
Analysis and Design

• To develop an application, it is necessary
! a description of the problem and requirements: what the problem is about

and what a system must do
! high-level and detailed descriptions of the logical solution and how it fulfills

requirements and constraints
• Analysis emphasizes an investigation of the problem rather than how a solution

is defined
• Design emphasizes a logical solution: how the system fulfills the requirements
• Ultimately, designs can be implemented in software and hardware

1

Object-Oriented Analysis and Design

• Essence of OAD: consider a problem domain and logical solution from the per-
spective of objects (things, concepts, entities)

• Object Analysis: find and describe the objects (concepts) in the problem
domain
! Some concepts in a library information system: Book, Library, Client

• Object Design: define logical software objects that will be implemented in an
object programming language (OPL)

• These software objects have attribute and methods
! Book may have a title attribute and a print method

• Construction or Object Programming: design components are implemented
! Book class in C++, Java, Smalltalk, or Visual Basic

2

Object Analysis and Design- 1

Requirements Analysis

• Understanding the requirements includes
! domain processes, and
! external environment: external actors participating in the processes

• Domain processes can be discovered and expressed in use cases
• Use cases: textual narrative descriptions of the processes in an enterprise or

system
• There is nothing OO in use cases
• Simply describe processes, can be equally effective in a non-object technology

project
• However, it is an important and widely-practiced early step in OO analysis and

design methods
• Use cases are part of the UML

3

Use Cases: Examples

• Order management
Use case : Place an order
Actors : Customer
Description : This use case begins when a customer phones

a sales representative to request a purchase of
one or several products. The sales representa-
tive records the customer and product infor-
mation in a new order.

• Dice game
Use case : Place a game
Actors: Player
Description : This use case begins when the player picks up

and rolls the dice. If the dice total is seven he
win, otherwise he lose

4

Object Analysis and Design- 2

Domain Analysis

• Create a specification of the problem domain and the requirements from the
perspective of
! classification by objects, and
! understanding the terms used in the problem domain

• Involves an identification of the concepts, attributes, and associations considered
important in the domain

• Expressed with a conceptual model

DiceGame

Plays

1

1

Player
name

Rolls1 2 Dice
faceValue

1

2

Includes

• Conceptual model does not describe software components, it represents concepts
in real-world problem domain

5

Design

• Define logical software specifications that fulfill the functional requirements based
on decomposition by classes of objects

• Solution-oriented activity
• Must emphasize responsibility assignment: allocate tasks and responsibilities to

the various objects in the application
• Software objects usually collaborate or interact in order to fulfill their responsi-

bilities
• Often expressed with

! design class diagrams: show definition of classes
! collaboration diagrams: show flow of messages between software objects

6

Object Analysis and Design- 3

Collaboration Diagrams: Example

play()→
:Player

1: r1:=roll()→
d1:Die

2: r2:=roll()→
d2:Die

7

Design Class Diagrams

• Questions to be answered to design a class
! How do objects connect to other objects ?
! What are the methods of a class ?

• Collaborations diagrams used to answer these questions
• Design class diagrams express these design details
• Illustrate class definitions that are to be implemented in software

DiceGame

play()

!
Plays

1

1

Player

play()

name "Rolls1 2
Dice

roll()

faceValue

1

!2

Includes

• Does not illustrate real-world concepts, describes software components
• A line with an arrow at the end may suggest an attribute

8

Object Analysis and Design- 4

Object- vs Function-Oriented Analysis and Design

Book Library

Catalog Librarian

Library
Information System

Record
Loans

Add
Ressources

Report
Fines

System

• Software projects are complex
• Decomposition (divide-and-conquer): primary strategy to deal with complexity
• Structured analysis and design

! popular approach in the 70’s
! decomposition by function or process
! result: hierarchical breakdown of processes composed of subprocesses

• OO analysis and design: decompose a problem space by objects rather than by
functions

9

Analysis and Design: Terminology Wars

More analysis-oriented

• what
• requirements
• investigation of domain

More design-oriented

• how
• logical solution

• Division between analysis and design is fuzzy
• They exists in a continuum
• Different practionners classify an activity at varying points of the continuum
• Distinction between investigation (analysis) and solution (desing) is important

! Emphasizes what the problem is before diving in to how to create a solution
! Understanding the problem during analysis, deferring to the design issues

related to the solution, performance, . . .

10

Object Analysis and Design- 5

Unified Modeling Language (UML)

• Language for specifying, visualizing, and constructing the artifacts of software
systems

• Notational system (with limited associated semantics) aimed at modeling sys-
tems using object concepts

• Join of methods by Grady Booch, James Rumbaugh (OMT), and Ivar Jacobson
(OOSE)

• Accepted by Object Management Group (OMG) as a standard modeling lan-
guage and notation

• De facto approval in industry
• Language for modeling, does not prescribe a specific development process
• Process standardization was outside the scope of the UML definition
• But the UML has an associated “Unified Software Development Process”

11

Software Development Process

• Method to organize activities related to creation, delivery, and maintenance of
software systems

• More important than following an official process or method is that
! developer acquire skills in how to create a good design
! organization foster this kind of skill development

• This comes from mastering a set of principles and heuristics for
! identifying and abstracting suitable objects
! assigning responsibilites to them

• A process includes the activities from requirements through to delivery
• A complete process addresses broader issues related to the industrialization of

software development : long-term life cycle, documentation, support and train-
ing, parallel work, coordination between parties

• Essential steps not covered in this course: conception, planning, parallel team
interaction, project management, documentation, testing

12

Object Analysis and Design- 6

Development Processes

• Reasons for not standardizing a process in the UML
! Increase widespread acceptance of a standard modeling notation without

commiting to a standard process
! Significant variability in what constitutes an appropriate process, depending

on staff skills, research-development ratio, nature of the problem, tools, . . .

• But, general principles and typical steps that guide a successful process can be
explained

• Macro-level steps for delivering an application
! Plan and elaborate: planning, define requirements, build prototypes, . . .

! Build: construction of the system
! Deploy: implementation of the system into use

13

Iterative Development

• Iterative life cycle: successive enlargement and refinement of a system through
multiple development cycles of
! analysis, design, implementation, and testing

• System grows incrementally by adding new functions within each development
cycle

• Build phase composed of a series of development cycles
• Each cycle tackles a relatively small set of requirements
• != classic waterfall lifecycle: each activity (analysis, design, . . .) done once for

the entire set of system requirements
• Advantages of iterative development

! complexity is never overwhelming
! early feedback generated: implementation occurs rapidly for a small subset

of the system

14

Object Analysis and Design- 7

Iterative Development Cycles

Development
Cycle 1

Sync.
Artifacts Analyze Design Test Refine

Plan Construct

Development
Cycle 2 ...

Plan and
Elaborate Deploy Build

15

Time-Boxing a Development Cycle

• Useful strategy: bound each development cycle within a time-box (a rigidly-fixed
time), e.g., 4 weeks

• All work must be accomplished in that time frame
• A range between two weeks and two months is suitable

! any less: difficult to complete tasks
! any more: complexity becomes overwhelming, feedback is delayed

Sync.
Artifacts Analyze Design Test Refine

Plan Construct

2 weeks to 2 months

16

Object Analysis and Design- 8

Use Cases and Iterative Development Cycles

• Use case: narrative description of a domain process
! e.g., borrow books from a library

• Iterative development cycles organized by use case requirements
• One cycle implements one or more use cases

! Simplified versions of use case when complete use case is too complex to
tackle in one cycle

• Further, some development cycles (esp. early ones) must focus on supporting
services: persistence, security, . . .

• Use cases should be ranked: high-ranking use cases should be tackled in early
development cycles

• Usual strategy: pick first
! use cases influencing the core architecture by fleshing out the domain and

high-level services layers, or
! critical high-risk use cases

17

Development Cycles Driven by Uses Cases

Development
Cycle

Development
Cycle

Development
Cycle

Use Case A-
Simplified
Version

Use Case A-
Full
Version

Use Case B

Use Case C

18

Object Analysis and Design- 9

Plan and Elaborate Phase: Sample activities

(1) Define draft plan
(2) Create preliminary investigation report
(3) Define requirements
(4) Record terms in glossary a

(5) Implement prototype b,d

(6) Define use cases (high-level and essential)
(7) Define draft conceptual model c

(8) Define draft system architecture a,c,d

(9) Refine Plan

Notes: a = ongoing, b = optional, c = may defer, d = varied order

19

Plan and Elaborate Phase: Artifacts

• Plan: schedule, ressources, budget, . . .

• Preliminary Investigation Report: motivation, alternatives, business needs
• Requirements Specification: declarative statement of requirements
• Glossary: dictionary of terms (concept names, and so on) and any associated

information, such as constraints and rules
• Prototype: system created to aid understanding of the problem, high-risks

problems and requirements
• Use cases: prose descriptions of domain processes
• Use case diagrams: illustrates uses cases and their relationships
• Draft conceptual model: preliminary model as an aid in understanding the

vocabulary of the domain, esp. as it relates to the use cases and requirements
specification

20

Object Analysis and Design- 10

Order of Artifact Creation

• Artifact creation is not done in a strictly linear order
• Some artifacts may be made in parallel

! especially true of the conceptual model, glossary, use cases, use case diagram
• While the use cases are explored, other artifacs are developed to reflect the

information arising from the use cases
• In the following, artifacts are introduced in a linear order to keep presentation

straightforward
• In practice there is much more interplay

21

Build Phase: Development Cycles

• Final objective: working software system correctly meeting the requirements
• Within a single development cycle the major steps are to analyze and design
• As for requirements, there is no strict linear order in the artifacts produced

! create conceptual model and glossary in parallel
! create interaction diagrams and design class diagrams in parallel

22

Object Analysis and Design- 11

Sample Analysis Phase Activities

Sync.
Artifacts Analyze Design Test Refine

Plan Construct

a. if not yet done
b. ongoing
c. optional

2. Refine Use
 Case Diagrams

3. Refine Conceptual
 Model 4. Refine Glossary b

6. Define Operation
 Contracts

1. Define Essential
 Use Cases a

5. Define System
 Sequence Dgms

7. Define State
 Diagrams c

Notes

Development
Cycle 1

Development
Cycle 2 ...

23

Sample Design Phase Activities

Sync.
Artifacts Analyze Design Test Refine

Plan Construct

2. Define Reports, UI
 and Storyboards

4. Define Interaction
 Diagrams

5. Define Design
 Class Diagrams a

6. Define Database
 Schema

1. Define Real
 Use Cases

3. Refine System
 Architecture b

Notes
a. in parallel with
 interaction diagrams
b. varied order

Development
Cycle 1

Development
Cycle 2 ...

24

Object Analysis and Design- 12

When to Create the Conceptual Model

• Conceptual model (CM): representation of concepts or objects in problem do-
main

• A draft CM should be done in the Plan and Elaborate Phase
• Goal: basic understanding of vocabulary and concepts used in the requirements
• Risk of fine-grained investigation: complexity overload

! a thorough CM is overwhelmingly complex in large domains
• Recommended strategy: create a rough CM for finding obvious concepts ex-

pressed in the requirements
! Later, within each development cycle, CM is refined and extended for the

requirements under consideration within that cycle
• Another strategy: defer creation of CM until each development cycle

! Advantage: deferring complexity
! Disadvantage: less up-front information useful for general comprehension, for

creating the glossary, for scoping and estimating

25

When to Create Expanded Use Cases

• High-level use cases: very brief, 2 or 3 sentence descriptions
• Expanded use cases: long narratives, may contain hundreds of sentences
• During the Plan and Elaborate phase

! create all high-level use cases
! rewrite most critical and important use cases in an expanded format, deferring

the rest until the development cycle in which they are tackled
• Trade-off: benefit of early acquisition of information vs tackling too much com-

plexity
• Advantage of early writing of all detailed use cases: more information

! help with comprehension, risk management, scope, estimating
• Disadvantages

! early complexity overload
! may not be very reliable because of incomplete or misinformation, require-

ments may change

26

Object Analysis and Design- 13

Defining Models and Artifacts

• Real-world or software systems are usually overwhelmingly complex
• System is decomposed into understandable chunks to comprehend and manage

complexity
• These chunks may be represented as models describing and abstracting essential

aspects of the system
• In a software system, models are used to organize and communicate the details

of the real-world problem it is related and the system to be built
• Models should contain cohesive, strongly related elements
• Models are composed of artifacts: diagrams and documents describing things
• Models are visualized with views: visual projections of the model
• Models can be characterized emphasizing static or dynamic information about

a system
! Static model describes structural properties
! Dynamic model describes behavioural properties of a system

27

Relationships between Artifacts

• Independent of how artifacts are organized into models, there are influencial
dependencies between artifacts

• Example: use case diagram (illustrates all uses cases) is dependent on the use
case definitions themselves

• Dependency and influence between artifacts used for consistency checks and
traceability

• Dependent artifacts are effectively used as input to creating later artifacts

28

Object Analysis and Design- 14

Plan and Elaborate Phase Artifact Influence

Requirements
Specifications

Use cases:
 a. all high-level
 b. some expanded
 essential

Use Case Diagrams

Draft Conceptual
Model

Glossary

Prototypes

Budget,
Schedule

Preliminary
Investigation

Report

dependency on

29

Case Study: Point-of-Sale Terminal

• Point-of-sale terminal: computerized system used to record sales and handle
payments

• Typically used in a retail store
• Includes hardware components (computer, bar code scanner) and software run-

ning the sytem
• Typical information system with graphical user interface (GUI) and database

access usually designed in terms of several layers
! Presentation: GUI, windows
! Application Logic, Problem Domain Objects: objects representing do-

main concepts that fulfill application requirements
! Application Logic, Service Objects: non-problem domain objects that

provide supporting services, e.g., interfacing with a database
! Storage: persitent storage mechanism, e.g., object or relational database

30

Object Analysis and Design- 15

Layers in Typical Object Information System

Presentation

Application Logic

Storage

Database

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

Sale Payment

DatabaseBroker SecurityManager

-problem domain
 objects

-service objects

31

Understanding Requirements

• Requirements: description of needs or desires for a product
• Correct and thorough requirements specification is essential to a successful project
• Goal of the requirements phase: identify and document what is really needed,

in a form that clearly communicates to the client and to the development team
• Challenge: define the requirements unambiguously, identify the risks
• Some artifacts in the requirements phase (none of them are UML-specific)

! overview statement
! customers
! goals
! system functions
! system attributes

• Definition of requirements typically involves gathering and digesting varied pa-
per and electronic documents, interview results, group requirements definition
meetings, . . .

