salary > 50k}
3 Employee(t) is a “relation predicate”, it links TRC with the DB

3 t.Salary is a term whose value is the value of attribute Salary of tuple t

• List birthdate and address of employees called John Smith

{t.BDate, t.Address | Employee(t) ∧ t.FName = ‘John’ ∧ t.LName = ‘Smith’}

12

General Structure of TRC Queries

{t1.A1, t2.A2, . . . , tn.An | F (t1, . . . , tn, tn+1, . . . , tm)}

• t1, t2, . . . , tm: tuple variables each associated in F with a relation through a
relation predicate

• Ai: attribute of the relation associated with ti

• F: logical formula containing variables t1, t2, . . . , tm

• t1, t2, . . . , tn: free variables in F (“query variables”)

• tn+1, . . . , tm: variables quantified in F

13

Relational Calculi, October 9, 2008 – 9

TRC Semantics

• F is evaluated for all possible values t1, t2, . . . , tn (= Cartesian product)

• If F is true for a tuple, then the projection t1.A1, t2.A2, . . . , tn.An is included in the
result

• Result = nameless relation with n attributes; rules must be specified for deciding
attribute names (e.g., Ai’s if they are all distinct)

Structure of TRC Formulas

• Formula F is defined with the recursive structure of first-order logic

3 R(ti), where R is a relation name

3 ti.A comparison tj .B

3 ti.A comparison constant

3 ¬F

3 F1 ∧ F2

3 F1 ∨ F2

3 F1 → F2

3 F1 ↔ F2

3 ∃t F (t)

3 ∀t F (t)

• Comparison: =, 6=, <, >, ≤, ≥

14

Relational Calculi, October 9, 2008 – 10

Join

• List name and address of employees who work for the Research department

{e.LName, e.Address | Employee(e)∧
∃d (Department(d) ∧ d.DName = ‘Research’ ∧ d.DNumber = e.DNo)}

• “Join term” d.DNumber = e.DNo expresses a join between relation Department
and relation Employee

15

Relative Procedurality of Languages

• Two different algebraic formulations for the previous example:

3 πLName,Address(σDName=‘Research’(Employee 1DNo=DNumber Department))

3 πLName,Address(Employee 1DNo=DNumber (σDName=‘Research’(Department)))

• Only one TRC formulation

{e.LName, e.Address | Employee(e)∧
∃d (Department(d) ∧ d.DName = ‘Research’ ∧ d.DNumber = e.DNo)}

• The algebra is more procedural than TRC: in TRC, the relative order of join
and selection is not an issue

• For casual users, TRC style is simpler than algebra style (less to think about)

• Efficiency is another issue

16

Relational Calculi, October 9, 2008 – 11

• Efficiency:

3 in most cases, the strategy that evaluates selection before joins is more efficient

3 this is taken care of by the query optimizer of the DBMS

Two Joins

• For every project located in Brussels, list the project number, the controling
department number, and the name of the department manager

{p.PNumber, p.DNum,m.LName | Project(p) ∧
Employee(m) ∧ p.Location = ‘Brussels’ ∧
∃d (Department(d) ∧ d.DNumber = p.DNum ∧ d.MgrSSN = m.SSN)}

• Same conclusion about procedurality: algebra is more procedural

17

• In this example, if p.DNum is replaced by d.DNumber in the target of the query, then
the quantifier ∃d disappears, yielding a more symmetric formulation

{p.PNumber, d.DNumber,m.LName |
Project(p) ∧ Employee(m) ∧Department(d) ∧
p.Location = Brussels ∧ d.DNumber = p.DNum ∧ d.MgrSSN = m.SSN}

Relational Calculi, October 9, 2008 – 12

Other Example with two Joins

• List the name of employees who work on some project controled by department
number 5

{e.FName, e.LName | Employee(e)∧
∃p ∃w (Project(p) ∧WorksOn(w)∧

p.DNum = 5 ∧ w.ESSN = e.SSN ∧ p.PNumber = w.PNo)}

• Same conclusion about procedurality: algebra is more procedural

18

A “Complex” Query

• List project names of projects for which an employee whose last name is Smith
is a worker or a manager of the department that controls the project

