Object Constraint Language (OCL)

A UML diagram (e.g., a class diagram) does not provide all relevants aspects of

a specification
It is necessary to describe additional constraints about the objects in the model

Constraints specify invariant conditions that must hold for the system being
modeled

Constraints are often described in natural language and this always result in
ambiguities
Traditional formal languages allow to write unambiguous constraints, but they

are difficult for the average system modeler

OCL: Formal language used to express constraints, that remains easy to read
and write

Object Constraint Language (OCL)

Pure expression language: expressions do not have side effet
when an OCL expression is evaluated, it returns a value
its evaluation cannot alter the state of the corresponding executing system
an OCL expression can be used to specify a state change (e.g., in a post-
condition)

Not a programming language
it is not possible to write program logic or flow of control in OCL

cannot be used to invoke processes or activate non-query operations

Typed language: each expression has a type
well-formed expressions must obey the type conformance rules of OCL
each classifier defined in a UML model represents a distinct OCL type
OCL includes a set of supplementary predefined types

The evaluation of an OCL expression is instantaneous

the state of objects in a model cannot change during evaluation

Object Constraint Language, May 12, 2008 — 1

Where to Use OCL

e To specify invariants on classes and types in the class model

e To specify type invariants for stereotypes

e To describe pre- and post-conditions on operations and methods
e To describe guards

e As a navigation language

e To specify constraints on operations

e OCL is used to specify the well-formedness rules of the UML metamodel

Basic Values and Types

e A number of basic types are predefined in OCL

e Examples of basic types and their values

Type Values

Boolean | true, false

Integer | 1, -5, 2564,

Real 1.5, 3.14,

String ‘To be or not to be’,

e A number of operations are defined on the predefined types

Type Operations

Boolean | and, or , xor, not, implies, if-then-else-endif

Integer | +, -, *, /, abs, div, mod, max, min
Real +, -, %, /, abs, floor, round, max, min, <, >, <=, >=
String size, concat, substring, tolnteger, toReal

4

Object Constraint Language, May 12, 2008 — 2

Collections

e Collection: an abstract type with four concrete collection types

Set: the mathematical set (without duplicate elements)
Set {1, 2, 5%} Set {‘apple’, ‘orange’, ‘strawberry’}

OrderedSet: a set in which the elements are ordered by their position
OrderedSet {5, 4, 3, 2, 1}

Bag: a set that may contain duplicate elements
Bag {1, 2, 5, 2}

Sequence: a bag in which the elements are ordered
Sequence {1, 2, 5, 10} Sequence {‘ape’, ‘nut’}

e Notation ‘..’ used for a sequence of consecutive integers

Sequence {1..5} is the same as Sequence {1, 2, 3, 4, 5}

e Elements of collections may be collections themselves
Set { Sequence {1, 2, 3, 4}, Sequence {5, 6} }

e Collections have a set of predefined operations

They are accessed using the -> notation

Common Operations for All Collections

e (C, C1, Cy are values of type Collection(t), v is a value of type t

Signature Semantics
size Collection(t) — Integer | C |
count Collection(t) X t — Integer | Cn{v}]
includes Collection(t) X t — Boolean vel
excludes Collection(t) X t — Boolean vegC

includesAll | Collection(t) X Collection(t) — Boolean | Cy C (4
excludesAll | Collection(t) X Collection(t) — Boolean | CoNC; =@

isEmpty Collection(t) — Boolean C=0

notEmpty Collection(t) — Boolean C#0o

sum Collection(t) — t Zﬁ‘l v;
6

Object Constraint Language, May 12, 2008 — 3

Set Operations

e S, 51, .5, are values of type Set(t), B is a value of type Bag(t), v is a value of

type t
Signature Semantics
union Set(t) X Set(t) — Set(t) | S1US,
union Set(t) x Bag(t) — Bag(t) | SUB
intersection Set(t) X Set(t) — Set(t) | S1 NSy
intersection Set(t) x Bag(t) — Set(t) | SNB
- Set(t) X Set(t) — Set(t) | S1 — 55

symmetricDifference
including
excluding

asSet

asOrderedSet

asBag

asSequence

Set(t) x Set(t) — Set(t)
Set(t) X t — Set(t)
Set(t) x t — Set(t)
Set(t) — Set(t)