32

Object Analysis and Design- 16

Point-of-Sale System: Requirements

• Overview Statement: The purpose is to create a point-of-sale terminal sytem
to be used in retail sales

• Customers: ObjectStore, Inc. a multinational object retailer
• Goals: Increased checkout automation, to support faster, better, and cheaper

services and business process. More specifically these include
! Quick checkout for the customer
! Fast and accurate sales analysis
! Automatic inventory control

33

System Functions

• What a system is supposed to do
• Should be identified and listed in logical cohesive groupings
• Verification: a system function X should make sense in the sentence

The system should do X
• Example: The system should do credit payment authorization
• System attributes: nonfunctional system qualities often confused with functions

! E.g., ease-of-use does not fit in the verification sentence
• System attributes should not be part of the functional specification document

but in another document devoted to that purpose

34

Object Analysis and Design- 17

Function Categories

• Functions should be categorized in order to prioritize them and identify those
that might otherwise be taken for granted

• Categories include evident, hidden, and frill
• Evident: should perform and user should be congizant that it is performed
• Hidden:

! should perform but not be visible to users
! includes many underlying technical services, e.g., save information in a per-

sistent storage mechanism
! often missed during the requirements gathering process

• Frill: optional, adding it does not significantly affect cost or other functions

35

Point-of-Sale System: Basic Functions

Ref # Function Category
R1.1 Record the current sale, the items purchased evident
R1.2 Calculate current sale total, including tax and cupon

calculations
evident

R1.3 Capture purchase item information from a bar code
(either with a scanner or manually)

evident

R1.4 Reduce inventory quantities when a sale is comitted hidden
R1.5 Log completed sales hidden
R1.6 Cashier must log in with an ID and password in order

to use the system
evident

R1.7 Provide a persistent storage mechanism hidden
R1.8 Provide inter-process and inter-system communica-

tion mechanisms
hidden

R1.9 Display description and price of item recorded evident

36

Object Analysis and Design- 18

Point-of-Sale System: Payment Functions

Ref # Function Category
R2.1 Handle cash payments, capturing amoung tendered

and calculating balance due
evident

R2.2 Handle credit payments, capturing credit informa-
tion (from a card reader or manually) and authoriz-
ing payment with the store’s (external) credit autho-
rization service via a modem connection

evident

R2.3 Handle check payments, capturing drivers license
manually, and authorizing payment with the store’s
(external) credit authorization service via a modem
connection

evident

R2.4 Log credit payments to the accounts receivable sys-
tem, since the credit authorization service owes the
store the payment amount

hidden

37

System Attributes

• Characteristics or dimensions of the system, they are not functions
• Examples: ease of use, fault tolerance, response time, interface metaphor, retail

cost, platforms
• May cut across all functions (e.g., OS platform) or be specific to a particular

function or group of functions
• Values of attribute tend to be discrete, fuzzy symbolic

! response time = psychologically appropriate
! interface metaphor = graphical, colorful, forms-based

• System attributes may also have attribute boundary constraints,
! e.g., response time = 5 seconds maximum

38

Object Analysis and Design- 19

Point-of-Sale System: System Attributes

Attribute Details and Boundary Constraints
response time When recording a sold item, the description and

price will appear within 5 seconds
interface metaphor Forms-metaphor windows and dialog boxes

Maximize for easy keyboard navigation rather
than pointer navigation

fault tolerance Must log authorized credit payments to accounts re-
ceivable within 24 hours, even if power or device fail-
ure

OS platform Microsoft Windows 95 and NT

39

Use Cases: Describing Processes

• Technique to improve understanding of requirements
• Use case: narrative document describing the sequence of events of an actor

(external agent) using a system to complete a process
• Dependent on having at least partial understanding of the requirements of the

system
• UML icon for a use case

Buy Items

40

Object Analysis and Design- 20

High-level vs Expanded Use Cases

• Use cases may be expressed with varying degrees of detail and commitment to
design decisions

• High-level
! describes a process very briefly, usually 2-3 sentences
! very terse, and vague on design decisions
! useful to quickly obtain some understanding of the overall major processes

• Expanded use cases
! Show more detail than high-level use cases
! Useful to obtain a deeper understanding of the processes and requirements
! Often done in “conversational” style between the actors and the system

41

High-level Use Case: Examples

Use case: Buy Items
Actors: Customer (initiator), Cashier
Type: Primary
Description: A Customer arrives at a checkout with items to purchase.

The Cashier records the purchase items and collects a pay-
ment. On completion the Customer leaves with the items.

Use case: Start Up
Actors: Manager
Type: Primary
Description: A Manager powers on a POST in order to prepare it for use

by Cashiers. The Manager validates that the date and time
are correct, after which the system is ready for Cashier use.

42

Object Analysis and Design- 21

Expanded Use Case: Example

Use case: Buy Items with Cash
Actors: Customer (initiator), Cashier
Purpose: Capture a sale and its cash payment
Overview: A Customer arrives at a checkout with items to pur-

chase. The Cashier records the purchase items and
collect a cash payment. On completion the Customer
leaves with the items

Type: Primary and essential
Cross references : Functions R1.1, R1.2, R1.3, R1.7, R1.9, R2.1

43

Typical Course of Event
Actor Action System Response

1. This use case begins when a Customer arrives at

a POST checkout with items to purchase
2. The Cashier records the identifier from each item.

If there is more than one of the same item, the

Cashier can enter the quantity as well.

3. Determines the item price and adds the item

information to the running sales transaction.

The description and price of the current item

are presented.
4. On completion of item entry, the Cashier indi-

cates to the POST that the item entry is com-

plete.

5. Calculates and presents the sale total.

6. The Cashier tells the Customer the total.
7. The Customer gives a cash payment, possibly

greater than the sale total.
8. The Cashier records the cash received amount. 9. Shows the balance due back to the Customer.

Generates a receipt.
10. The Cashier deposits the cash received and ex-

tracts the balance owing. The Cashier gives the

balance owing and the printed receipt to the Cus-

tomer.

11. Logs the completed sale.

12. The Customer leaves with the items purchased.

Alternative Courses
• Line 2: Invalid indentifier entered. Indicate error.

• Line 7: Customer didn’t have enough cash. Cancel sales transaction.

44

Object Analysis and Design- 22

Expanded Use Case: Format

Use case: Name of the use case
Actors: List of actors (external agents), indicating who initi-

ates the use case.
Purpose: Intention of the use case.
Overview: Repetition of the high-level use case of some similar

summary.
Type: (1) Primary, secondary, or optional

(2) Essential or real

Cross references : Related use cases and system functions

45

Expanded Use Case: Format, cont.

• Typical course of event
! heart of the expanded format
! conversation between actors and the system
! most common (typical) sequence of events: average story of activities and

successful completion of process
• Alternative course of events

! important alternatives or exceptions that may arise
! if complex, may themselves be expanded into their own use cases

46

Object Analysis and Design- 23

Actors

• Actor: entity external to the system who participates in a use case
• Typically stimulates the system with input events, or receives something from it
• Usually the roles human play: Customer, Cashier, . . .

• May be any kind of system: computer systems, electrical or mechanical devices
• Actors capitalized in the use case prose for ease of identification
• In a use case

! one initiator actor generates the starting stimulus
! several other participating actors

• UML icon for an actor

Customer

47

Identifying Use Cases

• Common error: represent individual steps, operations, or transactions
! e.g., Printing the Receipt is a step in the use case Buy Items

• A use case is a relatively large end-to-end process description, typically includes
may steps or transactions

• Actor-based identification
! Identify the actors related to a system or organization
! For each actor, identify the processes they initiate or participate in

• Event-based identification
! Identify the external events that a system must respond to
! Relate the events to actors and use cases

48

Object Analysis and Design- 24

Point-of-Sale System: Identifying Use Cases

Actor Process Initiated
Cashier Login

Cash Out
Customer Buy Items

Refund Items
Manager Start Up

Shut Down
System Administrator Add New Users

49

Uses Cases and Domain Processes

• Process: describes a sequence of events, actions, and transactions required to
produce or complete something of value to an organization or actor
! e.g., withdraw cash from ATM, order a product, register for courses, . . .

• System functions identified during requirements specifications, should be all al-
located to use cases

• With Cross References section, verification that all functions have been allocated
! Provides traceability between artifacts

• Ultimately, all system functions and use cases should be traceable through to
implementation and testing

50

Object Analysis and Design- 25

Use Case Diagrams

• Illustrates a set of use cases for a system, the actors and the relation between
the actors and the use cases

• Specifies lines of communication between uses cases and actors
• Arrows can indicate flow of information or stimulus
• Purpose: represent a kind of context diagram to quickly understand

! the external actors of a system
! the key ways in which they use it

51

Point-of-Sale System: Partial Use Case Diagram

Cashier

POST

Buy Items

Customer
Log In

Refund Purchased
items

Manager

System
Administrator

Start Up

Manage Users

etc.

52

Object Analysis and Design- 26

Systems and their Boundaries

Cashier

POST

Buy Items

Customer
Log In

Refund Purchased
items

Store

Buy Items

Customer
Refund Purchased

items

• Typical system boundaries
! hardware/software boundary of a device or computer system
! department of an organization
! entire organization

• Defining the system boundary allows to identify what is external vs internal, the
responsibilities of the system

53

Influence of choosing the system boundary

• POST terminal harware and software as the system: both the customer and the cashier
may be treated as actors

• Entire store or business as the system: only the custumer is an actor because the
cashier is a ressource within the business system that carries out the tasks

Object Analysis and Design- 27

Classification of Use Cases

• Importance
! Primary: represent major common processes, e.g., Buy Items

! Secondary: represent minor or rare processes, e.g., Stock New Product

! Optional: represent processes that may not be tackled
• Essential vs Real

Essential
very abstract

Real
very concrete

Use Case Degree of Design Commitment

54

Essential Use Cases

• Expanded use cases expressed in an ideal form relatively free of technology or
implementation details

• Design decisions deferred and abstracted, esp. those related to the UI
• High-level use cases are always essential in nature
• Important during early requirements elicitation for understanding the scope of

the problem and the functions required
• Allow to see the essence of the process and its fundamental motivation without

being overwhelmed with design details
• Tend to be correct for a long period of time
• Allow to understand and record the fundamental forces behind business processes

55

Object Analysis and Design- 28

Real Use Cases

• Concretely describe the process in terms of its real current design, commited to
specific input/output technologies

• When a user interface is involved, they show screen shots and discuss interaction
with the widgets

• Ideally created during the design phase of a development cycle
• When in a project early design decisions regarding the UI are expected⇒ created

during the early elaboration phase
• Undesirable in the Plan and Elaborate phase

! premature commitment to a design
! overwhelming complexity involved

• Some organizations commit to a development contract on the basis of UI speci-
fications

56

Essential vs Real Use Cases

• Essential use case

Actor Action System Response
1. . . .
2. The Cashier records the identifier from each item.

If there is more than one of the same item, the

Cashier can enter the quantity as well.

3. Determines the item price and adds the item

information the the running sales transac-

tion. The description and price of the current

item are presented.
4. etc. 5. etc.

• Real use case

Actor Action System Response
1. . . .
2. For each item the Cashier types in the Univer-

sal Product Code (UPC) in the UPC input file

of Window1. They then press the “Enter Item”

button with the mouse or by pressing the Enter

Key

3. Determines the item price and adds the item

information the the running sales transac-

tion. The description and price of the current

item are presented in Textbox2 of Window1.

4. etc. 5. etc.

57

Object Analysis and Design- 29

Decision Points and Branching

• Uses cases may contain decision points
• In Buy Items the customer may choose to pay via cash, credit or check
• If one of the decision paths represents the overwhelming typical case, it should

be the only one written in the Typical Course of Events, the alternatives in the
Alternatives section

• When alternatives are all relatively equal and normal use the structure
(1) Within Typical Course of Events of main section, indicate branches to sub-

sections
(2) One subsection for each branch using the same structure Typical Course of

Events
(3) If subsection has alternatives, write them in Alternatives section

58

Point-of-Sale System: Section Main

Typical Course of Events
Actor Action System Response

2. . . .
3. Customer chooses payment type:

a. If cash payment, see section Pay by Cash
b. If credit payment, see section Pay by Credit
c. If check payment, see section Pay by Check

4. Logs the completed sale.
5. Prints a receipt.

6. The Cashier gives the receipt to the Customer
7. The Customer leaves with the items purchased.

59

Object Analysis and Design- 30

Point-of-Sale System: Section Pay by Cash

Typical Course of Events
Actor Action System Response

1. The Customer gives a cash payment (cash

tendered) possibly greater than the sale to-

tal.
2. The Cashier records the cash tendered. 3. Shows the balance due back to the Cus-

tomer.
4. The Cashier deposits the cash received and

extracts the balance owing. The Cashier

gives the balance to the Customer.

5. Prints a receipt.

Alternative Courses
• Line 1: Customer does not have sufficient cash. May cancel sale or initiate another

payment method.
• Line 4: Insufficient cash in drawer to pay balance. Ask for cash from supervisor, or

ask Customer for a payment closer to sale total.

60

Point-of-Sale System: Section Pay by Credit

Typical Course of Events
Actor Action System Response

1. The Customer communicates their credit in-

formation for the credit payment.

2. Generates a credit payment request and

sends it to an external Credit Authoriza-

tion Service (CAS).
3. The CAS authorizes the payment. 4. Receives a credit approval reply from the

CAS.
5. Records the credit payment and approval

reply information to the Accounts Receiv-

able System (ARS). (The CAS owes money

to the store, hence the ARS must track it).
6. Displays authorization success message.

Alternative Courses
• Line 3: Credit request denied by CAS. Suggest different payment method.

61

Object Analysis and Design- 31

Point-of-Sale System: Section Pay by Check

Typical Course of Events
Actor Action System Response

1. The Customer writes a check and identifies

self.
2. Cashier records identification informa-

tion and requests check payment au-

thorization.

3. Generates a check payment request and

sends it to an external Check Autoriza-

tion Service (CAS).
4. The CAS authorizes the payment. 5. Receives a check approval reply from

the CAS.
6. Displays authorization success mes-

sage.
Alternative Courses

• Line 3: Check request denied by CAS. Suggest different payment method.

62

Relating Multiple Use Cases

• UML has special notation for illustrating use case relationships
• Includes relationship: One use case initiates or includes the behaviour of

another use case
• Extends relationship: A second use case story follows a prior use case story
• These relationships are shown in the use case diagram
• Previously, different payment processes were written in subsections of Buy Items

use case
• Alternatively they could have been split into separate use cases
• Heuristics: Write major steps or branching activities of a use case as separate

use cases when
! they are duplicated in other use cases
! they are complex and long; separating them helps factor the use cases into

manageable comprehensible units

63

Object Analysis and Design- 32

Point-of-Sale Application: Relating Use Cases

Point-of-Sale Terminal System

Cashier Customer

Pay by Cash

Exchange Items

Pay by Check

Buy Items

Credit
Authorization

Service

Accounts
Receivable

Check
Authorization

Service

Pay by Credit

etc.

{to all pay-
ment methods}

{to all pay-
ment methods}

«includes»

«includes»

«includes»

«includes»

«includes»

«includes»

64

Use Case Documents with Includes Relationship

• Includes relationships should be made explicit in use case documents
Use Case: Buy Items
. . .
Typical Course of Events
. . .
7. Customer chooses payment method:
a. If cash payment, initiate Pay by Cash
b. If credit payment, initiate Pay by Credit
c. If check payment, initiate Pay by Check
. . .
Alternative Courses of Events
. . .
Related Use Cases
! includes Pay by Cash

! includes Pay by Credit

! includes Pay by Check

65

Object Analysis and Design- 33

Point-of-Sale System: Pay by Cash Use Case

Use case: Pay by Cash
Actors: Customer (initiator), Cashier
Overview: A customer pays for a sale by cash at a point-of-sale terminal.

66

Typical Course of Events
Actor Action System Response

1. This use case begins when a Customer

chooses to pay by cash, after being in-

formed of the sale total.
2. The Customer gives a cash payment (cash

tendered) possibly greater than the sale to-

tal.
3. The Cashier records the cash tendered. 4. Shows the balance due back to the Cus-

tomer.
5. The Cashier deposits the cash received and

extracts the balance owing. The Cashier

gives the balance to the Customer.
Alternative Courses

• Line 2: Customer does not have sufficient cash. May cancel sale or initiate another

payment method.
• Line 4: Insufficient cash in drawer to pay balance. Asks for cash from supervisor, or

asks Customer for a payment closer to sale total.

