
Relational Application Programming

• SQL is not computationally complete
• Embedded SQL (ESQL): SQL expressions embedded into programs in tradi-

tional algorithmic languages (e.g., C, COBOL): host language
• In addition, DBMSs provide proprietary languages that integrate SQL:

3 Informix-4GL
3 Informix Stored Procedure Language (SPL)
3 Oracle PL/SQL
3 Microsoft’s Transact SQL (T-SQL)

1

Embedded SQL

Language
Compiler

Executable
Programsource

ESQL

Preprocessor
ESQL

Source

Procedure

Program
with

calls
Program

• Application program = statements in host language interspersed with SQL re-
quests

• Preprocessor replaces relational expressions by calls to compiled modules realiz-
ing relational access

• Result of relational requests exploited one tuple at a time in host programming
language ⇒ “impedance mismatch”

• Static embedding: SQL statements written as part of the source program text
• Dynamic embedding: SQL statements composed by DBMS according to data

input by users

2

Relational Application Programming, October 23, 2003 – 1

Programming Oracle Applications

Done in several ways

• Writing interactive SQL queries in the SQL query mode
• Writing programs in a host language and embedding SQL within the program

3 precompiler (e.g., PRO∗COBOL, PRO∗C) used to link the application to
Oracle

• Writing in PL/SQL, Oracle’s procedural language
• Using Oracle Call Interface (OCI) and the Oracle runtime library SQLLIB

3

Programming in PL/SQL

• Oracle’s procedural language extension to SQL with
3 data encapsulation, information hiding, overloading, exception handling

• Most heavily used technique for application development in Oracle
• Block-structured language
• Basic units: procedures, functions, anonymous blocks
• Can contain any number of nested subblocks
• Declarations are local to the block and cease to exist when the block completes
• Structure of PL/SQL block

[DECLARE

--- declarations]

BEGIN

--- statements

[EXCEPTION

--- handlers]

END;

4

Relational Application Programming, October 23, 2003 – 2

• Declaration part

3 optional
3 variables and objects are declared
3 variables can have any SQL data type as well as additional PL/SQL data types
3 variables can be assigned values

• Executable part

3 objects are manipulated
3 only required part
3 data processed using conditional, iterative, and sequential flow-of-control state-

ments: IF-THEN-ELSE, FOR-LOOP, WHILE-LOOP, EXIT-WHEN, GO-TO

• Exception part

3 exceptions or errors raised during execution can be handled
3 user-defined and database exceptions or errors
3 When an error or exception occurs, an exception is raised and the normal execu-

tion stops, control transfers to the exception-handling part of the PL/SQL block
or subprogram

Programming in PL/SQL: Example

DECLARE
v_fname employee.fname%TYPE;
v_minit employee.minit%TYPE;
v_lname employee.lname%TYPE;
v_address employee.address%TYPE;
v_salary employee.salary%TYPE;

BEGIN
SELECT fname, minit, lname, address, salary
INTO v_fname, v_minit, v_lname, v_address, v_salary
FROM employee
WHERE salary = (select max(salary) from employee);
DBMS_OUTPUT.PUT_LINE(v_fname, v_minit, v_lname,
v_address, v_salary);

EXCEPTION
WHEN OTHERS
DBMS_OUTPUT.PUT_LINE(’Error Detected’);

END;

5

• It is necessary to declare program variables to match the types of the database at-
tributes that the program will process

• %TYPE means that the variable is of the same type as the corresponding column in the
table

• DBMS_OUTPUT.PUT_LINE: PL/SQL’s print function
• Error message printed if error is detected while executing the SQL: in this case if more

than one employee is selected
• INTO clause specifies the program variables into which attribute values from the DB

are retrieved

Relational Application Programming, October 23, 2003 – 3

Programming in PL/SQL: Example

DECLARE
avg_salary NUMBER;

BEGIN
SELECT avg(salary) INTO avg_salary
FROM employee;
UPDATE employee
SET salary = salary * 1.1
WHERE salary < avg_salary;
SELECT avg(salary) INTO avg_salary
FROM employee;
IF avg_salary > 50000 THEN

DBMS_OUTPUT.PUT_LINE(’Average Salary is ’ || avg_salary);
END IF;
COMMIT;

EXCEPTION
WHEN OTHERS
DBMS_OUTPUT.PUT_LINE(’Error in Salary update’);
ROLLBACK;

END;

6

• avg_salary is defined as a variable and gets the value of the average of the employee’s
salary from the first SELECT statement

• this value is used to choose which of the employees will have their salaries updated
• EXCEPTION part rolls back the whole transaction (removes any effect of the transaction

on the DB) if an error of any type occurs during execution

Relational Application Programming, October 23, 2003 – 4

Cursors in PL/SQL

• Multirow queries handled in two stages
3 query is started (“opened”)
3 rows are requested one at a time

• These operations performed with a cursor = data structure to hold current
state of query execution

• Similar to a file variable or file pointer
3 points to a single tuple from the result of a query

• Sequence of operations needed in application program
3 declare the cursor and its associated SELECT statement
3 open the cursor, starting execution of associated SELECT statement
3 iteratively fetch and process rows of data one at a time into host variables
3 close the cursor after last row is fetched

7

Cursors in PL/SQL, cont.