Set (t) — OrderedSet (t)
Set(t) — Bag(t)

Set(t) — Sequence(t)

(Sl — SQ) U (52 — Sl)
SuU{v}
S —{v}

e Operations asOrderedSet

and asSequence are nondeterministic

= Result contains the elements of the source set in arbitrary order

Bag Operations

e B, By, By are values of type Bag(t), S is a value of type Set (t), v is a value of

type t
Signature Semantics

union Bag(t) x Bag(t) — Bag(t) | By U DBy
union Bag(t) x Set(t) — Bag(t) | BUS
intersection | Bag(t) x Bag(t) — Bag(t) | By N By
intersection | Bag(t) x Set(t) — Set(t) | BNS
including Bag(t) X t — Bag(t) SuU{{v}}
excluding Bag(t) X t — Bag(t) S — {{v}}
asSet Bag(t) — Set(t)
asOrderedSet | Bag(t) — OrderedSet(t)
asBag Bag(t) — Bag(t)
asSequence Bag(t) — Sequence(t)

Object Constraint Language, May 12, 2008 — 4

Sequence Operations

e S, 51, S5 are values of type Set(t), v is a value of type t, operator o denotes

the concatenation of lists, m;(S) projects the ith element of a sequence S, 7Tg (S)

is the subsequence of S from the ith to the jth element

Signature Semantics

union Sequence (t) X Sequence(t) — Sequence(t) | S7 055
append Sequence(t) X t — Sequence(t) S o (v)
prepend Sequence(t) X t — Sequence(t) (v)o S
subSequence Sequence(t) X Integer X Integer 7 (S)

— Sequence (t)
at Sequence(t) x Integer — Sequence(t) i (S)
first Sequence(t) — t m1(S)
last Sequence(t) — t m51(S)
including Sequence(t) X t — Sequence(t) S o (v)
excluding Sequence(t) X t — Sequence(t) S —{v}
asSet Sequence(t) — Set(t)
asOrderedSet | Sequence(t) — OrderedSet (t)
asBag Sequence(t) — Bag(t)
asSequence Sequence(t) — Sequence(t)

Type Conformance

OCL is a typed language, the basic value types are organized in a type hierarchy

The hierarchy determines conformance of the different types to each other

Type typel conforms with type type2 when an instance of typel can be

substituted at each place where an instance of type2 is expected

Valid expression: OCL expression in which all types conform

10

Object Constraint Language, May 12, 2008 — 5

Type Conformance Rules
e Typel conforms to Type2 when they are identical
e Typel conforms to Type2 when it is a subtype of Type2

e Collection(Typel) conforms to Collection(Type2) when Typel conforms to
Type2

e Type conformance is transitive: if typel conforms with type2 and type2 con-
forms with type3, then typel conforms with type3
e Example: If Bicycle and Car are subtypes of Transport
Set (Bicycle) conforms to Set (Transport)
Set (Bicycle) conforms to Collection(Bicycle)
Set (Bicycle) conforms to Collection(Transport)

Set (Bicycle) does not conform to Bag(Bicycle)