67

Object Analysis and Design- 34

Use Cases in Plan and Elaborate Phase

(1) After system functions have been listed, define the system boundary and identify
actors and use cases

(2) Write all use cases in high-level format. Categorize them as primary, secondary
or optional

(3) Draw a use case diagram
(4) Relate use cases and illustrate relationships in the use case diagram (see later)
(5) Write the most critical, influential and risky use cases in the expanded essential

format to better understand and estimate the nature and size of the problem. For
the other use cases defer writing the expanded essential until the development
cycles in which they will be tackled

(6) Ideally, real use cases sould be deferred until the design phase of a development
cycle unless
• Concrete descriptions significantly aid comprehension
• Clients demand specifying their processes in this fashion

(7) Rank use cases (see later)

68

Scheduling Use Cases to Development Cycles

• Development cycles organized around use case requirements
• A cycle implement one or more use cases, or simplified versions of use cases when

the complete use case is too complex to tackle in one cycle

Development
Cycle 3

Development
Cycle 2

Development
Cycle 1

Buy Items-
version 1

Log In

Refund Items

Buy Items-
version 2

Buy Items-
version 3

Development
Cycle 4

69

Object Analysis and Design- 35

Ranking Use Cases

• Use cases must be ranked
• High-ranking use cases need to be tackled in early development cycles
• Strategy: first pick use cases that significantly influence the core architecture
• Qualities that increase the ranking of a use case
(1) significant impact of architectural design: adding many classes, persistence

services
(2) significant information and insight wrt design obtained with little effort
(3) include risky, time-critical, or complex functions
(4) involve significant research, new and risky technology
(5) represent primary line-of-business processes
(6) directly support increased revenue or decreased costs

• Ranking may be fuzzy (high, medium, low) or numerical (with weighting)

70

Point-of-Sale System: Ranking Use Cases

Rank Use Case Justification
High Buy Items Scores on most increased ranking criteria.
Medium Add New Users Affects security subdomain.

Log In Affects security subdomain.
Refund Items Important process; affects accounting.

Low Cash Out Minimal effect on architecture.
Start Up Definition is dependent on other use cases.
Shut Down Minimal effect on architecture.

71

Object Analysis and Design- 36

“Start Up” Use Case

• Virtually all systems have a Start Up use case
• Necessary to tackle at least some simplified version of it in first development

cycle
• Incrementally developed within each development cycle to satisfy start up needs

of other use cases

72

Point-of-Sale System: Scheduling Use Cases

• Necessary to estimate if an entire use case can be tackled within the limited
time-box of a cycle or if the use case must be distributed across multiple cycles

• Buy Items: complex use case requiring several development cycles
• Use case is redefined in terms of several use case versions
• Each encompasses more use case requirements, each limited to what is a reason-

able amount of work in a cycle time-box (e.g. 4 weeks)
! Buy Items version 1: cash payments, no inventory updates, . . .

! Buy Items version 2: allow all payment types
! Buy Items version 3: complete version

• Simplifications, goals, and assumptions of each version must be stated
• Versions distributed over a series of development cycles along with other use

cases

73

Object Analysis and Design- 37

Use Case Buy Items: Version 1

• Cash payments only
• No inventory maintenance
• It is a stand-alone store, not part of a larger organization
• Manual entry of UPCs, no bar code reader
• No tax calculations
• No coupons
• Cashier does not have to log in; no access control
• No record of individual customers and their buying habits
• No control of the cash drawer
• Name and address of store, date and time of sale shown on the receipt
• Cashier ID and POST ID not shown on receipt
• Completed sales recorded in an historical log

74

Buy Items version 1

Use case: Buy Items version 1
Actors: Customer (initiator), Cashier
Purpose: Capture a sale and its cash payment
Overview: A Customer arrives at a checkout with items to pur-

chase. The Cashier records the purchase items and
collect a cash payment. On completion the Customer
leaves with the items

Type: Primary and essential
Cross references : Functions R1.1, R1.2, R1.3, R1.5, R1.7, R1.9, R2.1

75

Object Analysis and Design- 38

Typical Course of Event
Actor Action System Response

1. This use case begins when a Customer arrives at

a POST checkout with items to purchase
2. The Cashier records the universal product code

(UPC) from each item. If there is more than one

of the same item, the Cashier can enter the quan-

tity as well.

3. Determines the item price and adds the item

information to the running sales transaction.

The description and price of the current item

are presented.
4. On completion of item entry, the Cashier indi-

cates to the POST that the item entry is com-

plete.

5. Calculates and presents the sale total.

6. The Cashier tells the Customer the total.
7. The Customer gives a cash payment (cash ten-

dered) possibly greater than the sale total.
8. The Cashier records the cash received amount. 9. Shows the balance due back to the Customer.

Generate a receipt.
10. The Cashier deposits the cash received and ex-

tracts the balance owing. The Cashier gives the

balance owing and the printed receipt to the Cus-

tomer.

11. Logs the completed sale.

12. The Customer leaves with the items purchased.

76

Use Case Buy Items: Version 2

• No inventory maintenace
• Stand-alone store, not part of a larger organization
• Manual entry of UPCs; no bar code reader
• No tax calculation
• No special pricing policies
• Cashier does not have to log in
• No record maintained of individual customers and their buying habits
• No control of the cash drawer
• Name and address of store and date ane time of sale are shown on the receipt
• Cashier ID and POST ID are not shown on receipt
• All completed sales are recorded in an historical log
• Only one payment, of one type, is used for a sale
• All payments are made in full, no partial or installment payments
• Check and credit payments are authorized

77

Object Analysis and Design- 39

Use Case Buy Items: Version 2, cont.

• A different credit authorization service is used for each credit type (Visa, Mas-
terCard, . . .)

• The same authorization service is used for all checks
• The POST is responsible for communicating with the credit authorization ser-

vice; the credit card reader is a dumb device that only sends the card information
to the terminal

• Communication with an external service is via a modem. A phone number must
be dialed each time

• Credit authorization services are usually provided by a bank
• Check and credit payments are for the exact amount of the sale total

78

Starting a Development Cycle

Development
Cycle 1

Sync.
Artifacts Analyze Design Test Refine

Plan Construct

Development
Cycle 2 ...

Plan and
Elaborate Deploy Build

• Build Phase: where iterative development cycles occur
• Initial activities within the cycle related to project management
• In parallel with a synchronization of documentation (e.g., diagrams) from the

last cycle with the actual state of the code
• During the coding phase the design artifacts and the code invariably diverge

79

Object Analysis and Design- 40

Analyze Phase Activities within a Development Cycle

A Development Cycle

Sync.
Artifacts Analyze Design Test Refine

Plan Construct
a. if not yet done
b. ongoing
c. optional

2. Refine Use
 Case Diagrams

3. Refine Conceptual
 Model 4. Refine Glossary b

6. Define Operation
 Contracts

1. Define Essential
 Use Cases a

5. Define System
 Sequence Dgms

7. Define State
 Diagrams c

80

Build Phase Activities within a Development Cycle

Class &
Interface

definitions

Methods

dependency on

Use cases:
 -expanded
 essential

Use case
diagrams

Conceptual
model

Glossary

System
sequence
diagrams

Operation
contracts

State
diagrams

Use cases:
 -real

Interaction
diagrams

Design
class

diagrams

Architecture
package
diagrams

Database
schema SQL

Windows &
Reports Test cases

81

Object Analysis and Design- 41

Conceptual Model

• Illustrates meaningful concepts (to the modelers) in a problem domain
• Most important artifact during OO analysis
• Objective: Identify a rich set of objects or concepts
• Aids in clarifying the terminology or vocabulary of the domain
• Critical quality of a conceptual model: it must be a representation of real-world

things, not of software components
• Conceptual model must cover the use cases of the development cycle
• Creation depends on having use cases and other documents from which concepts

can be identified
• In UML, a conceptual model is illustrated with a set of static structure diagrams

in which no operations are defined
• Shows concepts, associations between concepts, attributes of concepts

82

Point-of-Sale System: Partial Conceptual Model

POST

Item

Store

address
name

Sale

date
time

Payment

amount

Sales
LineItem

quantity

Stocked-in

*

Houses

1.. *

Contained-in

1.. *

Records-sale-of

0..1

Paid-by

1

1

1

1

1

1

1

1

Captured-on

Concept

Association

Attributes

83

Object Analysis and Design- 42

Concepts

• Informally, a concept is an idea, thing or object
• More formally, a concept may be considered in terms of

! symbol: words or images representing a concept
! intension: definition of a concept
! extension: set of examples to which the concept applies

• Software problems can be complex
• Common strategy : Decomposition (divide and conquer) of the problem space

into comprehensible units
• Dimension of decomposition

! Structured analysis: processes or functions
! OO analysis: concepts

84

Concepts

Sale

date
time

concept's symbol

"A sale represents the event
of a purchase transaction. It
has a date and time."

concept's intension

sale-1

sale-3
sale-2

sale-4

concept's extension

85

Object Analysis and Design- 43

Point-of-Sale System: Concepts

Store POST Sale Item

Payment

Sales
LineItem Cashier Customer Manager

Product
Catalog

Product
Specification

86

Identifying Concepts

• Better to overspecify a CM with fine-grained concepts than to underspecify it
• Useful technique: candidate concepts or attributes are noun and noun phrases

in textual descriptions of a problem domain
• Expanded use cases can be used for this purpose
• But, mechanical mapping is not possible, natural language is ambiguous

Typical Course of Event
Actor Action System Response

1. This use case begins when a Customer arrives

at a POST checkout with items to purchase
2. The Cashier records the universal product

code (UPC) from each item. If there is more

than one of the same item, the Cashier can

enter the quantity as well.

3. Determines the item price and adds the

item information to the running sales

transaction. The description and price

of the current item are presented.

87

Object Analysis and Design- 44

Report Objects

• Include Receipt in conceptual model ?
• Receipt: record of a sale
• Showing a report in a conceptual model is not useful: its information derived

from other sources
⇒ one reason to exclude it

• Receipt has also special role in business rules: confers the right to the bearer to
return bought items
⇒ one reason to show it

• Since item returns are not considered in this development cycle, it is excluded
• Should be included in the development cycle tackling Return Items use case

88

Different Categories of Concepts

Concept Category Examples
physical or tangible objects POST, Airplane
specifications, or descriptions of things ProductSpecification, FlightSpecification
places Store, Airport
transactions Sale, Payment, Reservation
transaction line items SalesLineItem
roles of people Cashier, Pilot
containers of other things Store, Bin, Airplane
things in a container Item, Passenger
computer or mechanical external systems CreditCardAuthorizationSystem
abstract concepts Illness, Failure
organizations SalesDepartment, Airline
events Sale, Meeting, Flight, Crash, Landing
processes SellingAProduct, BookingASeat
rules and policies RefundPolicy, CancellationPolicy
catalogs ProductCatalog, PartsCatalog
records of finance, contracts, legal matters Receipt, Ledger, EmployementContract
financial instruments and services LineOfCredit, Stock
manuals, book EmployeeManual, RepairManual

89

Object Analysis and Design- 45

Guidelines for Making a Conceptual Model

• How to make a CM
(1) List the candidate concepts
(2) Draw them in a conceptual model
(3) Add the associations necessary to record relationships for which there is a

need to preserve some memory
(4) Add the attributes necessary to fulfill the information requirements

• Naming and modeling things: make a conceptual model in the spirit of how a
cartographer works

(1) Use the vocabulary of the domain when naming concepts and attributes
(2) Exclude concepts in the problem domain not pertinent to the requirements
(3) Exclude things not in the problem domain in consideration

90

Guidelines for Making a Conceptual Model, cont.

• Rule of thumb: A conceptual model is not absolutely correct or wrong, but more
or less useful; it is a tool of communication

• Common mistake: represent something as an attribute when it should be a
concept

• Resolving similar concepts, e.g., POST vs Register
! the same concept may have different names
! sometimes called differently by different groups of users
! sometimes subtle differences between these concepts

91

Object Analysis and Design- 46

Description Concepts

• A concept of objects that are specifications or description of other things

Item

description
price
serial number
UPC

ProductSpecification

description
price
UPC

Item

serial number
Describes

Better Worse

1 *

• Disadvantages of first solution
! when last item sold, loss of information that needs to be maintained
! attributes repeated for each item of the same type

• Typical of sales and products domains, also in manufacturing

92

Defining Terms in UML

• Terms “class” and “type” are used in UML, but not “concept”
! no universal agreement on the meaning of class and type
! to avoid ambiguity UML defines these terms in its metamodel

• Bottom line: distinguish between
! perspective of domain analysts looking at real-world concepts and
! software engineers specifying software entities as classes in an OPL

• UML can be used for both perspectives with similar notation and terminology
• Class: description of a set of objects that share the same attributes, operations,

methods, relationships, and semantics
! distinguish implementation class

• Type: similar to a class but may not include any method
⇒ specification of a software entity, rather than an implementation

• Interface: set of externally visible operations
! may be associated with types, classes, and packages
! typically used for software entities

93

Object Analysis and Design- 47

UML Associations

Sale POST
Records-current

1 1

• Relationship between concepts that indicates some meaningful connection
• Definition: structural relationships between objects of different types
• Represented as a line between concepts with association name
• Inherently bidirectional
• Abstract traversal, not a statement about connections between software entities
• Optional reading arrow without semantic meaning

! indicates the direction to read the association name
! does not indicate direction of visibility or navigation
! if not present, convention to read association left to right, or top to bottom

94

Multiplicity

Item Store Stocks
* 1

• Role: and end of an association
• In addition to name and navigability, may contain a multiplicity expression
• Defines how many instances of a type A can be associated with one instance of

a type B, at a particular moment in time
• UML notation for multiplicity

zero or more
"many"

one or more

one to forty

exactly five

T

T

T

T

*

1.. *

1..40

5

T 3, 5, 8 exactly three,
five or eight

95

Object Analysis and Design- 48

Example Associations

Store

Contains

Person

Airline

Employs

1.. *

Sale POST Captures
1.. *

1.. *

Payment Paid-by
1

Flight Assigned-to Plane
*

Assigned-to

*

Supervises

*

1

1

1

1

1 1

1

96

Multiple Associations between Two Types

Flight Airport
Flies-to

Flies-from

*

* 1

1

Employee Department
Manages

WorksFor

*

1 0..1

1

• Two types may have multiple associations between them
• Sometimes there is a constraint between both associations
• E.g., the manager of a department must work on that department

97

Object Analysis and Design- 49

Associations and Implementation

• During analysis, an association is not a statement about data flows, instance
variables, object connections

• It is a statement that a relationship is meaningful in the real-world
• Many relationships will typically be implemented as paths of navigation or visi-

bility, but their implementation is not required in a CM
• Deferring design considerations frees from extraneous information and decisions

in the analysis model, maximizes options later on
• A CM may contain associations that are necessary during construction
• Also, associations needed to be implemented may be missed during analysis
⇒ CM should be updated to reflect this

98

Association Guidelines

• Focus on associations for which knowledge needs to be preserved for some dura-
tion (“need-to-know” associations)

• It is more important to identify concepts than to identify associations
• Too many associations tend to confuse a CM, their discovery may be time-

consuming with marginal benefit
• Avoid showing redundant or derivable associations
• Name associations based on a TypeName–VerbPhrase–TypeName format where

this creates a readable and meaningful sequence

99

Object Analysis and Design- 50

Different Categories of Associations

Category Examples
A is physical part of B Drawer—Post, Wing—Airplane
A is logical part of B SalesLineItem—Sale, FlightLeg—FlightRoute
A is physically contained in/on B POST—Store, Passenger—Airplane
A is logically contained in/on B ItemDescription—Catalog, Flight—FlightSchedule
A is description for B ItemDescription—Item, FlightDescription—Flight
A is a line item of a transaction B SalesLineItem—Sale, MaintenanceJob—MaintenanceLog
A is known/logged/recorded/reported/

captured in B

Sale—POST, Reservation—FlightManifest

A is member of B Cashier—Store, Pilot—Airline
A is an organization subunit of B Department—Store, Maintenance—Airline
A uses or manages B Cashier—POST, Pilot—Airplane
A communicates with B Customer—Cashier, ReservationAgent—Passenger
A is related to a transaction B Customer—Payment, Passenger—Ticket
A is a transaction related to another

transaction B

Payment—Sale, Reservation—Cancellation

A is next to B POST—POST, City—City, Room—Room
A is owned by B POST—Store, Plane—Airline

100

Point-of-Sale System: Conceptual Model

POST

Item Store

Sale

Payment

Sales
Lineitem

Cashier Customer

Manager

Product
Catalog

Product
Specification

Stocks

*
Contains

1.. *

Used-by
*

Contains
1.. *

Describes

*

Captured-on

Contained-in
1.. *

Described-by

*

Records-sale-of

0..1

Started-by

Paid-by Initiated-by

Entered-by

Used-by

Logs-
completed

*

101

Object Analysis and Design- 51

Not every association shown is compelling.

