Relational Application Programming

e SQL is not computationally complete

¢ Embedded SQL (ESQL): SQL expressions embedded into programs in tradi-

tional algorithmic languages (e.g., C, COBOL): host language

e In addition, DBMSs provide proprietary languages that integrate SQL:

< Informix-4GL

< Informix Stored Procedure Language (SPL)
<& Oracle PL/SQL

<& Microsoft’s Transact SQL (T-SQL)

Progran

Done in several ways

o Writing interactive SQL «

e Writing programs in a ho:

<& precompiler (e.g., PR
Oracle

e Writing in PL/SQL, Orac

e Using Oracle Call Interfac

Embedded SQL

Source
ESQL Program Language Executable
source with Compiler Program
Program Procedure
cals

quests

ing relational access

language = “impedance mismatch”

input by users

Application program = statements in host language interspersed with SQL re-

Preprocessor replaces relational expressions by calls to compiled modules realiz-

Result of relational requests exploited one tuple at a time in host programming

Static embedding: SQL statements written as part of the source program text
Dynamic embedding: SQL statements composed by DBMS according to data

Pro

e Oracle’s procedural langu

< data encapsulation, in
e Most heavily used technic
e Block-structured languagy
e Basic units: procedures, f
e Can contain any number
e Declarations are local to 1
e Structure of PL/SQL blo

Relational Application Programming, October 23, 2003 — 1

Relational Applic

e Declaration part

< optional
< variables and objects are declared
< variables can have any SQL data type as well as additional PL/SQL data types
< variables can be assigned values
e Executable part

< objects are manipulated
< only required part
< data processed using conditional, iterative, and sequential flow-of-control state-
ments: [F-THEN-ELSE, FOR-LOOP, WHILE-LOOP, EXIT-WHEN, GO-TO
e Exception part

< exceptions or errors raised during execution can be handled

< user-defined and database exceptions or errors

< When an error or exception occurs, an exception is raised and the normal execu-
tion stops, control transfers to the exception-handling part of the PL/SQL block
or subprogram

Programming in PL/SQL: Example

DECLARE
v_fname employee.fname),TYPE;
v_minit employee.minit)%TYPE;
v_lname employee.lname,TYPE;
v_address employee.address%TYPE;
v_salary employee.salary4TYPE;
BEGIN
SELECT fname, minit, lname, address, salary
INTO v_fname, v_minit, v_lname, v_address, v_salary
FROM employee
WHERE salary = (select max(salary) from employee);
DBMS_QUTPUT.PUT_LINE(v_fname, v_minit, v_lname,
v_address, v_salary);
EXCEPTION
WHEN OTHERS
DBMS_OUTPUT.PUT_LINE(’Error Detected’);
END;

It is necessary to declare program variables to match the types of the database at-
tributes that the program will process

%TYPE means that the variable is of the same type as the corresponding column in the
table

DBMS_OUTPUT.PUT_LINE: PL/SQL’s print function

Error message printed if error is detected while executing the SQL: in this case if more
than one employee is selected

INTO clause specifies the program variables into which attribute values from the DB
are retrieved

Relational Application Programming, October 23, 2003 — 3

Program

DECLARE
avg_salary NUMBER
BEGIN
SELECT avg(salary)
FROM employee;
UPDATE employee
SET salary = salar
WHERE salary < avg.
SELECT avg(salary)
FROM employee;
IF avg_salary > 50(
DBMS_QUTPUT . PUT _I
END IF;
COMMIT;
EXCEPTION
WHEN OTHERS
DBMS_OUTPUT.PUT_LI}
ROLLBACK;
END;

avg_salary is defined as a
salary from the first SELEC

e this value is used to choose

EXCEPTION part rolls back tl
on the DB) if an error of an

Relational Applic

Cursors in PL/SQL

Multirow queries handled in two stages

<& query is started (“opened”)

< rows are requested one at a time

These operations performed with a cursor = data structure to hold current
state of query execution

Similar to a file variable or file pointer

< points to a single tuple from the result of a query

Sequence of operations needed in application program

< declare the cursor and its associated SELECT statement

< open the cursor, starting execution of associated SELECT statement

< iteratively fetch and process rows of data one at a time into host variables
< close the cursor after last row is fetched