{p.PName | Project(p)∧
∃e ∃w (Employee(e) ∧WorksOn(w)∧

w.PNo = p.PNumber ∧ w.ESSN = e.SSN ∧ e.LName = ‘Smith’)
∨
∃m ∃d (Employee(m) ∧Department(d)∧

p.DNum = d.DNumber ∧ d.MgrSSN = m.SSN ∧m.LName = ‘Smith’)}

• Union of two queries in the algebra is expressed in TRC with disjunction

19

Relational Calculi, October 9, 2008 – 13

• {x | P (x) ∨Q(x)} ≡ {x | P (x)} ∪ {x | Q(x)}
• Other version: factor out of the disjunction the repeated

∃e (Employee(e) ∧ e.LName = Smith)

Join of a Relation with Itself

• List the first and last name of each employee, and the first and last name of
his/her immediate supervisor

{e.FName, e.LName, s.FName, s.LName |
Employee(e) ∧ Employee(s) ∧ e.SuperSSN = s.SSN}

• The attributes of the result relation have to be specified explicitly (if the result
is to be used elsewhere, i.e., not just displayed) through some kind of assignment

F(EmpFN,EmpLN, MgrFN, MgrLN) ← {...}

• Syntax is more difficult for the algebra, unless attributes are ordered

20

Relational Calculi, October 9, 2008 – 14

Other Example of Join of a Relation with Itself

• List the SSN of employees who have both a dependent son and a dependent
daughter

{e.ESSN | Dependent(e)
∧ ∃d (Dependent(d)

∧ e.ESSN = d.ESSN
∧ d.Relationship = ‘Son’
∧ d.Relationship = ‘Daughter’)}

21

Universal Quantifier

• List the name of employees who work on all projects

{e.FName, e.LName | Employee(e)
∧ ∀p Project(p) →
∃w (WorksOn(w) ∧ w.PNo = p.PNumber ∧ w.ESSN = e.SSN)}

• “all projects” are those in relation Project

22

Relational Calculi, October 9, 2008 – 15

• Various styles of universal quantification (for List the employees who work on all
projects):

3 logical formulation:
{e | Employee(e) ∧ ∀p (Project(p) → Workson(e,p))}

3 logic with range-coupled quantifiers:
{e ∈ Employee | ∀p ∈ Project (Workson(e,p))}

3 towards natural language (where quantification is “infix” rather than “prefix”
as in logic, binary predicates are also infix rather than prefix, and variables are
seldom used as such):

∗ {e ∈ Employee | for all p ∈ Project (e Workson p)}
∗ {e ∈ Employee | e Workson(all p ∈ Project)}
∗ {Employee Workson (all Project)}

Universal Quantifier

• List the name of employees who have at least one dependent

{e.LName | Employee(e) ∧
∃d (Dependent(d) ∧ e.SSN = d.ESSN)}

• List the name of employees who have no dependent

{e.LName | Employee(e) ∧
¬∃d (Dependent(d) ∧ e.SSN = d.ESSN)}

{e.LName | Employee(e) ∧
∀d (Dependent(d) → e.SSN 6= d.ESSN)}

{e.LName | Employee(e) ∧
∀d ∈ Dependent (e.SSN 6= d.ESSN)}

23

• Proof of equivalence of the formulations of List the name of employees who have no
dependent by applying the equivalence rules of logic:

3 ¬(∃d P (d)) ≡ ∀d (¬P (d))

3 ¬∃d (Dependent(d) ∧ e.SSN = d.ESSN)

3 ∀d ¬(Dependent(d) ∧ e.SSN = d.ESSN)

3 ∀d (¬Dependent(d) ∨ ¬(e.SSN = d.ESSN))

3 ∀d (¬Dependent(d) ∨ e.SSN 6= d.ESSN)

3 ∀d (Dependent(d) → e.SSN 6= d.ESSN)

3 ∀d ∈ Dependent (e.SSN 6= d.ESSN)

Relational Calculi, October 9, 2008 – 16

Safe Use of Universal Quantification

• Universal quantification must always be associated with implication

• Given relations Prereq(Course, Pre) and Took(StudID, Course), give the names
of students who took all prerequisites of the course Math210