• Sale EnteredBy Cashier: Requirements do not indicate the need to record the current
cashier. Also it is derivable from association POST UsedBy Cashier.

• Post UsedBy Cashier: Requirements do not indicate the need to record the current
cashier.

• POST StartedBy Manager: Requirements do not indicate the need to record the
manager that starts up a POST.

• Sale InitiatedBy Customer: Requirements do not indicate the need to record the
current customer who initiates a sale.

• Store Stocks Item: Requirements do not indicate the need to record inventory infor-
mation.

• SalesLineItem RecordsSaleOf Item: Requirements do not indicate the need to record
inventory information.

Need-to-Know vs Comprehension Associations

• Strict need-to-know criterion for maintaining associations generates a minimal
information model, bounded by requirements

• But, may create a model which does not convey a full understanding of the
domain

• A CM is also seen as a tool of communication for understanding the important
concepts and their relationships

• From this viewpoint, deleting some not-required associations can create a model
which misses the point
! E.g., Sale InitiatedBy Customer is not needed in a strict need-to-know basis
! But its absence leaves out an important aspect in understanding the domain

• Good model: in the middle between a minimal need-to-know model and one
which illustrates every conceivable relationship

• Approach: emphasize need-to-know associations, add comprehension-only asso-
ciations to enrich critical understanding of the domain

102

Object Analysis and Design- 52

Attributes

• Logical data value of an object
• Approach: in a CM include attributes for which the requirements (use cases)

suggest or imply a need to remember information
• UML notation: attribute’s type may optionally be shown

Sale

date
startTime : Time

attributes

• Attributes in a CM should be simple attributes or pure data values
• Common simple attribute types: Boolean, Date, Number, String, Text, Time
• Other common types: Address, Color, Geometrics, Phone Number, Social Secu-

rity Number, ZIP or Postal Codes, enumerated types

103

Attributes vs Associations

• Type of an attribute should not be a complex domain concept, e.g. Sale or
Airport

• Concepts should be related with associations, not with an attribute

Flight

Flight

destination
Worse

Better Flies-to Airport 1 1

destination is a complex
concept

Cashier

name
currentPOST

Cashier

name

POST

number
Uses

Worse

Better

not a "simple" attribute

1 1

104

Object Analysis and Design- 53

Pure Data Values

• Known as data types in UML
• Those for which unique identity is not meaningful
• E.g., not meaningful to separate

! instances of Number 5
! instances of String ‘dog’
! instances of PhoneNumber containing the same number
! instances of Address containing the same address

• In contrast, meaningful to distinguish two instances of Person having the same
name

• Identity vs Equality
• Element of a pure data value may be illustrated as an attribute
• But, it is also acceptable to model it as a distinct concept

105

Non-primitive Attribute Types

• A primitive data type (string, number) may be represented as a non-primitive
data type if
! it is composed of separate sections: phone number, name of person
! has associated operations, e.g., for parsing, validations: SSN, bank acount
! has other attributes: promotional price has a start and end date
! is a quantity with a unit: payment amount has unit of currency

• Non-primitive attribute types in the point-of-sale application
! Universal Product Code (UPC): check-sum to validate, have attributes (man-

ufacturer who assigned it)
! Price and amount: non-primitive Quantity types because of unit of currency
! Address attribute: separate sections

106

Object Analysis and Design- 54

Non-primitive Attribute Types and Pure Data Values

• If the attribute type is a pure data value, it may be shown as attribute

Product
Specification

upc : UPC

Store

address : Address

• Non-primitive types, with attributes and associations, may be be shown as con-
cepts

UPC Product
Specification

1 *

Address Store 1 *
• Both approaches are valid
• Depend on how the CM is being used as tool of communication, and the signif-

icance of the concept in the domain

107

Attribute Quantities and Units

• Attribute such as amount of Payment may be represented as a Number
Payment

amount : Number

• In the general case this is not robust or flexible: units of a number are important
• Similarly, for velocity, currency
• Common requirement: units must be converted, e.g., imperial to metric
• Solution: represent Quantity as a distinct concept, with associated unit

Payment Quantity

amount : Number

Unit

...

Has-amount
1 *

Is-in
1 *

• It is also a pure value: may be represented as an attribute
Payment

amount : Quantity

108

Object Analysis and Design- 55

Multiplicity from SalesLineItem to Item

• Each line item records a separate item sale, e.g., 1 biscuit package
SalesLineItem Item Records-sale-of 1 0..1

• Each line item can record a group of the same kind of items, e.g., 6 biscuit
packages

SalesLineItem Item Records-sale-of 0..1 1.. *

• Derived attribute from the multiplicity value
SalesLineItem

/quantity

Item Records-sale-of 0..1 1.. *

109

Point-of-Sale System: Conceptual Model

POST

Item Store

address
name

Sale

date
time

Payment

amount

Sales
Lineitem

quantity

Cashier Customer

Manager

Product
Catalog

Product
Specification

description
price
UPC

Stocks

*
Contains

1.. *

Used-by
*

Contains
1.. *

Describes

*

Captured-on

Contained-in
1.. *

Described-by

*

Records-sale-of

0..1

Started-by

Paid-by Initiated-by

Entered-by

Used-by

Logs-
completed

*

110

Object Analysis and Design- 56

Cycle 2: Extending the Conceptual Model

• CM incrementally developed by considering current use cases for this cycle
• New concepts POST system:

Category Examples
Physical or tangible objects CreditCard, Check
Transactions CashPayment, CreditPayment, Check-

Payment
Organizations CreditAuthorizationService, CheckAu-

thorizationService
Records of finance, work, con-
tracts, legal matters

AccountsReceivable

111

Point-of-Sale System: Pay by Credit Use Case

Typical Course of Events
Actor Action System Response

1. This use case begins when a Customer

chooses to pay by credit, after being

informed of the sale total.
2. The Customer swipes their credit

card through a card reader in order

to complete the credit payment.

3. Generates a credit payment request and sends

it to an external Credit Authorization Service

(CAS) via a modem attached to the POST. Re-

quires dialing the service, sending out a request

record, and waiting for a reply record.
4. Receives a credit approval reply from the CAS.

The reply is encoded in a reply record and received

via the modem.
5. Posts (records) the credit payment and approval

reply information to the Accounts Receivable

System (ARS). (The CAS owes money to the

store, hence the ARS must track it).
6. Displays authorization success message.

Alternative Courses
• Line 4: Credit request denied by CAS. Suggest different payment method.

112

Object Analysis and Design- 57

Point-of-Sale System: Section Pay by Check

Typical Course of Events
Actor Action System Response

1. This use case begins when a Customer

chooses to pay by check, after being in-

formed of the sale total.
2. The Customer writes a check and gives it

and their drivers license to the Cashier.
3. Cashier writes the drivers license num-

ber on the check, types it into the DL

Number text field on the window and

presses the Check Authorization button

to requests check payment authorization.

4. Generates a check payment request and

sends it to an external Check Autoriza-

tion Service (CAS) via a modem at-

tached to the POST. Requires dialing the

service, sending out a request record, and

waiting for a reply record.
5. Receives a check approval reply from

the Check Authorization Service. The re-

ply is encoded in a reply record and re-

ceived via the modem.
6. Displays authorization success message.

Alternative Courses
• Line 5: Check request denied by CAS. Suggest different payment method.

113

Point-of-Sale Application: Extending the Conceptual Model

Store POST Sale Item

Sales
LineItem Cashier Customer Manager

Product
Catalog

Product
Specification

Cash
Payment

Credit
Payment

Check
Payment

Credit
Card Check

Credit
Authorization

Service

Check
Authorization

Service
Accounts

Receivable

Credit
Approval

Reply

Check
Approval

Reply
Drivers
License

Credit
Approval
Request

Check
Approval
Request

114

Object Analysis and Design- 58

Generalization

• Concepts CashPayment, CreditPayment, and CheckPayment are very similar
• Should be organized in to a generalization-specialization type hierarchy
• Supertype: more general concept, subtype: more specialized concept
• UML notations

Cash
Payment

Credit
Payment

Check
Payment

«type»
Payment

Cash
Payment

Credit
Payment

Check
Payment

«type»
Payment

• Generalization allows to construct taxonomic classifications among concepts
• Allows us to understand concepts in more general, refined and abstract terms
• Leads to economy of expression, improved comprehension, reduction in repeated

information

115

Generalization Characteristics

• Type definition: A supertype definition is more general or encompassing than
a subtype definition

• Membership inclusion: All the members of a subtype set are members of
their supertype set
! Is-a rule: the subtype is a kind of the supertype

Payment

CashPayment CreditPayment CheckPayment

116

Object Analysis and Design- 59

Generalization Characteristics, cont.

• Subtype conformance: 100% of the supertype’s definition should be applica-
ble to the subtype

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money
Sale Pays-for

117

Motivation to Partition a Type into Subtypes

• Subtype has additional attributes of interest
! Library: Book, subtype of LoanableRessource, has an ISBN attribute

• Subtype has additional associations of interest
! Library: Video, subtype of LoanableRessource, is associated with Director

• Subtype concept is operated upon, handled, reacted to or manipulated differently
than the supertype or other subtypes, in ways that are of interest
! Library: Software, subtype of LoanableRessource, requires a deposit before it

may be loaned
• Subtype concept represents an animate thing that behaves differently than the

supertype or other subtypes in ways that are of interest
! Market Research: MaleCustomer and FemaleCustomer behaves differently wrt

shopping habits

118

Object Analysis and Design- 60

When to Define a Supertype

Motivated when commonality is identified among potential subtypes

• Potential subtypes represent variations on a similar concept
• Subtypes will conform to the 100% and Is-a rules
• All subtypes have the same attribute which can be factored out and expressed

in the supertype
• All subtypes have the same association which can be factored out and related

to the supertype

119

Point-of-Sale Application: Payment Subtypes

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money

Check

Identifies-credit-with Paid-with
*

Each payment subtype is
handled differently.

Additional associations

Supertype motivated by
common attributes and
associations.

Sale
Pays-for

CreditCard

1

1

1 1

120

Object Analysis and Design- 61

Point-of-Sale Application: AuthorizationService Hierarchy

Credit
Authorization

Service

Check
Authorization

Service

Check
Payment

AuthorizationService

address
name
phoneNumber

Additional associations

Supertype motivated by
common attributes and
associations.

Store Authorizes-payments-of *

Authorizes

Credit
Payment

Authorizes

* *

*

1 1

121

Point-of-Sale Application: External Service Transactions

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Approval
Request

CheckPayment
Approval
Request

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

CheckPayment
Authorization

Reply

CreditPayment
Authorization

Reply

Payment
Authorization

Reply

Payment
Authorization

Request

Payment
Authorization
Transaction

date
time

Concepts too fine grained?
Useful to show this degree of
partitioning?

Each transaction is
handled differently, so
it is useful to partition
them into discrete
types.

122

Object Analysis and Design- 62

Point-of-Sale Application: External Service Transactions

CreditPayment
Approval
Request

CheckPayment
Approval
Request

Payment
Authorization

Reply

Payment
Authorization

Request

Payment
Authorization
Transaction

date
time

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

123

Abstract Types

• Every member of a type T must also be a member of a subtype

Payment

CashPayment CreditPayment CheckPayment

abstract type

• UML notation

Cash
Payment

Credit
Payment

Check
Payment

Payment

amount : Money

abstract type indicated by
italics

• Implemented as abstract classes (without instances) during design
• Abstract method: declared in abstract class, but not implemented

124

Object Analysis and Design- 63

Modeling Changing States

• Do not model states of a concept X as subtypes of X, rather
! Define a state hierarchy and associate the states with X, or
! Ignore showing the states on a concept in the conceptual model; show them

in state diagrams

Payment not useful

these subtypes are
changing states of the
supertype Unauthorized

Payment
Authorized
Payment

PaymentState better

Unauthorized
State

Authorized
State

Payment Is-in 1 *

125

Class Hierarchies and Inheritance

• We have not mentioned inheritance because CM focus on real-world things not
software artifacts

• A class is a software implementation of a concept or type
• In OPL, a subclass inherits the attribute and operation definitions of its super-

classes
• Inheritance: software mechanism to implement subtype conformance to super-

type definitions
• Inheritance has no real part to play in the conceptual model
• It most definitely does when we transition to the design phase
• Type hierarchies of the CM may or may not be reflected in solution

! e.g., hierarchy of authorization service transaction types may be collapsed or
expanded into alternate software class hierarchies

! depends upon language features and other factors

126

Object Analysis and Design- 64

Packages

• Mechanism allowing to partition model elements into smaller subsets
• Support a higher-level view
• Overall system architecture composed of vertical layers and horizontal partitions
• Packages of the CM, if carried through design, may be considered partitions of

the domain objects layer
• UML Notation

Domain Concepts

Core Elements Sales

127

Ownership and References

• An element (e.g., type) is owned by the package within which it is defined
• May be referenced in other packages⇒ element name qualified using the format

PackageName::ElementName

• A type or class in a foreign package may be modified with new associations, but
must otherwise remain unchanged

Sales Core Elements

Sale

Core Elements::
POST

Captures

Store POST Houses
1.. * 1

1

1

128

Object Analysis and Design- 65

Dependencies

• Dependency relationship: A model element is in some way dependent on
another

• Package dependency: Elements of the dependent package in some way know
about or are coupled to elements in the target package

Domain Concepts

Core Elements Sales

• Package ownership with a constraint note on the diagram

Store POST Houses
1.. *

Package: Core Elements

1

129

Guidelines for Partitioning the Conceptual Model

• Place together elements that
! are in the same subject, are closely related by concept or purpose
! are in a type hierarchy together
! participate in the same use case
! are strongly associated

• All elements related to the CM should be rooted in a Domain Concepts package
• Widely shared, core concepts should be defined in a Core Elements or Common

Concepts package

130

Object Analysis and Design- 66

Point-of-Sale Application: Domain Concept Packages

Domain Concepts

Core Elements Payments Products Sales

Authorization
Transactions

131

Point-of-Sale Application: Domain Packages

Sales

Sale Sales
LineItem Cashier Customer

Products

Item Product
Catalog

Product
Specification

Core

Store POST Manager

132

Object Analysis and Design- 67

Point-of-Sale Application: Domain Packages, cont.

Payments

Credit
Card Check Accounts

Receivable
Drivers
License

Cash
Payment

Credit
Payment

Check
Payment

Payment

Credit
Authorization

Service

Check
Authorization

Service

Authorization
Service

133

Point-of-Sale Application: Domain Packages, cont.

Authorization Transactions

CreditPayment
Approval
Request

CheckPayment
Approval
Request

Payment
Authorization

Reply

Payment
Authorization

Request

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

Payment
Authorization
Transaction

134

Object Analysis and Design- 68

Associative Types

• Relationships may also have attributes
• These attributes are related to the association and cannot be placed to the

participating classes

135

Associative Types: Example

• Authorization services assign a merchant ID to each store for identification dur-
ing communications

• A payment authorization request requires the inclusion of the merchant ID that
identifies the store to the authorization service

• A store has different merchant ID for each service

address
name
phoneNumber

AuthorizationService

address
name

Store

merchantID

ServiceContract An associative type.

Its attributes are related
to the association.

Its lifetime is dependent
on the association.