11

Class Diagram Example

«enumeration»
Bank Gender
Job
male
title: String female
accountNo: Integer startDate: Date
salary: Integer
0..*
customer | 0..1 i
employee [employer
Person o ‘ o Company
firstName: String B i name:String
lastName: String 1 0..* |/InoEmployees: Integer
gender: Gender i
birthDate: Date manager managedCompanies |stockPrice(): Real
age: Integer hireEmployee(p: Person)

isMarried: Boolean
0.1 |maidenName: String [0..1] | g *
isUnemployed: Boolean Marriage

income(): Integer wife
currentSpouse(): Person
descendants(): Set | |------

children | 0..* 0..* | husband

parents
place: String
date: Date
ended: Boolean

12

Object Constraint Language, May 12, 2008 — 6

Comments, Infix Operators
Comments

e Denoted by —-

-- this is a comment
Infix Operators
e Use of infix operators (e.g., +, -, =, <, ...) is allowed

e Expression a + b is conceptually equivalent to a.+(b), i.e., invoking the + op-

eration on a with b as parameter

e Infix operators defined for a type must have exactly one parameter

13

Context and Self

All classifiers (types, classes, interfaces, associations, datatypes, ...) from an
UML model are types in the OCL expressions that are attached to the model

Each OCL expression is written in the context of an instance of a specific type
context Person

Reserved word self is used to refer to the contextual instance

If the context is Person, self referes to an instance of Person

14

Object Constraint Language, May 12, 2008 — 7

Object and Properties

All properties (attributes, association ends, methods and operations without
side effects) defined on the types of a UML model can be used in OCL expressions

The value of a property of an object defined in a class diagram is specified by a
dot followed by the name of the property

If the context is Person, self.age denotes the value of attribute age on the
instance of Person identified by self

The type of the expression is the type of attribute age, i.e., Integer

If the context is Company, self.stockPrice() denotes the value of operation
stockPrice on the instance identified by self

Parentheses are mandatory for operations or methods, even if they do not have

parameters

15

Invariants

Determine a constraint that must be true for all instances of a type

Value of attribute noEmployees in instances of Company must be less than or
equal to 50

context Company inv:
self .noEmployees <= 50

Equivalent formulation with a c playing the role of self, and a name for the
constraint

context c: Company inv SME:
c.noEmployees <= 50

The stock price of companies is greater than 0

context Company inv:
self.stockPrice() > O

16

Object Constraint Language, May 12, 2008 — 8

Pre- and Post-conditions

Constraints associated with an operation or other behavioral feature
Pre-condition: Constraint assumed to be true before the operation is executed
Post-condition: Constraint satisfied after the operation is executed

Pre- and post-conditions associated to operation income in Person

context Person::income(): Integer
pre: self.age >= 18
post: result < 5000

self is an instance of the type which owns the operation or method
result denotes the result of the operation, if any
Type of result is the result type of the operation (Integer in the example)

A name can be given to the pre- and post-conditions

context Person::income(): Integer
pre adult: self.age >= 18
post resultOK: result < 5000

17

Previous Values in Postconditions

In a postcondition, the value of a property p is the value upon completion of the
operation

The value of p at the start of the operation is referred to as p@pre

context Person::birthDayHappens ()
post: age = age@pre + 1

For operations, ‘@pre’ is postfixed to the name, before the parameters

context Company::hireEmployee(p: Person)
post: employee = employee@pre->including(p) and
stockPrice() = stockPrice@pre() + 10

The ‘@pre’ postfix is allowed only in postconditions

Accessing properties of previous object values
a.b@pre.c: the new value of ¢ of the old value of b of a

a.b@pre.c@pre: the old value of c of the old value of b of a

18

Object Constraint Language, May 12, 2008 — 9

Body Expression
Used to indicate the result of a query operation

Income of a person is the sum of the salaries of her jobs

context Person::income(): Integer
body: self.job.salary->sum()

Expression must conform to the result type of the operation

Definition may be recursive: The right-hand side of the definition may refer to
the operation being defined

A method that obtains the direct and indirect descendants of a person
context Person::descendants(): Set
body: result = self.children->union(
self.children->collect(c | c.descendants()))