• Use of ∧ instead of →
{s.Name | Student(s) ∧ ∀p (Prereq(p) ∧ p.Course = ‘Math210’∧

∃t Took(t) ∧ t.StudID = s.StudID ∧ t.Course = p.Pre)}
• If Math210 has no prerequisites, the answer of the above query is always empty

• Correct formulation
{s.Name | Student(s) ∧ ∀p (Prereq(p) ∧ p.Course = ‘Math210’ →

∃t Took(t) ∧ t.StudID = s.StudID ∧ t.Course = p.Pre)} ≡
{s.Name | Student(s) ∧ ∀p (¬(Prereq(p) ∧ p.Course = ‘Math210’)∨

∃t Took(t) ∧ t.StudID = s.StudID ∧ t.Course = p.Pre)}
• If Math210 has no prerequisites, the answer will be the names of all students

24

Relational Calculi, October 9, 2008 – 17

Safe TRC

• Formulas with quantifiers, negation, some comparisons must be restricted so at
to be meaningful

• Examples of ill-formed formulas with a comparison, a negation

3 {n | n ≥ 3}
3 {e | ¬Employee(e)}

• Existential quantifiers

3 ∃t F (t) must have the form ∃t R(t) ∧ F ′(t)

3 other notation: (∃t ∈ R) F ′(t)

• Universal quantifiers must always be associated with implication

3 ∀t F (t) must have the form ∀t R(t) → F ′(t)

3 other notation: (∀t ∈ R) F ′(t)

25

• (∃t ∈ R) and (∀t ∈ R) are called range-restricted or ranged-coupled quantifiers,
where R is a relation predicate that defines and restricts the range of t

• General form of safe use of universal quantifier: ∀t ∈ (R(t) ∧ F ′(t)) F ′′(t) (F ′(t) and
F ′′(t)” are any TRC formulas)

• Intuition: ∀t F (t), where F(t) is a conjunction of database or comparison predicates,
is meaningless (e.g., ∀t Employee(t))

Relational Calculi, October 9, 2008 – 18

Domain Relational Calculus (DRC)

• Domain variables range on (i.e., take as values elements of) DB domains

• Relations are preferably viewed as predicates expressing properties of objects,
represented as values

• Relation predicates (extensional predicates)

3 realize the link between DRC and the DB

3 R(A1 : x1, . . . , An : xn) is associated with relation R(A1 : D1, . . . , An : Dn)

3 R(A1 : a1, . . . , An : an) is true if tuple 〈A1 : a1, . . . , An : an〉 belongs to
relation R

26

• Predicate WorksOn(ESSN:123456789, PNo:1, Hours:32.5) is true because
tuple 〈 ESSN:123456789, PNo:1, Hours:32.5 〉 belongs to relation WorksOn

• In WorksOn(ESSN:123456789, PNo:1, Hours:32.5):

3 WorksOn(ESSN: , PNo: , Hours:) is the predicate name

3 123456789, 1 and 32.5 are the arguments

Relational Calculi, October 9, 2008 – 19

General Structure of DRC Queries

{x1, x2, . . . , xn | F (x1, . . . , xn, xn+1, . . . , xm)}

• where formula F has the structure of first-order logic
3 R(Ai : xi, . . . , Aj : xj), where R is a relation name
3 xi comparison xj

3 xi comparison constant
3 ¬F

3 F1 ∧ F2

3 F1 ∨ F2

3 F1 → F2

3 F1 ↔ F2

3 ∃x F (x)
3 ∀x F (x)

27

• As for TRC, the only things specific to DRC are the choice of domain variables and
the definition of the relational predicates

• DRC has the structure of logic, applied as a DB query/assertion language

• Restrictions for safety similar to those of TRC for quantified formulas apply to DRC

Relational Calculi, October 9, 2008 – 20

Simplification of Notation

• List the birth date and address of employees named John Smith

{dn, a | ∃fn, m, ln, ssn, sex, sal, ss, d

Employee(FName : fn, MInit : m, LName : ln, Address : a,BDate : dn,

ESSN : ssn,Sex : sex,Sal : sal, MgrSSN : ss, DNo : d)