Authorizes-payments-via
1.. * *

136

Object Analysis and Design- 69

Merchant ID: Inadequate Alternatives

address
merchantID
name
phoneNumber

AuthorizationService

address
merchantID
name

Store Both placements of
merchantID are incorrect
because there may be
more than one merchantID.

address
name
phoneNumber

AuthorizationService

address
name

Store

merchantID

ServiceContract Purchases

1.. * *
A better model, but not
yet as useful as possible.

Sells

Authorizes-payments-via
1.. * *

137

Associative Types: Other Examples

salary

Employment

Employs Company Person * *

dateOfIncarceration

JailTerm

Incarcerates Jail Person * 1

A person may have
employment with several
companies.

138

Object Analysis and Design- 70

Aggregation

• Particular association used to model whole-part relationships between things
• Whole is called the composite, parts called component
• UML notation: hollow or filled diamond and the composite end
• Composite aggregation: multiplicity at the composite end is at most one,

i.e., composite solely owns the part
! Typical of physical aggregations

Motor 0..1 Car 1

• Shared aggregation: multiplicity at the composite end may be more than one,
i.e., the part may be in many composite instances
! Involves nonphysical concepts

UMLElement References UMLPackage * *

139

Guidelines for Identifying Aggregation

• Consider aggregation when
! Lifetime of the part is bound within the lifetime of the composite — there is

a create-delete dependency of the part on the whole
! There is an obvious whole-part physical or logical assembly
! Some properties of the composite propagate to the parts, such as its location
! Operations applied to the composite propagate to the parts, such as destruc-

tion, movement, recording

140

Object Analysis and Design- 71

Point-of-Sale Application: Aggregations

SalesLineItem Sale
1.. *

Product
Specification

Product
Catalog 1.. *

1

1

141

Roles as Concepts vs Roles in Associations

• Roles in associations

Store Person Employs-to-handle-sales
cashier

Employs-to-manage
manager

* *

Manages

*
worker manager

1

1

• Roles as concepts

Store

Cashier

Manager Employs *
Employs *

Manages

*
1

1 1

142

Object Analysis and Design- 72

• Roles in associations
! allow to express that the same instance takes on multiple (dynamically changing)

roles in various associations
• Roles as concepts

! Allows to add additional semantics: attributes, associations
! better support for mutate an instance of one class into another class, or adding

additional behaviour and attributes as the role of a person changes

Derived Elements

• Can be derived from other elements
• Attributes and associations are the most common derived elements

date
/total
time

Sale
derived attribute

SalesLineItem
1.. *

Sale

/quantity

derivable from the
actual multiplicity

1

• Showing derived elements in a diagram
! add complexity without new information
! helps comprehension, may be prominent in the terminology of the domain

143

Object Analysis and Design- 73

Qualified Associations

• Qualifier: distinguishes the set of objects at the far end of an association based
upon the qualifier value

• Qualified association: has a qualifier

Product
Catalog

Product
Specification UPC Contains

Product
Catalog

Product
Specification

Contains
1.. *

multiplicity reduced to 1 qualifier

1

1 1

• Depicts how in the domain, things of one type are distinguished in relation to
another type

• May be implemented during design with lookup keys

144

Point-of-Sale Application: Core/Misc Package

Core/Misc

POST Manager
Store

address
name

Houses

1.. *

Employs

1.. *
1

1

145

Object Analysis and Design- 74

Point-of-Sale Application: Payments

Payments

Check

Accounts
Receivable

Credit
Payment

Check
Payment

Check
Authorization

Service

Credit
Authorization

Service
Authorized-by

Authorized-by

*
* *

AuthorizationService

address
name
phoneNumber

Core::Store Payment

amount

Establishes-
credit-for

Logs

*

CreditCard

expiryDate
number

DriversLicense

number

1.. *

Establishes-
identity-for

Paid-by

CashPayment

amountTendered *

Sales::Customer Abused-by

Identifies

Authorization Transactions::
PaymentAuthorizationReply

- CheckPayments have
 CheckPaymentReplies

- CreditPayments have
 CreditPaymentReplies

1

1

1

1 1 1

1

1 1
1

1

Authorizes-payments-of

merchantID

ServiceContract

1

146

Point-of-Sale Application: Products

Products

1.. *

Core::
Store

Stocks
*

Describes

*

Sales::
SalesLineItem

Described-by *

Records-sale-of

0..1

Product
Specification

description
price
UPC

ProductCatalog

Item 1

1

1

1

1

147

Object Analysis and Design- 75

Point-of-Sale Application: Sales

Sales

Cashier

Customer

1.. *

SalesLineItem

/quantity

Sale

date
isComplete
time

Initiates

Core::
POST

Records-sales-on

Captured-on

Core::
Store

 3 Logs-completed
*

1

1

1

1

1

1

1

1

148

Point-of-Sale Application: Authorization Transactions

Authorization Transactions

CreditPayment
Approval
Request

CheckPayment
Approval
Request

Payment
Authorization

Request

CreditPayment
Approval

Reply

CheckPayment
Approval

Reply

CreditPayment
Denial
Reply

CheckPayment
Denial
Reply

Payments::
Authorization

Service
Sends Receives

Payments::
CreditPayment

Payments::
CheckPayment

Payment
Authorization
Transaction

date
time

Core::
Store

Payment
Authorization

Reply

Receives

*

Sends

*
* *

1
1

1

1

1

1

1

1

1

1

1 1

1

1 1

1

149

Object Analysis and Design- 76

Conclusion

• There is no such thing as a correct conceptual model
• All models are approximations of the domain we are attempting to understand
• A good conceptual model

! captures the essential abstractions and information required to understand
the domain in the context of current requirements

! aids people in understanding the domain: its concepts, terminology, and
relationships

150

Glossary or Model Dictionary

• Lists and defines all terms
• Improve communication and reduce risk of misunderstanding
• Consistent meaning and shared understanding of terms is extremely important

during application development
• Especially when many team members are involved
• Originally created during the Plan and Elaborate Phase as terms are generated
• Continually refined within each development cycle as news terms are encountered
• Usually made in parallel with the requirements specifications, use cases, and

conceptual model
• Maintaining the glossary: ongoing activity throughout the project
• Useful document within which record domain or business rules, constraints, . . .

• But, other artifacts may record this kind of information

151

Object Analysis and Design- 77

Point-of-Sale System: Sample Glossary

Term Category Comments
Buy Items use case Description of the process of a customer

buying items in a store
Item type An item for sale in a Store
Payment type A cash payment
ProductSpecification.price : Quantity attribute The price of an item in a sale and its as-

sociated ProductSpecification
ProductSpecification.description : Text attribute A short description of an item in a sale

and its associated ProductSpecification
ProductSpecification.upc : UPC attribute The universal product code of the item

and its associated ProductSpecification
SalesLineItem.quantity : Integer attribute The quantity of one kind of Item bought
Sale type A sales transaction
SalesLineItem type A line item for a particular item bought

within a Sale
Store type The place where sales of items occur
Sale.total : Quantity attribute The grand total of a Sale
Payment.amount : Quantity attribute The amount of cash tendered, or pre-

sented from the customer for payment

152

System Sequence Diagrams

• System behavior: description of what a system does, without explaining how
it does it

• Investigate and define its behaviour as a “black box”
• Use cases suggest how actors interact with software system

! actors generate events to a system, requesting some operation in response
• System sequence diagrams: show, for a particular scenario of a use case, the

events that external actors generate, their order, and inter-system events
• Scenario of a use case: particular instance or realized path through its use, a

real example of its enactment
• Part of the investigation into what system to build⇒ included in analysis model
• Dependent of the prior development of the use cases
• Should be done for the typical course of events, for the most interesting alterna-

tive courses

153

Object Analysis and Design- 78

Buy Items Use Case: System Sequence Diagrams

enterItem(UPC, quantity)

:System
Cashier

endSale()

Repeat until no
more items

makePayment(amount)
Text which clarifies
control, logic, iteration,
etc.

May be taken from the
use case.

Actor

Buy Items-version 1

system as black box

system event

it triggers a system operation

154

System Events and System Operations

• System event: external input event generated by an actor to a system
• System operation: operation that system executes in response to a system

event
! e.g., system event enterItem triggers a system operation of the same name

• Event vs operation: similar distinction as between messages and methods
• Events and operations should be expressed at the level of intent rather than in

terms of physical input medium or interface widget
! e.g., enterItem(UPC,quantity) vs enterKeyPressed(UPC,quantity)

• Usually, name start with a verb (add, enter, . . .) for emphasizing command
orientation of these events

• Sometimes desirable to show fragments of use case text

155

Object Analysis and Design- 79

System Events and System Boundary

• Set of required system operations determined by identifying system events
• System operations can be grouped as operations of a type named System

System

endSale()
enterItem()
makePayment()

• Also works for multiple systems or processes in a distributed application
! each system has unique name (System1, System2, . . .) with its own operations

• System type very different of what is in the conceptual model
• To identify system events it is necessary to be clear on the choice of system

boundary
! for software development: software (and possibly hardware) system itself
! for business re-engineering: may include manual processes

156

System Behaviour: Contracts

• Contracts describe the effect of operations upon the system
• UML allows the definition of pre- and post-conditions of operations
• Realized during analysis phase, within a development cycle
• Their creation depends on conceptual model, system sequence diagrams, and

identification of system operations
• System sequence diagrams does not show the functionality associated with the

system opearations invoked
• Contract: document describing what an operation commits to achieve
• Usually declarative in style
• System operation contract: describes changes in the state of the overall system

when a system operation is invoked

157

Object Analysis and Design- 80

Contract for enterItem

Name enterItem(upc : number, quantity : integer)
Responsibilites: Enter (record) sale of an item and add it to the sale.

Display the item description and price.
Type: System
Cross References: System Functions: R1.1, R1.3, R1.9

Use cases: Buy Items
Notes: Use superfast database access
Exceptions: If the UPC is not valid, indicate that it was an error.
Output:
Pre-conditions: UPC is known to the system.
Post-conditions:

• If a new sale, a Sale was created (instance creation).

• If a new sale, the new Sale was associated with the POST (association formed).

• A SalesLineItem was created (instance creation).

• The SalesLineItem was associated with the Sale (association formed).

• SalesLineItem.quantity was set to quantity (attribute modification).

• The SalesLineItem was associated with a ProductSpecification, based on UPC match

(association formed).

158

Contract Sections

Name Name of operation and parameters.
Responsibilites: Informal desription of responsibilites this operation must

fulfill.
Type: Name of type (concept, software class, interface).
Cross References: System functions reference numbers, use cases . . .
Notes: Design notes, algorithms . . .
Exceptions: Reaction to exceptional situations.
Output: Non-UI outputs, such as messages or records sent outside

of the system.
Pre-conditions: Assumptions about the state of the system before execution

of operation.
Post-conditions: State of the system after completion of the operation.

159

Object Analysis and Design- 81

How to Create Contracts

For each use case

(1) Identify system operations from the system sequence diagrams
(2) For each system operation construct a contract
(3) Start by writing the Responsibilites section, informally describing the purpose

of the operations
(4) Complete the Post-conditions section, declaratively describing state changes that

occur to objects in the conceptual model
(5) Describe the post-conditions using the following categories

• instance creation an deletion
• attribute modification
• associations formed and broken

(6) Describe Pre-conditions, Notes, and Exceptions sections

160

Contracts and Other Artifacts

Cashier System

enterItem
(upc,

quantity)

endSale()

makePayment
(amount)

USE CASE:
BUYING
ITEMS

Typical Course
Of Events

1. This use
case begins ...

Use Case System
Sequence
Diagram

Operation: enterItem

Postconditions:
1. If a new sale, a
new Sale has been
created...

Operation: endSale

Postconditions:
1. ...

Contracts

System

endSale()
enterItem()
makePayment()

System
Operations

161

Object Analysis and Design- 82

Post-conditions

• Declarations about the system state that are true when the operation has finished
• They are not actions performed during the operation
• Often expressed in the past tense

! A SalesLineItem was created vs Create a SaleLinesItem
• UML does not constrain how post-conditions should be expressed
• Important factor: to be declarative and state-change oriented rather than action-

oriented
• Advantage: software design and solution deferred, allow to focus on what must

happen, rather than how to be accomplished
• Expressed in the context of conceptual model
• Common during creation of contracts: discover the need of new concepts, at-

tributes, or associations in the conceptual model

162

Pre-conditions

• Define assumptions about the state of the system at the beginning of the oper-
ation

• Many possible pre-conditions can be declared for an operation
• Some important pre-conditions

! Things important to test at some point during execution of operation
! Things that will not be tested, but upon which the success of the operation

hinges

163

Object Analysis and Design- 83

Contract for endSale

Name endSale()
Responsibilites: Record the end of entry of sale items and display sale total
Type: System
Cross References: System Functions: R1.2

Use cases: Buy Items
Notes:
Exceptions: If sale is not underway, indicate that it was an error
Output:
Pre-conditions:
Post-conditions:

• Sales.isComplete was set to true (attribute modification).

164

Contract for makePayment

Name makePayment(amount : number or Quantity)
Responsibilites: Record the payment, calculate balance and print receipt.
Type: System
Cross References: System Functions: R2.1

Use cases: Buy Items
Notes:
Exceptions: If the sale is not completed, indicate an error.

If the amount is less than the total sale, indicate an error.
Output:
Pre-conditions:
Post-conditions:

• A Payment was created (instance creation).

• Payment.amountTendered was set to amount (attribute modification).

• The Payment was associated with the Sale (association formed).

• The Sale was associated with the Store, to add it to the historical log of completed

sales (association formed).

165

Object Analysis and Design- 84

Contract for startUp

Name startUp()
Responsibilites: Initialize the system
Type: System
Cross References:
Notes:
Exceptions:
Output:
Pre-conditions:
Post-conditions:

• A Store, POST, ProductCatalog and ProductSpecifications was created (instance cre-

ation).

• ProductCatalog was associated with ProductSpecifications (association formed).

• Store was associated with ProductCatalog (association formed).

• Store was associated with POST (association formed).

• POST was associated with ProductCatalog (association formed).

166

Changes to the Conceptual Model

• One datum suggested by these contracts is not yet represented in the conceptual
model: completion of item entry to the sale
! endSale specification modifies it
! makePayment specification tests it as a precondition

• One way to represent this information: an isComplete attribute in Sale, as a
Boolean value

Sales

isComplete : Boolean()
date
time

• Other alternative to represent the changing state of the system: State pattern
(see later)

167

Object Analysis and Design- 85

Cycle 2: System Sequence Diagrams

• Common beginning of Buying Items

enterItem(UPC, quantity)

:System
Cashier

endSale()

Repeat until no
more items

168

Point-of-Sale Application: Credit Payment SSD

makeCreditPayment(ccNum, expiryDate)

requestApproval(request)

handleCreditReply(reply)

Customer Accounts
Receivable

Credit
Authorization

Service

addApproval(reply)

:System

169

Object Analysis and Design- 86

Point-of-Sale Application: Check Payment SSD

makeCheckPayment(driversLicenseNum)

requestApproval(request)

handleCheckReply(reply)

Cashier
Check

Authorization
Service

:System

170

Point-of-Sale Application: Changes

• New system events
! makeCreditPayement, makeCreditReply, makeCheckPayement, makeCheckReply

• Rename MakePayment to MakeCashPayment

• A system operation is defined for each system event

System

endSale()
enterItem()
handleCheckReply()
handleCreditReply()
makeCashPayment()
makeCheckPayment()
makeCreditPayment()

• Contracts need to be written for new system operations

171

Object Analysis and Design- 87

Point-of-Sale Application: Contract for makeCreditPayment

Name makeCreditPayment(ccNumber : number, expiryDate : date)
Responsibilites: Create and request authorization for a credit payment.
Type: System (type)
Cross References:
Notes: The request has to be transformed into a flat record.
Output: A credit payment request was sent to a credit authorization service.
Pre-conditions: The current sale is complete.
Post-conditions:

• A CreditPayment was created.

• pmt was associated with the current Sale.