Pre-, and postconditions, and body expressions may be mixed together after one
operation context

context Person::income(): Integer

pre: self.age >= 18

body: self.job.salary->sum()

post: result < 5000

19

Let Expression

e Allows to define a variable that can be used in a constraint

context Person inv:
let numberJobs: Integer = self.job->count() in
if isUnemployed then
numberJobs = 0
else
numberJobs > 0
endif

e A let expression is only known within its specific expression

20

Object Constraint Language, May 12, 2008 — 10

Definition Expressions
e Enable to reuse variables or operations over multiple expressions

e Must be attached to a classifier and may only contain variable and/or operation
definitions

context Person
def: name: String = self.firstName.concat(‘ ’).concat(lastName)
def: hasTitle(t: String): Boolean = self.job->exists(title = t)

e Names of the attributes/operations in a def expression must not conflict with
the names of attributes/association ends/operations of the classifier

21

Initial and Derived Values

Used to indicate the initial or derived value of an attribute or association end

e Attribute isMarried in Person is initialized to false

context Person::isMarried: Boolean
init: self.isMarried = false

Attribute noEmployees in Company is a derived attribute

context Company::noEmployees: Integer
derive: self.employee->size()

For an attribute: expression must conform to the attribute type

e For an association end: conformance depends on multiplicity
at most one: expression must conform to the classifier at that end

may be more than one: expression must conform to Set or OrderedSet

22

Object Constraint Language, May 12, 2008 — 11

Enumeration Types

«enumeration»

Person Gender
gender: Gender male
isMarried: Boolean female

maidenName: String [0..1]

e Define a number of literals that are the possible values of the enumeration
e An enumeration value is referred as in Gender: :female

e Only married women can have a maiden name
context Person inv:
self .maidenName <> ‘’ implies
self.gender = Gender::female and self.isMarried = true

23

Packages

e Within UML, types are organized in packages

e Previous examples supposed that the package in which the classifier belongs is
clear from the environment

e The package and endpackage statements can be used to explicitly specify this
package Package: :SubPackage

context X inv:
some invariant

context X::operationName(...): ReturnType
pre: ... some precondition ...

endpackage

e For referring to types in other packages the following notations may be used

Packagename: : Typename
Packagenamel: :Packagename2: : Typename

24

Object Constraint Language, May 12, 2008 — 12

Undefined Values

e One or more subexpressions in an OCL expression may be undefined
e In this case, the complete expression will be undefined

e Exceptions for Boolean operators
true or anything is true
false and anything is false
false implies anything is true
anything implies true is true

e The first two rules are valid irrespective of the order of the arguments and
whether or not the value of the other sub-expression is known

e Exception for if-then-else expression: it will be valid as long as the chosen
branch is valid, irrespective of the value of the other branch

25

Navigating Associations (1)

employee employer
Person Company
0..” 0..”
1 0..x

manager managedCompanies

isUnemployed: Boolean noEmployees:Integer

e From an object, an association is navigated using the opposite role name
context Company
inv: self.manager.isUnemployed = false
inv: self.employee->notEmpty ()
e Value of expression depends on maximal multiplicity of the association end

1: value is an object

*: value is a Set of objects (an OrderedSet if association is {ordered})

e If role name is missing, the name of the type at the association end starting with
a lowercase character is used (provided it is not ambiguous)

context Person
inv: self.bank.balance >= 0

26

Object Constraint Language, May 12, 2008 — 13

Navigating Associations (2)

e When multiplicity is at most one, association can be used as a single object or
as a set containing a single object

e self .manager is an object of type Person

context Company inv:
self .manager.age > 40

e self.manager as a set

context Company inv:
self .manager->size() = 1

e For optional associations, it is useful to check whether there is an object or not
when navigating the association

context Person inv:
self .wife->notEmpty() implies self.gender = Gender::male and
self.husband->notEmpty() implies self.gender = Gender::female

e OCL expressions are read and evaluated from left to right

27

Association Classes

employee employer
Person o ‘ o Company
isUnemployed: Boolean) | B noEmployees:Integer
age: Integer ‘
Job

title: String

e For navigating to an association class: a dot and the name of the association
class starting with a lowercase character is used

context Person
inv: self.isUnemployed = false implies self.job->size() >= 1

e For navigating from an association class to the related objects: a dot and the

role names at the association ends is used

context Job
inv: self.employer.noEmployees >= 1
inv: self.employee.age >= 18

e This always results in exactly one object

28

Object Constraint Language, May 12, 2008 — 14

Recursive Association Classes (1)

