
Relational Application Programming

• SQL is not computationally complete
• Embedded SQL (ESQL): SQL expressions embedded into programs in tradi-

tional algorithmic languages (e.g., C, COBOL): host language
• In addition, DBMSs provide proprietary languages that integrate SQL:

3 Informix-4GL
3 Informix Stored Procedure Language (SPL)
3 Oracle PL/SQL
3 Microsoft’s Transact SQL (T-SQL)
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• Application program = statements in host language interspersed with SQL re-
quests

• Preprocessor replaces relational expressions by calls to compiled modules realiz-
ing relational access

• Result of relational requests exploited one tuple at a time in host programming
language ⇒ “impedance mismatch”

• Static embedding: SQL statements written as part of the source program text
• Dynamic embedding: SQL statements composed by DBMS according to data

input by users
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Programming Oracle Applications

Done in several ways

• Writing interactive SQL queries in the SQL query mode
• Writing programs in a host language and embedding SQL within the program

3 precompiler (e.g., PRO∗COBOL, PRO∗C) used to link the application to
Oracle

• Writing in PL/SQL, Oracle’s procedural language
• Using Oracle Call Interface (OCI) and the Oracle runtime library SQLLIB
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Programming in PL/SQL

• Oracle’s procedural language extension to SQL with
3 data encapsulation, information hiding, overloading, exception handling

• Most heavily used technique for application development in Oracle
• Block-structured language
• Basic units: procedures, functions, anonymous blocks
• Can contain any number of nested subblocks
• Declarations are local to the block and cease to exist when the block completes
• Structure of PL/SQL block

[ DECLARE

--- declarations ]

BEGIN

--- statements

[ EXCEPTION

--- handlers ]

END;
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• Declaration part

3 optional
3 variables and objects are declared
3 variables can have any SQL data type as well as additional PL/SQL data types
3 variables can be assigned values

• Executable part

3 objects are manipulated
3 only required part
3 data processed using conditional, iterative, and sequential flow-of-control state-

ments: IF-THEN-ELSE, FOR-LOOP, WHILE-LOOP, EXIT-WHEN, GO-TO

• Exception part

3 exceptions or errors raised during execution can be handled
3 user-defined and database exceptions or errors
3 When an error or exception occurs, an exception is raised and the normal execu-

tion stops, control transfers to the exception-handling part of the PL/SQL block
or subprogram

Programming in PL/SQL: Example

DECLARE
v_fname employee.fname%TYPE;
v_minit employee.minit%TYPE;
v_lname employee.lname%TYPE;
v_address employee.address%TYPE;
v_salary employee.salary%TYPE;

BEGIN
SELECT fname, minit, lname, address, salary
INTO v_fname, v_minit, v_lname, v_address, v_salary
FROM employee
WHERE salary = (select max(salary) from employee );
DBMS_OUTPUT.PUT_LINE(v_fname, v_minit, v_lname,
v_address, v_salary);

EXCEPTION
WHEN OTHERS
DBMS_OUTPUT.PUT_LINE(’Error Detected’);

END;
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• It is necessary to declare program variables to match the types of the database at-
tributes that the program will process

• %TYPE means that the variable is of the same type as the corresponding column in the
table

• DBMS_OUTPUT.PUT_LINE: PL/SQL’s print function
• Error message printed if error is detected while executing the SQL: in this case if more

than one employee is selected
• INTO clause specifies the program variables into which attribute values from the DB

are retrieved
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Programming in PL/SQL: Example

DECLARE
avg_salary NUMBER;

BEGIN
SELECT avg(salary) INTO avg_salary
FROM employee;
UPDATE employee
SET salary = salary * 1.1
WHERE salary < avg_salary;
SELECT avg(salary) INTO avg_salary
FROM employee;
IF avg_salary > 50000 THEN

DBMS_OUTPUT.PUT_LINE(’Average Salary is ’ || avg_salary);
END IF;
COMMIT;

EXCEPTION
WHEN OTHERS
DBMS_OUTPUT.PUT_LINE(’Error in Salary update’);
ROLLBACK;

END;

6

• avg_salary is defined as a variable and gets the value of the average of the employee’s
salary from the first SELECT statement

• this value is used to choose which of the employees will have their salaries updated
• EXCEPTION part rolls back the whole transaction (removes any effect of the transaction

on the DB) if an error of any type occurs during execution
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Cursors in PL/SQL

• Multirow queries handled in two stages
3 query is started (“opened”)
3 rows are requested one at a time

• These operations performed with a cursor = data structure to hold current
state of query execution

• Similar to a file variable or file pointer
3 points to a single tuple from the result of a query

• Sequence of operations needed in application program
3 declare the cursor and its associated SELECT statement
3 open the cursor, starting execution of associated SELECT statement
3 iteratively fetch and process rows of data one at a time into host variables
3 close the cursor after last row is fetched
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Cursors in PL/SQL, cont.