• A CreditCard cc was created; cc.number = ccNum, cc.expiryDate = expiryDate.

• cc was associated with pmt.

• A CreditPaymentRequest cpr was set created.

• pmt was associated with cpr.

• cpr was associated with the CreditAuthorizationService.

172

Point-of-Sale Application: Contract for handleCreditReply

Name handleCreditReply(reply : CreditPaymentReply)
Responsibilites: Respond to authorization reply from the credit authorization ser-

vice. If approved complete the sale, and record the payment in

accounts receivable.
Type: System (type)
Cross References:
Notes: reply is actually a record that needs to be transformed into a Cred-

itPaymentApprovalReply or CreditPaymentDenialReply .
Output: If approved, credit payment reply was sent to accounts receivable.
Pre-conditions: The credit payment request was sent to a credit authorization ser-

vice.
Post-conditions:

• If reply represented approval:

! A CreditPaymentApprovalReply was created.

! approval was associated with AccountsReceivable.

! Sale was associated with Store, to add it to the historical log of completed sales.

• Else if reply represented denial:

! A CreditPaymentDenialReply denial was created.

173

Object Analysis and Design- 88

From Analysis to Design

• Analysis: understanding of requirements, concepts, operations of a system
• Focuses on the what

Analysis Artifact Questions answered
Use cases What are the domain processes?
Conceptual model What are the concepts, terms?
System sequence diagrams What are the system events and operations?
Contracts What do the system operations do?

• Design: development of a logical solution
• Artifacts

! interaction diagrams: illustrate how objects communicate to fulfill require-
ments

! design class diagrams: summarize the definition of classes (and interfaces)
to be implemented in software

• Interaction diagrams: requires assigning responsibilities and the use of design
patterns

174

Real Use Cases

• Describes a design of the use case in terms of concrete input/output technology
and its overall implementation

• E.g., for a GUI, include diagrams of windows involved, discussing low-level in-
teraction with interface widgets

• Their definition is one of the first design phase activities within a development
cycle

• Their creation is dependent upon the creation of associated essential use cases
• They may not be necessary to create
• Alternative: designer may create rough user interface storyboards, deferring the

details to implementation
• Useful if developers or client require detailed interface descriptions prior to im-

plementation

175

Object Analysis and Design- 89

Real Use Cases: Buy Items, Version 1

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered

Balance

A

C

E

G

H I J

Price Desc B

D

F

Use case: Buy Items with Cash
Actors: Customer (initiator), Cashier
Purpose: Capture a sale and its cash payment
Overview: A Customer arrives at a checkout with items to purchase.

The Cashier records the purchase items and collect a cash

payment. On completion the Customer leaves with the

items
Type: Primary and essential
Cross references : Functions R1.1, R1.2, R1.3, R1.7, R1.9, R2.1

176

Real Use Cases: Buy Items, Version 1

Typical Course of Event
Actor Action System Response

1. This use case begins when a Customer ar-

rives at a POST checkout with items to

purchase
2. For each item the Cashier types in the

Universal Product Code (UPC) in A of

Window-1. If there is more than one of

the same item, the quantity may option-

ally be entered in E. They press H after

each item entry.

3. Determines the item price and adds the

item information to the running sales

transaction. The description and price

of the current item are displayed in B

and F of Window-1.

4. On completion of item entry, the Cashier

indicates to the POST that the item entry

is complete by pressing widget I.

5. Calculates and presents the sale total

in C.

6. . . .

177

Object Analysis and Design- 90

Interaction Diagrams

• Illustrates message interactions between instances and classes in class model
• Starting point: fulfillment of post-conditions of the operation contracts
• Realized within the design phase of a development cycle
• Their creation dependent upon the creation of

! conceptual model: for defining software classes corresponding to concepts.
Objects of these classes participate in interaction diagrams

! system operation contracts: for identifying the responsibilities and post-
conditions that the interaction diagrams must fulfill

! real (or essential) use cases: for obtaining information about what tasks
the interaction diagrams fulfill

178

UML Interaction Diagrams

• Two kinds of interaction diagrams
• Either can be used to express similar or identical message interactions
• Collaboration diagrams

:ClassAInstance :ClassBInstance

1: message2()
2: message3() message1()

• Sequence diagrams

:ClassAInstance :ClassBInstance

message2()

message3()

message1()

• Collaboration diagrams are more expressive, convey more contextual informa-
tion, relative spatial economy

179

Object Analysis and Design- 91

Collaboration Diagram: makePayment

1: makePayment(cashTendered)

1.1: create(cashTendered)

:POST :Sale

:Payment

makePayment(cashTendered)

parameter

direction of message

first message

instance

first internal message

link line

• Message makePayment is sent to an instance of a POST

! It corresponds to the makePayment system operation message
• The POST object sends the makePayment message to a Sale instance
• The Sale object creates an instance of a Payment

180

Importance of Interaction Diagrams

• One of the most important artifacts created in object analysis and design
• The amount of time and effort spent on their generation should absorb a signif-

icant percentage of the overall project effort
• Codified patterns, principles, and idioms can be applied to improve the quality

of their design
• Relatively, creation of use case, conceptual models, and other artifacts is easier

than the assignment of responsibilities and creation of well-designed interaction
diagrams

181

Object Analysis and Design- 92

How to Make Collaboration Diagrams

(1) Create a separate diagram for each system operation under development in cur-
rent development cycle
• For each system operation message, make a diagram with it as the starting

message
(2) Complex diagrams (e.g., does not fit in one page) can be split in smaller diagrams
(3) Design a system of interacting objects to fulfill the tasks

• Using operation contract responsibilities and post-conditions, use case de-
scription

• Apply patterns to develop a good design

182

Collaboration Diagrams and Other Artifacts

Cashier System

enterItem
(upc,

quantity)

endSale()

makePayment
(amount)

Collaboration
Diagrams

System
Sequence
Diagram

Operation: enterItem

Postconditions:
1. If a new sale, a new
Sale has been created...

Operation: makePayment

Postconditions:
1. ...

Contracts

:POST

:POST

enterItem(upc, qty)

makePayment(amount)

183

Object Analysis and Design- 93

Classes, Instances, Links

• UML notation for classes and instances
Sale :Sale s1: Sale

class instance named instance

• Link: instance of an association, connection path between two instances
• Indicates some form of navigation and visibility
• Client/server view: messages may be sent from the client to the server

1: addPayment(cashTendered) :POST : Sale

msg1()

link line

184

Messages, Parameters

1: message1()
2: message2()
3: message3()

:POST :Sale

msg1()

all messages flow on the same link

1: addPayment(amount: Money)
:POST :Sale

msg1()

parameters

185

Object Analysis and Design- 94

Return value, Messages to Self

• UML syntax for messages
return := message(parameter : parameterType): returnType

• Return value

1: tot := total(): Integer
:POST :Sale

msg1()
return value type

return value name

• Messages to self

:POST

msg1()

1: clear()

186

Iterations

• Indicated by following the sequence number with a ‘∗’

1*: li := nextLineItem(): SalesLineItem
:POST :Sale

msg1()

iteration
recurrence values omitted

• Iteration clause indicates the recurrence values

1*: [i := 1..10] li := nextLineItem(): SalesLineItem
:POST :Sale

msg1()
iteration clause

187

Object Analysis and Design- 95

Iterations, cont.

• To express more than one message happening within the same iteration clause:
repeat iteration clause on each message

1*: [i := 1..10] msg2()
:A myB :B

msg1()

note that iteration
clauses are equal

myC :C
2*: [i := 1..10] msg3()

msg1()
{
for i := 1 to 10
 {
 myB.msg2()
 myC.msg3()
 }
}

188

Creation of Instances

• Language-independent creation message: create

1: create(cashier)
:POST :Sale

msg1()

create message, with
optional initializing
parameters

new created instance

«new»
:Sale

"«new»" is optionally
allowed for emphasis

189

Object Analysis and Design- 96

Message Number Sequencing

• Order of messages determined by sequence numbers
• First message is not numbered
• Nesting denoted by prepending incoming message number to the outgoing mes-

sage number

:ClassA msg1() :ClassB 1: msg2()

:ClassC

1.1: msg3()

2.1: msg5()

2: msg4()

:ClassD

2.2: msg6()

first second

fourth

sixth

fifth

third

190

Conditional Message

1: [new sale] create()
:POST :Sale

:SalesLineItem

1.1: create()

msg1()
conditional message, with test

• Shown by following sequence number with a conditional clause in square brackets
• Message only sent if clause evaluates to true

191

Object Analysis and Design- 97

Mutually Exclusive Conditional Paths

1a: [test1] msg2()
:ClassA :ClassB

:ClassC

1a.1: msg3()

msg1()

:ClassD

1b: [not test1] msg4()

1b.1: msg5()

:ClassE

2: msg6()

unconditional after
either msg2 or msg4 1a and 1b are mutually

exclusive conditional paths

• Sequence expression have a conditional path letter
• First letter is a by convention
• Either 1a or 1b could execute after msg1()

• Subsequent nested messages still prepended with outer message sequence, e.g.,
1b.1

192

Messages to Collections

• UML notation for multiobjects

Sale
sales : Sale

• Usually implemented as a group of instances stored in a container or collection
object, but not necessarily so

1: s := size() : int
:Sale

SalesLineItem
:SalesLineItem

msg1()

message sent to the
collection object itself

• Messages to a multiobject are sent to the collection object itself
• Messages to a multiobject are not broadcast to each element

193

Object Analysis and Design- 98

Messages to a Multiobject and to an Element

1: create() :Sale sl: SalesLineItem

SalesLineItem
:SalesLineItem

2: addElement(sl)

msg1()

2: print()
:Sale sl: SalesLineItem

SalesLineItem
:SalesLineItem

1: sl := get(key)

msg1()

194

Messages to a Class Object

1: d1 := today(): Date
:Sale Date

msg1()

not underlined,
therefore a class

message to class

• Messages may be sent to a class to invoke class methods
• E.g., in Java = static methods, in Smalltalk = class methods

195

Object Analysis and Design- 99

Patterns for Assigning Responsibilities

• Object systems: composed of objects sending message to other objects to com-
plete operations

• Preliminary identification of postconditions and responsabilities in contracts
• Interaction diagrams show the solution satisfying these postconditions and re-

sponsibilities
• There is great variability in responsibility assignment
• Poor choices lead to systems and components which are fragile, hard to maintain,

understand, reuse or extend
• Skillful implementation is founded in good principles of object design
• Some of these principles, applied during creation of interaction diagrams and/or

responsibility assignement codified in some patterns

196

Responsibilities

• Responsibility: contract or obligation of a type or a class
• Related to the obligation of an object in terms of its behaviour
• Responsibilites are of two types
• Doing responsibilities of an object include

! doing something itself
! initiating action in other objects
! controlling and coordinating activities in other objects

• Knowing responsibilities of an object include
! knowing about private encapsulated data
! knowing about related objects
! knowing about things it can derive or calculate

197

Object Analysis and Design- 100

Responsibilities and Methods

• Assigned to objects during object design, e.g.,
! a Sale is responsible for printing itself (a doing)
! a Sale is responsible for knowing its date (a knowing)

• Knowing responsibilities inferable from the conceptual model
• Translation of responsibilities into classes and methods influenced by granularity

! “provide access to relational DB” may involve many classes and methods
! “print a sale” may involve one or a few methods

• Responsibilities implemented using methods which either act alone or collaborate
with other methods and objects

198

Responsibilities Assignment

• Assignment of responsibilities usually occurs during creation of interaction dia-
grams

• Decisions in responsibility assignment reflected in what messages are sent to
different classes of objects

:Sale print() 2: print() sli:SalesLineItem

Sale objects have a responsibility
to print themselves

SalesLineItem
:SalesLineItem

1*: [for each] sli := next()

199

Object Analysis and Design- 101

Patterns

• Experienced developers build up a repertoire of general principles and idiomatic
solutions that guide them in the creation of software

• May be codified in a structured format describing the solution and given a name
• Pattern: named description of a problem and solution that can be applied in

new contexts, with advice on how to apply it in novel situations
• Notion originated with architectural patterns of Christopher Alexander
• Their application to software originated in the 1980s
• Skillful assignment of responsibilities is extremely important in object design
• Some patterns describing principles of assigning responsibilities to objects

! Expert, Creator, High Cohesion, Low Coupling, Controller

200

Expert Pattern

• Problem: Most basic principle for assigning responsibilities to objects
• Solution: Assign a responsibility to the information expert, the class that has

the information needed to fulfill it.
• Example: in POST application some class need to know grand total of a sale

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-by * 1.. *
Contains

• Determined by all SalesLineItem instances of a sale, the sum of their subtotals
! only Sale knows this ⇒ correct class for this responsibility

• Line item subtotal determined by SalesLineItem.quantity and ProductSpecifica-

tion.price ⇒ SalesLineItem is correct class for this responsibility
• SalesLineItem need to know product price ⇒ ProductSpecification is assigned this

responsibility

201

Object Analysis and Design- 102

Expert Pattern: Calculating the Sale Total

Sale

date
time

total()

:Sale t := total()

sli:SalesLineItem
SalesLineItem

quantity

subtotal()

2: st := subtotal()

:Product
Specification

2.1: p := price()

Product
Specification

description
price
UPC

price() New methods

SalesLineItem
:SalesLineItem

1*: [for each] sli := next()

202

Expert Pattern: Discussion

• More used than any pattern in assignment of responsibilities
• Intuition: objects do things related to the information they have
• Fulfillment of a responsability requires information spread across different classes
• Real-world analogy: responsibility usually given to individuals who have the

information necessary to fulfill the task
• Maintains encapsulation: objects use their own information to fulfill tasks
• Supports low coupling ⇒ more robust and maintainable systems
• Behaviour distributed across classes that have required information
⇒ encourages “lightweight” classes easier to understand and maintain

• High cohesion is supported

203

Object Analysis and Design- 103

Creator Pattern

• Problem: Responsibility for creating a new instance of some class
• Solution: Assign class B the responsibility to create an instance of class A if

! B aggregates A objects
! B contains A objects
! B records instances of A objects
! B closely uses A objects
! B has the initializing data that will be passed to A when it is created

(i.e., B is an expert with respect to creating A)

204

Creator Pattern: Example

• Who should be responsible for creating a SalesLineItem instance ?