Person
gender: Gender . :
isMarried: Boolean 0.. Marriage
wife place: String
currentSpouse() : Person | | ______ date: Date

ended: Boolean

0..* | husband

Direction in which a recursive association is navigated is required

Specified by enclosing the corresponding role names in square brackets

e A person is currently married to at most one person

context Person inv:
self .marriage[wife]->select(m | m.ended = false)->size()=1 and
self .marriage[husband]->select(m | m.ended = false)->size()=1

May also be used for non-recursive associations, but it is not necessary

context Person inv:
self. job[employer]

29

Recursive Association Classes (2)

Person
gender: Gender . ;
isMarried: Boolean 0.. Marriage
wife place: String
currentSpouse() : Person | | ______ date: Date

ended: Boolean

0..* | husband

e Operation that selects the current spouse of a person

context Person::currentSpouse() : Person
pre: self.isMarried = true
body:
if gender = Gender::male
self .marriage[wife]->select(m | m.ended = false).wife
else
self .marriage[husband]->select(m | m.ended = false) .husband
end

30

Object Constraint Language, May 12, 2008 — 15

Qualified Associations

customer
Bank 0.1 " Person

‘ accountNo: Integer

Qualified associations use one or more qualifier attributes to select the objects
at the other end of the association

A bank can use the accountNumber attribute to select a particular customer

Using qualifier values when navigating through qualified associations

context Bank
inv: self.customer[12345]
-- results in one Person, having account number 12345

Leaving out the qualifier values

context Bank
inv: self.customer ...
-— results in a Set(Person) with all customers of the bank

31

Re-typing or Casting
Allows an object to be re-typed as another type

Expression o.oclAsType (Type2) re-types an object o of type Typel into a an-
other type Type2

Suppose Super is a supertype of type Sub

Allows one to use a property of an object defined on a subtype of the currently
known type of the object

context Super inv:
self.oclAsType(Sub) .p -- accesses the p property defined in Sub

Can be used to access a property of a superclass that has been overriden

context Sub inv:
self.p
—-- accesses the p property defined in Sub
self.oclAsType (Super) .p
-- accesses the p property defined in Super

32

Object Constraint Language, May 12, 2008 — 16

Predefined Properties on All Objects

e Several properties apply to all objects

oclIsTypeOf (t: Type): Boolean is true if the type of self and t are the
same

0clIsKindOf (t: Type): Boolean is true if t is a direct/indirect type of
self

oclInState(s: State): Boolean is true if self is in the state s

oclIsNew: Boolean, in a postcondition, is true if self has been created
while performing the operation

e Example

context Person
inv: self.oclIsTypeOf (Person) -- is true
inv: self.oclIsTypeOf (Company) -- is false

33

Class Features

Features of a class, not of its instances

They are either used-defined or predefined

Predefined feature allInstances holds on all types

There are at most 100 persons

context Person inv:
Person.allInstances()->size() <= 100

e A user-defined feature averageAge of class Person

context Person inv:
Person.averageAge =
Person.alllnstances()->collect(age)->sum()/
Person.alllnstances()->size()