• Cursor attributes
3 %ISOPEN returns TRUE if the cursor is already open
3 %FOUND returns TRUE if the last FETCH returned a row,

returns FALSE if the last FETCH failed to return a row
3 %NOTFOUND is the logical opposite of %FOUND
3 %ROWCOUNT yields the number of rows fetched

8

Relational Application Programming, October 23, 2003 – 5

Cursors in PL/SQL: Example (1)

DECLARE
emp_salary NUMBER; emp_super_salary NUMBER;
emp_ssn CHAR(9); emp_super_ssn CHAR(9);
CURSOR salary_cursor IS SELECT ssn, salary, superssn FROM employee;

BEGIN
OPEN salary_cursor
LOOP

FETCH salary_cursor INTO emp_ssn, emp_salary, emp_superssn;
EXIT WHEN salary_cursor%NOTFOUND;
IF emp_superssn IS NOT NULL THEN

SELECT salary INTO emp_super_salary FROM employee WHERE ssn=emp_superssn;
IF emp_salary > emp_super_salary THEN

DBMS_OUTPUT.PUT_LINE(emp_ssn);
END IF;

END IF;
END LOOP;
IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;

EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(’Errors with ssn ’ || emp_ssn);
IF salary_cursor%ISOPEN THEN CLOSE salary_cursor;

END;

9

Cursors in PL/SQL: Example (2)

DECLARE
v_fname employee.fname%TYPE;
v_minit employee.minit%TYPE;
v_lname employee.lname%TYPE;
v_address employee.address%TYPE;
v_salary employee.salary%TYPE;
CURSOR EMP IS SELECT ssn, fname, minit, lname, salary FROM employee;

BEGIN
OPEN EMP;
LOOP

FETCH EMP INTO v_ssn, v_fname, v_minit, v_lname, v_salary;
EXIT WHEN EMP%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(’SSN: ’ || v_ssn || ’Old salary: ’ || v_salary);
UPDATE employee SET salary = salary * 1.1 WHERE ssn = v_ssn;
COMMIT;
DBMS_OUTPUT.PUT_LINE(’SSN: ’ || v_ssn || ’New salary: ’ || v_salary*1.1);

END LOOP;
CLOSE EMP;

EXCEPTION
WHEN OTHERS
DBMS_OUTPUT.PUT_LINE(’Error detected’);

END;

10

Relational Application Programming, October 23, 2003 – 6

Programming in PRO∗C

• Precompiler: programming tool that allows to embed SQL statements in a source
program of some PL
3 accepts the source program as input
3 translates the embedded SQL statements into Oracle runtime library calls
3 generates a modified source program that an be compiled linked and executed

• PRO∗C provides automatic conversion between Oracle and C data types
• SQL statements and PL/SQL blocks can be embedded in a C host program

11

Programming in PRO∗C: Example (1)

#include <stdio.h>
#include <string.h>
VARCHAR username[30]; VARCHAR passwd[10];
VARCHAR v_fname; VARCHAR v_minit;
VARCHAR v_lname; VARCHAR v_address;
char v_ssn[9]; float f_salary;
main () {
strcpy(username.arr, "Scott"); username.len = strlen(username.arr);
strcpy(passwd.arr, "TIGER"); passwd.len = strlen(passwd.arr);
EXEC SQL WHENEVER SQLERROR DO sql_error();
EXEC SQL CONNECT :username IDENTIFIED BY :passwd;
EXEC SQL SELECT fname, minit, lname, address, salary

INTO :v_fname, :v_minit, :v_lname, :v_address, :f_salary
FROM employee
WHERE salary=(select max(salary) from employee);
printf("%s %s %s %s %f \n" v_fname.arr,

v_minit.arr, v_lname.arr, v_address.arr, f_salary);
}
sql_error() {
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf(’Error Detected\n’);
}

12

Relational Application Programming, October 23, 2003 – 7

Programming in PRO∗C: Example (2)

// Same include statements and variable declarations as in previous example
main () {
strcpy(username.arr, "Scott"); username.len = strlen(username.arr);
strcpy(passwd.arr, "TIGER"); passwd.len = strlen(passwd.arr);
EXEC SQL WHENEVER SQLERROR DO sql_error();
EXEC SQL CONNECT :username IDENTIFIED BY :passwd;
EXEC SQL DECLARE EMP CURSOR FOR

SELECT ssn, fname, minit, lname, salary FROM employee;
EXEC SQL OPEN EMP;
EXEC SQL WHENEVER NOTFOUND DO BREAK;
for (;;) {

EXEC SQL FETCH EMP INTO :v_ssn, :v_fname, :v_minit, :v_lname, :f_salary;
printf(’SSN: %d, Old Salary %f’, v_ssn, f_salary);
EXEC SQL UPDATE employee SET salary = salary * 1.1 WHERE ssn = v_ssn;
EXEC SQL COMMIT;
printf(’SSN: %d, New Salary %f’, v_ssn, f_salary*1.1);
}

EXEC SQL CLOSE EMP;
}
sql_error() {
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf(’Error Detected\n’);
}

13

Relational Application Programming, October 23, 2003 – 8