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-by * 1.. *
Contains

• Sale aggregates many SalesLineItem objects ⇒ Sale should create these instances

Sale

date
time

makeLineItem()
total()

:Sale makeLineItem(quantity)

:SalesLineItem

1: create(quantity) New method

205

Object Analysis and Design- 104

Creator Pattern: Discussion

• Creation of objects: very common task in object systems
• Objective: find a creator needing to be connected to the new object in any event
• Aggregate aggregates Part, Container contains Content, Recorder records Record

are very common relationships
• Creator suggests the enclosing container or recorder is a good candidate for

creating the thing contained or recorded
• Sometimes, creator found by looking class having initializing data passed in

during creation
• E.g., if Payment instance needs to be initialized with Sale total ⇒ Sale is candi-

date to be the creator
• Low coupling supported ⇒ lower maintenance dependencies, higher reuse
• Related patterns: Low Coupling, Whole-Part

206

Low Coupling Pattern

• Problem: How to support low dependency and increased reuse
• Solution: Assign a responsibility so that coupling remains low
• Coupling: measure of how strongly one class is conected, has knowledge of, or

relies upon other classes
• A class with low coupling is not dependent on too many other classes
• Problems with high coupling

! changes in related classes force local changes
! harder to understand in isolation
! harder to reuse (because requires additional presence of classes it is dependent

upon)

207

Object Analysis and Design- 105

Low Coupling Pattern: Example

• Responsibility of create Payment instance and associate it to Sale

• Post records a Payment ⇒ Creator pattern suggests Sale as a candidate
! couples POST class to knowledge of Payment class

:POST p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

• Alternative solution with lower coupling: Sale eventually coupled to Payment

:POST :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

• Example of two patterns suggesting different solutions

208

Low Coupling Pattern: Discussion

• Principle to keep in mind during all design decisions
• Common forms of coupling from TypeX to TypeY in object languages

! TypeX has an attribute that refers to a TypeY instance, or TypeY itself
! TypeX has a method referencing an instance of TypeY, or TypeY itself:

parameter, local variable, object returned from a message
! TypeX is a direct or indirect subclass of TypeY
! TypeY is an interface implemented by TypeX

• Supports the design of more independent classes, reduces the impact of changes,
improves reusability and higher productivity

• Cannot be considered in isolation from other patterns
• May not be that important if reuse is not a goal: cost-benefit consideration
• A subclass is strongly coupled to its superclass
• No absolute measure of when coupling is too high
• Low coupling taken to excess yields a poor design

209

Object Analysis and Design- 106

High Cohesion Pattern

• Problem: How to keep complexity manageable ?
• Solution: Assign a responsibility so that cohesion remains high
• Cohesion: measure of how strongly related and focused are responsibilities of

a class
• Class with high cohesion: highly related responsibilites, does not do tremendous

amount of work
• Problems with low cohesion

! hard to comprehend
! hard to reuse
! hard to maintain
! delicate, constantly affected by change

210

High Cohesion Pattern: Example

• POST takes the responsibility of makePayment system operation
! If it is responsible for many other operations, it will become incohesive

:POST p : Payment

:Sale

makePayment() 1: create()

2: addPayment(p)

• Delegates payment creation responsibility to Sale ⇒ higher cohesion in POST

:POST :Sale

:Payment

makePayment() 1: makePayment()

1.1. create()

• This design supports both high cohesion and low coupling ⇒ desirable

211

Object Analysis and Design- 107

High Cohesion Pattern: Discussion

• Like Low Coupling, principle to keep in mind during all design decisions
• High cohesion: elements of a component all work together to provide some well-

bounded behaviour
• Class with high cohesion: relatively small number of methods, with highly-

related functionality, does not do too much work
• Analogy: a person with too many unrelated responsibilites is not effective
• Benefits

! clarity and ease of comprehension of design is increased
! maintenance and enhancements are simplified
! low coupling is supported
! fine grain of highly related functionality supports increased reuse potential

since class can be used for a very specific purpose

212

Controller Pattern

• Problem: Who should be responsible for handling a system event ?
• Solution: Assing the responsibility to a class

! representing the overall system: façade controller
! representing the overall business or organization: façade controller
! representing something that is active in the real-world (e.g., role of person)

that might be involved in the task: role controller
! represents an artificial handler of all system events of a use case: use-case

controller
• Controller: non-user interface object responsible for handling a system

213

Object Analysis and Design- 108

Controller Pattern: Example

• During design, system operations are assigned to one or more controller classes
POST

...

endSale()
enterItem()
makePayment()

System

endSale()
enterItem()
makePayment()

• Controller for enterItem ?
! POST: represents the overall system
! Store: represents the overal business or organization
! Cashier: represents the role of a person involved in the task
! BuyItemsHandler: artificial handler of operations of a use case

:POST enterItem(upc, quantity)

:Store enterItem(upc, quantity)

:Cashier enterItem(upc, quantity)

:BuyItemsHandler enterItem(upc, quantity)

• Choice influenced by other factors, e.g., cohesion, coupling

214

Controller Pattern: Discussion

• Controllers should not have too much responsibility, should delegate work to
other objects while coordinating the activity

• Façade controllers
! suitable when there are only a few system events, or
! it is not possible to redirect system event messages to alternating controllers

• Use case controllers
! used when using other approaches leads to low cohesion or high coupling, or

there are many system events across different processes
! same controller class should be used for all system events of a use case
! allows to maintain state of the use case: useful, e.g., for identifying out-of-

sequence events
! different controllers may be used for different use cases

215

Object Analysis and Design- 109

Controller Pattern: Discussion, cont.

• Human-role controllers
! danger that mimic what role does in the real world
! may create an incohesive role controller that does not delegate
! should be used sparingly

• Benefits of using controllers
! increased potential for reusable components: business or domain processes

handled by domain objects rather than interface layer
! reason about the state of the use case: ensures that system operations occur

in a legal sequence

216

Bloated controllers

• Unfocused, handle too many areas of responsibilities ⇒ low cohesion
• Identifying signs

! if there is a single controller receiving all system events
∗ happens if role or façade controller is chosen

! controller performs many tasks without delegating the work
∗ usually involves a violation of Expert and High Cohesion patterns

! controller has many attributes and maintains significant information about
the system
∗ information should be distributed

217

Object Analysis and Design- 110

Presentation vs Domain Layer

• External interface objects (widgets, applets) and presentation layer should not
have responsibility of system events

• System operations should be handled in domain layer
Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

:POST

Cashier

:POSTApplet

presses button

onEnterItem()

1: enterItem(upc, qty)

:Sale 1.1: makeLineItem(upc, qty)

Presentation Layer
(Java applet)

Domain Layer

218

Presentation vs Domain Layer, cont.

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

Cashier

:POSTApplet

presses button

onEnterItem()

:Sale 1: makeLineItem(upc, qty)

Presentation Layer
(Java applet)

Domain Layer

• Undesirable coupling of presentation to domain layer
• Business logic embedded in presentation layer

219

Object Analysis and Design- 111

Point-of-Sale Application: Collaboration Diagrams

• In current iteration we consider two use cases and their associated system events
! Buy Items
∗ enterItem
∗ endSale
∗ makePayment

! StartUp
∗ startUp

220

Contract for enterItem

Name enterItem(upc : number, quantity : integer)
Responsibilites: Enter (record) sale of an item and add it to the sale.

Display the item description and price.
Type: System
Cross References: System Functions: R1.1, R1.3, R1.9

Use cases: Buy Items
Notes: Use superfast database access
Exceptions: If the UPC is not valid, indicate that it was an error.
Output:
Pre-conditions: UPC is known to the system.
Post-conditions:

• If a new sale, a Sale was created (instance creation).

• If a new sale, the new Sale was associated with the POST (association formed).

• A SalesLineItem was created (instance creation).

• The SalesLineItem was associated with the Sale (association formed).

• SalesLineItem.quantity was set to quantity (attribute modification).

• The SalesLineItem was associated with a ProductSpecification, based on UPC match

(association formed).

221

Object Analysis and Design- 112

Collaboration Diagram: enterItem

1: [new sale] create()

3: makeLineItem(spec, qty)
enterItem(upc, qty)

2: spec := specification(upc) 3.1: create
(spec, qty)

2.1: spec := find(upc)

:POST :Sale

:Product
Catalog

sl: SalesLineItem

SalesLineItem
:SalesLineItem :Product

Specification

1.1: create()

3.2: add(sl)

by Creator

by Expert

message to the
collection (container)
object itself

222

Contract for endSale

Name endSale()
Responsibilites: Record the end of entry of sale items and display sale total.
Type: System
Cross References: System Functions: R1.2

Use cases: Buy Items
Notes:
Exceptions: If sale is not underway, indicate that it was an error.
Output:
Pre-conditions:
Post-conditions:

• Sales.isComplete was set to true (attribute modification).

223

Object Analysis and Design- 113

Collaboration Diagram: endSale

:POST endSale() 1:becomeComplete() :Sale

by Controller
by Expert

becomeComplete()
{
 isComplete := true
}

224

Collaboration Diagram: saleTotal

:Sale tot := total() 2: st := subtotal() sli:
SalesLineItem

prodSpec:
ProductSpecification

2.1: pr := price()
by Expert

by Expert

SalesLineItem--subtotal()
{
 return quantity * prodSpec.price()
}

Sale--total()
{
 tot := 0
 for each SalesLineItem, sli
 tot := tot + sli.subtotal()
 return tot
}

SalesLineItem
:SalesLineItem

1*: [for each] sli := next()

225

Object Analysis and Design- 114

Contract for makePayment

Name makePayment(amount : number or Quantity)
Responsibilites: Record the payment, calculate balance and print receipt.
Type: System
Cross References: System Functions: R2.1

Use cases: Buy Items
Notes:
Exceptions: If the sale is not completed, indicate an error.

If the amount is less than the total sale, indicate an error.
Output:
Pre-conditions:
Post-conditions:

• A Payment was created (instance creation).

• Payment.amountTendered was set to amount (attribute modification).

• The Payment was associated with the Sale (association formed).

• The Sale was associated with the Store, to add it to the historical log of completed

sales (association formed).

226

Collaboration Diagram: makePayment

:POST :Sale

: Payment

makePayment(cashTendered) 1:makePayment(cashTendered)

1.1: create(cashTendered)

by Controller by Creator, Low Coupling

:Store

2: addSale(s)

Sale completedSales :
Sale

2.1: add(s)

by Expert

227

Object Analysis and Design- 115

Collaboration Diagram: saleBalance

:Sale pmt: Payment 1: amt := amount() bal := balance()

Sale--balance()
{ return pmt.amount() - total() }

2: t := total()

228

Contract for startUp

Name startUp()
Responsibilites: Initialize the system.
Type: System
Cross References:
Notes:
Exceptions:
Output:
Pre-conditions:
Post-conditions:

• A Store, POST, ProductCatalog and ProductSpecifications was created (instance cre-

ation).

• ProductCatalog was associated with ProductSpecifications (association formed).

• Store was associated with ProductCatalog (association formed).

• Store was associated with POST (association formed).

• POST was associated with ProductCatalog (association formed).

229

Object Analysis and Design- 116

Collaboration Diagram: create

:Store :POST

pc:
ProductCatalog

create() 2: create(pc)

1: create()

1.2: loadProdSpecs()

:Product
Specification

1.1: create()

1.2.2*: add(ps)

1.2.1*: create(upc, price, description)

ps:
ProductSpecification

Asterix in sequence number
indicates the message occurs in
a repeating section.

Pass a reference to the
ProductCatalog to the
POST, so that it has
permanent visibility to it.

by Creator

230

Connecting Presentation Layer to Domain Layer

• With a GUI, it will be responsible for initiating creation of initial domain object

store :Store

1: create()

2: p := getPOST() : POST
:POSTApplet create()

• Once applet has a connection to POST instance it can forward system event
message to it

• For enterItem, window needs to show running total after each entry
• After the POSTApplet forwards enterItem to POST object
(1) it gets a reference to the Sale (if it did not already have one)
(2) it stores the Sale reference in the attribute
(3) it sends a total message to Sale to get the information needed to display the

runing total on the window

231

Object Analysis and Design- 117

Connecting Presentation Layer to Domain Layer

post : POST

Cashier

:POSTApplet

onEnterItem()

1: enterItem(upc, qty)

2: [no sale] sale := getSale() : Sale

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance presses
button

Presentation
Layer

Domain
Layer sale : Sale

3: t := total() : Float

232

Determining Visibility

• Collaboration diagrams illustrate messages between objects
• For this, sender object must be visible to the receiver object
• Visibility: ability of one object to see or have reference to another
• Related to the issue of scope: is one ressource within the scope of another
• Four common ways to achieve visibility from object A to object B
(1) Attribute visibility
(2) Parameter visibility
(3) Locally-declared visibility
(4) Global visibility

233

Object Analysis and Design- 118

Attribute Visibility

• Attribute visibility from A to B: B is an attribute of A
• Relatively permanent visibility: persists as long as A and B exists
• Very common form of visibility in object systems

enterItem(upc, qty)

2: spec := specification(upc)

:POST

prodCatalog : ProductCatalog

POST--enterItem(upc, qty)
{
 ...
 spec = prodCatalog.specification(upc)
 ...
}

class POST
{
 ...
 private ProductCatalog prodCatalog;
 ...
}

234

Parameter Visibility

• Parameter visibility from A to B: B is passed as a paremeter to a method of A
• Relatively temporary visibility: persists only within the scope of the method

1: [new sale] create()

3: makeLineItem(spec, qty)
enterItem(upc, qty)

2: spec := specification(upc)
3.1: create(spec, qty)

:POST :Sale

:Product
Catalog

sl : SalesLineItem
Sale--makeLineItem(ProductSpecification spec, int qty)
{
 ...
 sl = new SalesLineItem(spec, qty);
 ...
}

235

Object Analysis and Design- 119

Parameter to Attribute Visibility

• It is common to transform parameter visibility into attribute visibility
1: [new sale] create()

3: makeLineItem(spec, qty)
enterItem(upc, qty)

2: spec := specification(upc)
3.1: create(spec, qty)

:POST :Sale

:Product
Catalog

sl : SalesLineItem
// initializing method (e.g., a Java constructor)

SalesLineItem--SalesLineItem(ProductSpecification spec, int qty)
{
...
productSpec = spec; // parameter to attribute visibility
...
}

236

Locally Declared Visibility

• Locally declared visibility from A to B: B is declared as a local object within a
method of A

• Relatively temporary visibility: persists only within the scope of the method
• Common means by which this form of visibility is achieved

! create a new local instance and assign it to a local variable
! assign the return object from a method invocation to a local variable

1: [new sale] create()

3: makeLineItem(spec, qty)
enterItem(upc, qty)

2: spec := specification(upc)

:POST :Sale

:Product
Catalog

POST--enterItem(upc, qty)
{
...
// local visibility via assignment of returning object
ProductSpecification spec = prodCatalog.specification(upc);
...
}

237

Object Analysis and Design- 120

Global Visibility

• Global visibility from A to B: B is global to A
• Relatively permanent visibility: persists as long as A and B exists
• Least common form of visibility in object systems
• Most obvious, but least desirable, way to achive it: assign an instance to a global

variable
• Preferred method to achieve global visibility is to use the Singleton pattern

238

UML Stereotypes for Visibility

:A :B 1: msg()

:C
2: msg()

:D
3: msg()

«association»

«parameter»

«local»

:E
4: msg()

«global»

«association» is used for
attribute visibility

239

Object Analysis and Design- 121

Design Class Diagrams

• Illustrates the specifications for software classes and interfaces in an application
• Show definitions for software entities rather than real-world concepts
• Typical information it includes

! classes, associations, and attributes
! interfaces with their operations and constants
! methods
! attribute type information
! navigability
! dependencies

• UML does not specifically define an element called “dessign class diagrams” but
uses the more generic term “class diagrams”

• Their creation depends upon the prior creation of
! interaction diagrams
! conceptual model

240

Making a Design Class Diagram

(1) Identify all classes participating in the software solution by analyzing interaction
diagrams

(2) Draw them in a class diagram
(3) Duplicate the attributes from the associated concepts in the conceptual model
(4) Add method names by analyzing interaction diagrams
(5) Add type information to the attributes and methods
(6) Add the associations necessary to support the required attribute visibility
(7) Add navigability arrows to the associations to indicate the direction of attribute

visibility
(8) Add dependency relationship lines to indicate non-attribute visibility

241

Object Analysis and Design- 122

Conceptual Model vs Design Class Diagrams

POST

endSale()
enterItem()
makePayment()

Sale

date
isComplete : Boolean
time

makeLineItem()

Captures

Conceptual Model POST
Sale

date
isComplete : Boolean
time

Captures

Design Class Diagram

Concept; abstraction

Software component

1 1

1 1

242

Point-of-Sale Application: Design Class Diagrams

• Classes participating in the software solution found in interaction diagrams:
POST, ProductCatalog, Store, Payment, Sale, ProductSpecification, SalesLineItem

! attributes come from conceptual model
! method names come from collaboration diagrams

:POST :Sale 3: makeLineItem(spec, qty)

Sale

date
isComplete
time

makeLineItem()

• Many concepts in conceptual model (Cashier, Manager, . . .) not present in design
! no need for the current development cycle to represent them in software
! will be tackled in later cycles

243

Object Analysis and Design- 123

Methods: Issues

Create message

• In UML, language independent form of instantiation and intialization
• Must be translated in terms of specific idioms of an object programing language
• E.g., in Java: invocation of new operator followed by a constructor call
• Because of its multiple interpretations it is common to omit creation-related

methods and constructors from design class diagrams

Accessing methods

• Those which retrieve (accessor) or set (mutator) attributes
• Common idiom to have an accessor and mutator for each attribute and declare

all attributes private (encapsulation)
• Those methods are usually excluded from class diagrams

244

Methods: Issues, cont.