34

Object Constraint Language, May 12, 2008 — 17

Select Operation on a Collection
e Obtains the subset of elements of a collection satisfying a Boolean expression

e Alternative expressions for the select operation
collection->select(Boolean-expression)
collection->select(v | Boolean-expression-with-v)

collection->select(v: Type | Boolean-expression-with-v)

e A company has at least one employee older than 50

context Company inv:
self.employee—->select(age > 50)->notEmpty()
context Company inv:
self .employee->select(p | p.age > 50)->notEmpty()
context Company inv:
self.employee->select(p: Person | p.age > 50)->notEmpty()

35

Reject Operation on a Collection

Obtains the subset of all elements of the collection for which a Boolean expression
evalutes to False

e Alternative expressions for the reject operation
collection->reject(Boolean-expression)

collection->reject(v | Boolean-expression-with-v)

collection->reject(v: Type | Boolean-expression-with-v)

The collection of employees of a company who have not at least 18 years old is
empty
context Company inv:
self.employee—->reject (age>=18)->isEmpty ()
e A reject expression can always be restated as a select with the negated ex-

pression

36

Object Constraint Language, May 12, 2008 — 18

Collect Operation on a Collection

Derives a collection from another collection, but which contains different objects
from the original collection
Alternative expressions for the collect operation

collection->collect (expression)

collection->collect(v | expression-with-v)

collection->collect(v: Type | expression-with-v)

Collect of birth dates for all employees in the context of a Company object
self.employee->collect (birthDate)
self.employee->collect(p | p.birthDate)
self.employee->collect(p:Person | p.birthDate)

Resulting collection above is a Bag: some employees may have the same birth
date

37

ForAll Operation on a Collection

Specifies a Boolean expression that must be true for all elements in a collection

Alternative expressions for the forall operation
collection->forAll (Boolean-expression)
collection->forAll(v | Boolean-expression-with-v)

collection->forAll(v: Type | Boolean-expression-with-v)

The age of each employee is less than or equal to 65
context Company
inv: self.employee->forAll(age <= 65)
inv: self.employee->forAll(p | p.age <= 65)
inv: self.employee->forAll(p: Person | p.age <= 65)

More than one iterator can be used in the forAll operation

All instances of persons have unique names

context Person inv:
Person.alllnstances()->forAll(pl, p2 |
pl <> p2 implies pl.name <> p2.name)

38

Object Constraint Language, May 12, 2008 — 19

Exists Operation on a Collection

e Specifies a Boolean expression that must be true for at least one element in
a collection
e Alternative expressions for the exists operation
collection->exists(Boolean-expression)
collection->exists(v | Boolean-expression-with-v)
collection->exists(v: Type | Boolean-expression-with-v)

e The firstName of at least one employee is equal to ¢ Jack’

context Company
inv: self.employee->exists(firstName = ‘Jack’)
inv: self.employee->exists(p | p.firstName = ‘Jack’)
inv: self.employee->exists(p: Person | p.firstName = ‘Jack’)

39

Iterate Operation on a Collection

e Provides a generic mechanism to iterate over a collection

e Syntax

collection->iterate(elem: Type; acc: Type = <expression> |
expression-with-elem-and-acc)

elem: the iterator as in select, forAll, etc.
acc: the accumulator with an initial value <expression>
expression-with-elem-and-acc: is evaluated for each elem and its value is

assigned to acc

e The operations select, reject, forAll, exists, collect, can all be described
in terms of iterate

e For example, collection->collect(x: T | x.property) is identical to

collection->iterate(x: T; acc: T2 = Bag{} |
acc->including(x.property))

40

Object Constraint Language, May 12, 2008 — 20

Company Example: Class Diagram

Manages
Employee startDate Department
SSN 1 ! 0.1 number
firstName ‘ name .
lastName 4.* WorksFor 1 |locations [1.%]
birthDate /nbrEmployees
sex 1. 1+
salary : -
a_ddress ‘ Controls
hireDate WorksOn
supervisor " 1. 1
0.1 age() ours Project
0.* 1
bordinat 0.* number
subordinates .
— Dependent name
Supervision dependents location
name
relationship
sex
birthDate
41