∧ fn = ‘John’ ∧ ln = ‘Smith’}

• Many variables! Suppress variables that only appear in a relational predicate
under ∃

{dn, a | ∃fn, ln

Employee(FName : fn, LName : ln, Address : a,BDate : dn) ∧
fn = ‘John’ ∧ ln = ‘Smith’}

• 2n − 1 predicates are associated with each relation with n attributes

28

Further Simplification

• Suppress variables that only appear in a relation predicate and in a test for
equality with a constant in a conjunction (∧)

{dn, a | Employee(FName : ‘John’,LName : ‘Smith’,Address : a,BDate : dn) }

• Corresponds to projection + selection on equality in the algebra

• The rest of DRC has the structure of logic

29

Relational Calculi, October 9, 2008 – 21

• P (x) ∧ x = 3 ≡ P (3)

• TRC formulation of the same example:

{t.BDate, t.Address | Employee(t) ∧ t.FName = John ∧ t.LName = Smith}

Selection + Projection

List the name of employees with a salary greater than 50k

{fn, ln | ∃sal

(Employee(FName : fn, LName : ln, Salary : sal) ∧ sal > 50k)}

Could also conceivably be written

{fn, ln | Employee(FName : fn, LName : ln, Salary : > 50k)}

30

Relational Calculi, October 9, 2008 – 22

Join

• List name and address of employees who work in the Research department

{fn, ln, a | ∃d (Employee(FName : fn, LName : ln, Address : a,DNo : d) ∧
Department(DName : ‘Research’, DNumber : d))}

• A join is expressed through the occurrence of the same domain variable in two
(or more) relation predicates in a conjunction (∧)

• In TRC, a join is signaled by an explicit “join condition”

{e.FName, e.LName, e.Address | Employee(e)∧
∃d (Department(d) ∧ d.DName = ‘Research’ ∧ d.DNumber = e.DNo)}

31

Double Join

• For every project located in Brussels, list the project number, the controling
department number, and the name of the department manager

{pn, d, mfn, mln | ∃e
(Project(PNumber : pn, PLocation : ‘Brussels’,DNum : d) ∧
Department(MgrSSN : e,DNumber : d) ∧
Employee(SSN : e, FName : mfn,LName : mln))}

32

Relational Calculi, October 9, 2008 – 23

“Complex” Query

• List project number of projects for which an employee whose last name is Smith
is a worker or a manager of the department that controls the project

{p | Project(PNumber : p) ∧ ∃e Employee(SSN : e,LName : ‘Smith’) ∧
[WorksOn(ESSN : e,PNo : p) ∨
∃d (Department(MgrSSN : e,DNumber : d) ∧
Project(PNumber : p, DNum : d))] }

• Many variants

33

Join of a Relation with itself

• List first and last name of employees, and first and last name of their immediate
supervisor

{efn, eln, mfn, mln | ∃m
(Employee(FName : efn, LName : eln, SuperSSN : m) ∧
Employee(SSN : m, FName : mfn, LName : mln))}

• Like for the algebra and TRC, attribute names for the result have to be explicitly
specified through some kind of assertion

RES(EmpFN,EmpLN, SupFN,SupLN) ← {efn, eln, mfn, mln | ...}

34

Relational Calculi, October 9, 2008 – 24

Universal Quantifier

• List the name of employees who work on all projects

{fn, ln |
∃e Employee(FName : fn, LName : ln, SSN : e) ∧

∀p (Project(PNumber : p) → WorksOn(PNo : p,ESSN : e))}

{fn, ln |
∃e Employee(FName : fn, LName : ln, SSN : e) ∧

∀p (WorksOn(PNo : p) → WorksOn(PNo : p, ESSN : e))}

35

Universal Quantifier

• List the name of employees who have no dependent

{name | ∃s (Employee(LName : name,SSN : s) ∧
¬ Dependent(ESSN : s))}

{name | ∃s (Employee(LName : name,SSN : s) ∧
6 ∃m (Dependent(ESSN : m) ∧m = s))}

{name | ∃s (Employee(LName : name,SSN : s) ∧
∀m (Dependent(ESSN : m) → m 6= s))}

36

Relational Calculi, October 9, 2008 – 25