Cursors

DECLARE
emp_salary NUMBER;
emp_ssn CHAR(9);
CURSOR salary_cursor IS
BEGIN
OPEN salary_cursor
LOOP
FETCH salary_cursor INTI(
EXIT WHEN salary_cursor!
IF emp_superssn IS NOT 1
SELECT salary INTO emy
IF emp_salary > emp_st
DBMS_OUTPUT . PUT_LINI
END IF;
END IF;
END LOOP;
IF salary_cursor’ISOPEN Tt
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT . PUT_LINE (’Errc
IF salary_cursor)ISOPEN T}
END;

Cursors in PL/SQL, cont.

Cursor attributes

<& %ISOPEN returns TRUE if the cursor is already open

< %FOUND returns TRUE if the last FETCH returned a row,
returns FALSE if the last FETCH failed to return a row

< %NOTFOUND is the logical opposite of %FOUND

< %ROWCOUNT yields the number of rows fetched

Relational Application Programming, October 23, 2003 — 5

Cursors

DECLARE
v_fname employee.fname)
v_minit employee.minit/
v_lname employee.lname)
v_address employee.addre:
v_salary employee.salar)
CURSOR EMP IS SELECT ssn,
BEGIN
OPEN EMP;
LooP
FETCH EMP INTO v_ssn, V.
EXIT WHEN EMP/NOTFOUND;
DBMS_OUTPUT. PUT_LINE(’ St
UPDATE employee SET sal:
COMMIT;
DBMS_OUTPUT . PUT_LINE(’ St
END LOOP;
CLOSE EMP;
EXCEPTION
WHEN OTHERS
DBMS_OUTPUT. PUT_LINE(’Errc
END;

Relational Applic

Programming in PRO*C

e Precompiler: programming tool that allows to embed SQL statements in a source
program of some PL

<& accepts the source program as input

< translates the embedded SQL statements into Oracle runtime library calls
<& generates a modified source program that an be compiled linked and executed
e PRO*C provides automatic conversion between Oracle and C data types

e SQL statements and PL/SQL blocks can be embedded in a C host program

Programmn

// Same include statements
main () {
strcpy(username .arr, "Scot
strcpy (passwd.arr, "TIGER".
EXEC SQL WHENEVER SQLERROR
EXEC SQL CONNECT :username
EXEC SQL DECLARE EMP CURSOI
SELECT ssn, fname, mi
EXEC SQL OPEN EMP;
EXEC SQL WHENEVER NOTFOUND
for (55) {
EXEC SQL FETCH EMP INTO
printf (’SSN: %d, 0ld Sal.
EXEC SQL UPDATE employee
EXEC SQL COMMIT;
printf(’SSN: %d, New Sal:

¥
EXEC SQL CLOSE EMP;
sql_error() {

EXEC SQL WHENEVER SQLERROR
printf (’Error Detected\n’)

11

Programming in PRO*C: Example (1)

#include <stdio.h>
#include <string.h>

VARCHAR username [30] ; VARCHAR passwd[10];

VARCHAR v_fname; VARCHAR v_minit;

VARCHAR v_lname; VARCHAR v_address;

char v_ssn[9]; float f_salary;

main () {

strcpy (username.arr, "Scott"); username.len = strlen(username.arr);
strcpy(passwd.arr, "TIGER"); passwd.len = strlen(passwd.arr);

EXEC SQL WHENEVER SQLERROR DO sql_error();
EXEC SQL CONNECT :username IDENTIFIED BY :passwd;
EXEC SQL SELECT fname, minit, lname, address, salary
INTO :v_fname, :v_minit, :v_lname, :v_address, :f_salary
FROM employee
WHERE salary=(select max(salary) from employee);
printf("%s %s %s %s %f \n" v_fname.arr,
v_minit.arr, v_lname.arr, v_address.arr, f_salary);

sql_error() {

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf (’Error Detected\n’);

}

12

Relational Application Programming, October 23, 2003 — 7

Relational Applic