Company Example: Integrity Constraints (1)

The age of employees must be greater than or equal to 18

context Employee inv:
self.age() >= 18

The supervisor of an employee must be older than the employee

context Employee inv:
self.supervisor->notEmpty() implies

self.age() > self.supervisor.age()

The condition notEmpty must be tested since the multiplicity of the role is not

mandatory

The salary of an employee cannot be greater than the salary of his/her supervisor

context Employee inv:
self.supervisor->notEmpty() implies

self.salary < self.supervisor.salary

The hire date of employees must be greater than their birth date

context Employee inv:
self.hireDate > self.birthDate

42

Object Constraint Language, May 12, 2008 — 21

Company Example: Integrity Constraints (2)

The start date of an employe as manager of a department must be greater than
his/her hire date

context Employee inv:
self .manages->notEmpty () implies
self .manages.startDate > self.hireDate

A supervisor must be hired before every employee s/he supervises

context Employee inv:
self.subordinates->notEmpty() implies
self.subordinates->forall(e | e.hireDate > self.hireDate)

The manager of a department must be an employee of the department

context Department inv:
self.worksFor->includes(self.manages.employee)

The SSN of employees is an identifier (or a key)

context Employee inv:
Employee.allInstances->forAll(el, e2 |
el <> e2 implies el.SSN <> e2.SSN)

43

Company Example: Integrity Constraints (3)

The name and relationship of dependents is a partial identifier: they are unique
among all dependents of an employee

context Employee inv:
self.dependents->notEmpty() implies
self.dependents->forAll(el, e2 | el <> e2 implies
(el.name <> e2.name or el.relationship <> e2.relationship))

The location of a project must be one of the locations of its department

context Project inv:
self.controls.locations->includes(self.location)

The attribute nbrEmployees in Department keeps the number of employees that
works for the department

context Department inv:
self .nbrEmployees = self.worksFor->size()

An employee works at most in 4 projects

context Employee inv:
self .worksOn->size() <= 4

44

Object Constraint Language, May 12, 2008 — 22

Company Example: Integrity Constraints (4)

e An employee may only work on projects controlled by the department in which
s/he works

context Employee inv:
self.worksFor.controls->includesAll (self.worksOn.project)

e An employee works at least 30h/week and at most 50 h/week on all its projects

context Employee inv:
let totHours: Integer = self.worksOn->collect(hours)->sum() in
totHours >= 30 and totHours <=50

e A project can have at most 2 employees working on the project less than 10
hours

context Project inv:
self.worksOn->select(hours < 10)->size() <= 2

45

Company Example: Integrity Constraints (5)

e Only department managers can work less than 5 hours on a project

context Employee inv:
self .worksOn->select(hours < 5)->notEmpty() implies
Department.allInstances()->collect(manages.employee)->
includes(self)

If the manager of a department must be an employee of the department (previous

contraint), this constraint can be specified as follows

context Employee inv:
self.worksOn->select(hours < 5)->notEmpty() implies
self.worksFor.manages.employee=self

e Employees without subordinates must work at least 10 hours on every project
they work

context Employee inv:
self.subordinates->isEmpty() implies
self.worksOn->forAl1l(hours >=10)

46

Object Constraint Language, May 12, 2008 — 23

Company Example: Integrity Constraints (6)

e The manager of a department must work at least 5 hours on all projects con-
trolled by the department

context Department inv:
self.controls->forall(p:Project | self.manages.
employee.worksOn->select (hours >= 5)->contains(p))

e An employee cannot supervise him/herself

context Employee inv:
self.subordinates->excludes(self)

e The supervision relationship must not be cyclic

context Employee
def: allSubordinates = self.subordinates->union(
self->subordinates->collect(e:Employee | e.allSubordinates))
inv: self.allSubordinates->exludes(self)

47

Object Constraint Language, May 12, 2008 — 24