• Cursor attributes
3 %ISOPEN returns TRUE if the cursor is already open
3 %FOUND returns TRUE if the last FETCH returned a row,

returns FALSE if the last FETCH failed to return a row
3 %NOTFOUND is the logical opposite of %FOUND
3 %ROWCOUNT yields the number of rows fetched
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Cursors in PL/SQL: Example (1)

DECLARE
emp_salary NUMBER; emp_super_salary NUMBER;
emp_ssn CHAR(9); emp_super_ssn CHAR(9);
CURSOR salary_cursor IS SELECT ssn, salary, superssn FROM employee;

BEGIN
OPEN salary_cursor
LOOP

FETCH salary_cursor INTO emp_ssn, emp_salary, emp_superssn;
EXIT WHEN salary_cursor%NOTFOUND;
IF emp_superssn IS NOT NULL THEN

SELECT salary INTO emp_super_salary FROM employee WHERE ssn=emp_superssn;
IF emp_salary > emp_super_salary THEN

DBMS_OUTPUT.PUT_LINE(emp_ssn);
END IF;

END IF;
END LOOP;
IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(’Errors with ssn ’ || emp_ssn);
IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;

END;

9

Cursors in PL/SQL: Example (2)

DECLARE
v_fname employee.fname%TYPE;
v_minit employee.minit%TYPE;
v_lname employee.lname%TYPE;
v_address employee.address%TYPE;
v_salary employee.salary%TYPE;
CURSOR EMP IS SELECT ssn, fname, minit, lname, salary FROM employee;

BEGIN
OPEN EMP;
LOOP

FETCH EMP INTO v_ssn, v_fname, v_minit, v_lname, v_salary;
EXIT WHEN EMP%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(’SSN: ’ || v_ssn || ’Old salary: ’ || v_salary );
UPDATE employee SET salary = salary * 1.1 WHERE ssn = v_ssn;
COMMIT;
DBMS_OUTPUT.PUT_LINE(’SSN: ’ || v_ssn || ’New salary: ’ || v_salary*1.1 );

END LOOP;
CLOSE EMP;

EXCEPTION
WHEN OTHERS
DBMS_OUTPUT.PUT_LINE(’Error detected’);

END;
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Programming in PRO∗C

• Precompiler: programming tool that allows to embed SQL statements in a source
program of some PL
3 accepts the source program as input
3 translates the embedded SQL statements into Oracle runtime library calls
3 generates a modified source program that an be compiled linked and executed

• PRO∗C provides automatic conversion between Oracle and C data types
• SQL statements and PL/SQL blocks can be embedded in a C host program
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Programming in PRO∗C: Example (1)

#include <stdio.h>
#include <string.h>
VARCHAR username[30]; VARCHAR passwd[10];
VARCHAR v_fname; VARCHAR v_minit;
VARCHAR v_lname; VARCHAR v_address;
char v_ssn[9]; float f_salary;
main () {
strcpy(username.arr, "Scott"); username.len = strlen(username.arr);
strcpy(passwd.arr, "TIGER"); passwd.len = strlen(passwd.arr);
EXEC SQL WHENEVER SQLERROR DO sql_error();
EXEC SQL CONNECT :username IDENTIFIED BY :passwd;
EXEC SQL SELECT fname, minit, lname, address, salary

INTO :v_fname, :v_minit, :v_lname, :v_address, :f_salary
FROM employee
WHERE salary=(select max(salary) from employee);
printf( "%s %s %s %s %f \n" v_fname.arr,

v_minit.arr, v_lname.arr, v_address.arr, f_salary);
}
sql_error() {
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf(’Error Detected\n’);
}
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Programming in PRO∗C: Example (2)

// Same include statements and variable declarations as in previous example
main () {
strcpy(username.arr, "Scott"); username.len = strlen(username.arr);
strcpy(passwd.arr, "TIGER"); passwd.len = strlen(passwd.arr);
EXEC SQL WHENEVER SQLERROR DO sql_error();
EXEC SQL CONNECT :username IDENTIFIED BY :passwd;
EXEC SQL DECLARE EMP CURSOR FOR

SELECT ssn, fname, minit, lname, salary FROM employee;
EXEC SQL OPEN EMP;
EXEC SQL WHENEVER NOTFOUND DO BREAK;
for (;;) {

EXEC SQL FETCH EMP INTO :v_ssn, :v_fname, :v_minit, :v_lname, :f_salary;
printf(’SSN: %d, Old Salary %f’, v_ssn, f_salary );
EXEC SQL UPDATE employee SET salary = salary * 1.1 WHERE ssn = v_ssn;
EXEC SQL COMMIT;
printf(’SSN: %d, New Salary %f’, v_ssn, f_salary*1.1 );
}

EXEC SQL CLOSE EMP;
}
sql_error() {
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf(’Error Detected\n’);
}
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