Multiobjects

2.1: spec := find(upc) :Product
Catalog

SalesLineItem :Product
Specification

spec:=
specification(upc)

• Message to a multiobject interpreted as a message to container/collection object
• find is not part of ProductSpecification but of container object

Language-Dependent Syntax

• Recommended to use basic UML format, even if implementation language has
different syntax

• Translation sould take place during code generation

245

Object Analysis and Design- 124

Methods: Issues, cont.

Type Information

• Design class diagrams should be created by considering the audience
• If created in CASE tool with automatic code generation: full details necessary
• If to be read by software developers, exhaustive detail may be inadequate

246

Adding Associations and Navigability

• In design class diagrams, roles may be decorated with navigability arrow
• Navigability: property of the role indicating that it is possible to navigate

uni-directionally from objects of the source to the target class
• Implies visibility, usually attribute visibility

Captures

POST

endSale()
enterItem()
makePayment()

Sale

date
isComplete
time

becomeComplete()
makeLineItem()
makePayment()
total()

1

1

! POST class will probably have an attribute pointing to a Sale object
! navigability arrow: POST objects connected unidirectionally to Sale objects
! no connection from Sale to POST

• Most associations in design class diagrams should be adorned with necessary
navigability arrows

247

Object Analysis and Design- 125

Adding Associations and Navigability, cont.

• Required visibility and associations indicated by interaction diagrams

:Store :POST

pc:
ProductCatalog

create() 2: create(pc)

1: create()

1.2: loadProdSpecs()

:Product
Specification

1.1: create()

1.2.2*: add(ps)

1.2.1*: create(upc, price, description)

ps:
ProductSpecification

• Common situations to add a navigability adornment from A to B
! A send a message to B
! A creates an instance B
! A needs to maintain a connection to B

248

Point-of-Sale Application: Navigability Adornments

SalesLineItem

quantity : Integer

subtotal()

ProductCatalog

specification()

ProductSpecification

description : Text
price : Quantity
upc : UPC

Store

address : Address
name : Text

addSale()

Payment

amount : Quantity

Contains
1.. *

Contains
1.. *

POST

endSale()
enterItem()
makePayment()

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
total()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1 1

1

1 1

1

1
1

1

1

1

1

1

*

Logs-completed *

1

249

Object Analysis and Design- 126

Adding Dependency Relationships

• UML has a general dependency relationship indicating that one element (of any
kind) has knowledge of another element

• Indicated by a dashed arrowed line
• In class diagrams it is useful to depict non-attribute visibility between classes,

i.e., parameter, global, or locally declared visibility

250

Dependency Relationships Indicating non-attribute Visibility

SalesLineItem

quantity : Integer

subtotal()

ProductCatalog

specification()

ProductSpecification

description : Text
price : Quantity
upc : UPC

Store

address : Address
name : Text

addSale()

Payment

amount : Quantity

Contains
1.. *

Contains
1.. *

POST

endSale()
enterItem()
makePayment()

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
total()

Captures

Houses

Uses

Looks-in

Paid-by

Describes

1 1

1

1 1

1

1
1

1

1

1

1

1

*

A dependency of POST knowing about
ProductSpecification.

Recommended when there is parameter,
global or locally declared visibility.

Logs-completed *

1

251

Object Analysis and Design- 127

UML Notation for Member Details

Class Name

attribute
attribute : type
attribute : type = initial value
classAttribute
/derivedAttribute
...

method1()
method2(parameter list) : return type
abstractMethod()
+publicMethod()
-privateMethod()
#protectedMethod()
classMethod()
...

java.awt.Font

plain : Integer = 0
bold : Integer = 1
name : String
style : Integer = 0
...

+getFont(name : String) : Font
+getName() : String
...

java.awt.Toolkit

#createButton(target : Button) : ButtonPeer
...
+getColorModel() : ColorModel
...

• Describe features of class and interface members: visibility, initial values, . . .

• Attributes are assumed to be private by default

252

Three-Tier Architecture

Record sales

Presentation

Application
Logic

Authorize
payments

Storage
Database

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

• A system is composed of multiple subsystems, domain objects are but one
• Typical information system has to connect to a UI and a persistent storage

253

Object Analysis and Design- 128

Three-Tier Architecture, cont.

• Common architecture for information systems
! Presentation: windows, reports, . . .

! Application logic: tasks and rules that govern the process
! Storage: persistent storage mechanism

• Advantage: separation of application logic into a distinct tier
• Presentation tier is relatively free of application processing
• Two-tier design: application logic place within windows definition, which read

and write directly to a database
• Disadvantage: inhibits software reuse

254

Decomposing the Application-Logic Tier

Payment

Presentation

Application
Logic

Sale

Storage
Database

POSTApplet

Database
Interface ReportGenerator

domain
concepts

services

• Application logic layer decomposed in
! domain objects: classes representing domain concepts
! services: service objects for functions such as DB interaction, reporting,

communications, security, . . .

• This is called multi-tiered architectures

255

Object Analysis and Design- 129

Multi-Tiered Architectures

• A logical 3-tier architecture may be physically deployed in various configura-
tions
! Presentation and application logic tiers on client computer, storage on server
! Presentation on client computer, application logic on application server, stor-

age on separate data server
• Motivations for multi-tiered architectures

! Isolation of application logic into separate components
∗ can be reused in other systems

! Distribution of tiers on different physical computing nodes and/or processes
∗ can improve performance and increase coordination and shared information

in a client/server system
! Allocation of developers to construct specific tiers
∗ supports specialized expertise in terms of development skills, allows parallel

development

256

UML Package Notation

Domain Concepts

Core Elements Sales

• Package mechanism: groups of elements or subsystems
• Set of model elements of any kind

! e.g., classes, use cases, collaboration diagrams, or other (nested) packages
• Entire system may be considered within a top level package System

• Defines a nested name space, elements with the same name may be duplicated
within different packages

257

Object Analysis and Design- 130

Detailed Architecture Example

Presentation 1

Domain

Relational
Database Interface Communication Reporting

Application Frameworks &
Support Libraries 2

Low-level
Services
Layer
(object and
non-object
 oriented)

Object Database
Interface

High-
level
Object-
oriented
Services
Layer

Examples:
1. Java Applets,
 MFC Documents and Views,
 VisualAge Visual Parts
2. JDK, MFC, STL

Relational
Database

Object
Database

258

Package comments

• Relational and object DB interface packages provide mechanisms for communicating
with databases. An ODB interface provided by the ODB vendor. A RDB interface
must be custom developped or buy a third-party product

• High-level object service packages: reporting, DB interfaces, security, inter-process
communications. Usually written by application developpers. Low-level services pro-
vide basic functions such as window and file manipulation, usually provided as stan-
dard language libraries or purchased from a third-party vendor

• Application Frameworks and Support Libraries typically include support for creat-
ing windows, defining application coordinators, accessing DB and files, inter-process
communication, . . .

Dependency comments

• Dependency relationships (dashed arrow line) indicates if a package has knowledge of
(coupling) to another package. Lack of dependency from package A to B implies the
components of package A have no references to any classes, components, interfaces,
methods or services of package B.

• Domain package has no dependency (coupling) to the presentation layers: principle of
Model-View Separation (see after)

Object Analysis and Design- 131

Identifying Packages

• Group elements that provide a common service (or family of related services)
with relatively high coupling and collaboration into a package

• At some level of abstraction the package will be viewed as highly cohesive: it
has strongly related responsibilities

• In constrast, the coupling and collaboration between elements of different pack-
ages will be relatively low

259

Layers and Partitions

Relational
Database Interface Communication Reporting Object Database

Interface

Services

Core Elements Sales Products

Domain

Vertical Layers

Horizontal Partitions

• Layers of an architecture represent the vertical tiers
• Partitions represent a horizontal division of relatively parallel subsystems of a

layer

260

Object Analysis and Design- 132

Layers and Partitions

• Layers are not coupled in the limited sense of network protocols (e.g., OSI 7-
Layer model)

• Protocol models: elements of layer n only access services of immediate lower
layer n− 1

• Object systems: “relaxed layered” or “transparent layered” architecture
! elements of a layer communicate with several other layers

261

Visibility Between Package Classes

• Access into the domain packages
! other packages (e.g., presentation) have visibility into many of the classes

representing domain concepts
• Access into the service packages

! other packages (e.g., presentation, domain) have visibility into only one or a
very few classes in each service package (usually a Façade class, see after)

• Access into the presentation packages
! no other packages have direct visibility to the presentation layer
! communication is indirect, if at all (using the Observer pattern, see after)

262

Object Analysis and Design- 133

Service Packages Interface: The Façade Pattern

• Façade class: provides a common interface to a group of other components or
a disparate set of interfaces
! Disparate elements: classes in a package, set of functions, framework, sub-

system (local or remote)
• Often used to provide a public interface to a service package
• Example: RelationalDatabaseInterface package with many internal classes
• One class (e.g., DBFacade) provides public interface into services of the package
• Classes in other packages send messages only to an instance of DBFacade, have

no coupling to other classes in the package
• DBFacade collaborates wih other private classes of the package to provide services
• This design supports low coupling

263

Model-View Separation Pattern

• Also known as Domain-Presentation pattern
! formerly Model-View-Controller, but controller portion is an anachronism

• Model: synonym for the domain layer of objects
• View: synonym for presentation objects such as windows, applets, reports
• Model (domain) objects should not have direct knowledge of or be directly cou-

pled to view (presentation) objects
• Model components may be reused in new applications or attached to a new

interface
• Corollary: domain classes encapsulate information and behaviour related to

application logic
• View classes are relatively thin, responsible for input/output, do not maintain

data or directly provide application functionality

264

Object Analysis and Design- 134

Conformance vs Violation of Model-View Separation

:POST

Presentation (View) Layer
(e.g., POSTApplet)

Domain (Model) Layer

Worse.

Messaging or coupling
from the Model layer to the
View layer is not desirable.

Better.

Messages from View to
Model layer. Supports
model-view separation.

:POST

1: enterItem(upc, qty) 1: displayMessage(msg)

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

265

Motivation for Model-View Separation

• Support cohesive model definitions focusing on domain processes rather than on
computer interfaces

• Separate development of the model and user interface layers
• Minimize impact of requirement changes in the interface upon the domain layer
• New views to be easily connected to an existing domain layer, without affecting

the domain layer
• Multiple simultaneous views on the same model object
• Execution of model layer independent of the user interface layer, e.g., in a

message-processing or batch-mode system
• Easy porting of the model layer to another user interface framework

266

Object Analysis and Design- 135

Model-View Separation and Indirect Communication

• How can windows obtain information to display ?
• Usually it is sufficient for them to send message to domain objets, querying for

information which they then display in widgets
• Called polling or pull-from-above model of display updates
• Sometimes insufficient: domain objects need to (indirectly) communicate with

windows to cause a real-time update as domain objects changes, e.g.,
! monitoring applications: network management
! simulation applications requiring visualizations: aerodynamics modeling

• A push-from-below model of display update is required
• Model-view separation⇒ indirect communication from other objects to windows

267

Indirect Communication in a System

• Model-view separation: one of many examples where indirect communication
between elements is needed

• A message between a sender and receiver objects requires that the sender has
direct visibility to the receiver

• Other mechanisms besides direct messaging are required to de-couple the sender
and receiver, or for supporting brodcast or multicast

• Some variants of indirect communication
! Publish-subscribe pattern
! Callbacks
! Event notification systems

268

Object Analysis and Design- 136

Publish-Subscribe Pattern

• Also known as Observer
• An event occurs within a Publisher, other objects (Subscribers) are interested

in this event. Publisher should not have direct knowledge or its Subscribers.
• Solution: event modification system where Publisher indirectly notify Subscribers
• E.g., EventManager class maintains mappings between events and subscribers
• An event is published by publisher sending a signalEvent message to the Event-

Manager

• When published, EventManager notifies all subscribers interested in the event
• Event is represented by a simple string, may also be an instance of Event class
• Typically, a single instance of EventManager class, globally accessed using the

Singleton pattern (see later)
• This is a simple language-independent illustration, language-specific facilities

should be used when available, e.g., in Java

269

Publish-Subscribe Pattern, cont.

:Sale :EventManager adjustTax() 1: signalEvent("new tax")

s: SaleWindow :EventManager create() 1: subscribe(s, aMessage, "new tax")

s: SaleWindow

1.1: aMessage()
a "Message" or
"Method" object

• Classic design: Publisher object maintain a direct visibility to its collection of
Subscribers interested in notification of Publisher changes

• Disadvantage: impacting the coupling and implementation of Publishers
• Alternative: use of indirect EventManager class managing subscribers minimizing

publisher coupling and responsibilities
• But, may suffer from performance problems: bottleneck for all events

270

Object Analysis and Design- 137

Event Notification Systems

• Publish-Subscriber architecture: general-purpose mechanism for event notifica-
tion and indirect communication in a system

• New approach to the design of object systems
• Distinguishing qualities

! Direct coupling between senders and receivers is not required
! A single event can be broadcast to any number of subscribers
! Reaction to an event can be generalized in Callback objects
! Relatively easy to provide concurrency by executing each Callback on its own

thread
• A system design relying on asynchronous event notification and broadcasting to

subscribers ⇒ state-machine design (see later)

271

Application Coordinators

• Class responsible for mediating between interface and domain layer
• Basic responsibilities

! Map information between domain objects and interface
! Respond to events from interface
! Open windows that display information from domain objects
! Manage transactions, e.g., performing commit and rollback

• For some applications, coordinator has also multi-view responsibilities
! Support the ability to have multiple windows simultaneous display informa-

tion from one application coordinator instance
! Notify dependent windows when information changes and windows need to

be refreshed
• Some frameworks include support for some form of application coordinator
• E.g., MFC application coordinators are Documents in the Document-View archi-

tecture, they are subclasses of CDocument

272

Object Analysis and Design- 138

MFC Document-View Architecture Example

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

:POST

Cashier

:SaleView

presses button

onEnterItem()

:SaleDocument

1: enterItem(upc, qty)

1.1: enterItem(upc, qty)

Presentation

Domain

Application
Coordinator

system event
message

Chosen as the controller
by the Controller pattern.

:Sale
«association»

«association» «association»

«association»

«association»

273

Application Coordinator in Java Application

Object Store

Enter Item End Sale

UPC

Make Payment

Total

Quantity

Tendered Balance

:POST

Cashier

:SaleFrame

presses button

onEnterItem()

:POSTCoordinator

1: enterItem(upc, qty)

Presentation

Domain

Application
Coordinator

Java Frame subclass.

Created by the
POSTCoordinator.

Forwards events to the
application coordinator, which
may forward them to the domain
layer Controller (e.g., the POST).

Java application coordinator
which creates the windows (e.g.,
Frame and Dialog objects), and
which mediates between the
windows and domain layer. 1.1: enterItem(upc, qty)

274

Object Analysis and Design- 139

Mapping Designs to Code

• Strength of OAD and OPL used with a development process: provides a complete
end-to-end road map from requirements through code

• Various artifacts feed into later artifacts in a traceable and useful manner
• Artifacts created during desing phase used as input to code generation process
• Core of the application: basic conceptual model, architectural layers, major

allocations of responsibilities, major object interactions
• They are best determined in a formal investigation and design process
• Decision making and creative work done during the analysis and design phases
• Code generation may be a relatively mechanical translation process
• But, during programming and testing many changes will be made and detailed

problems will be uncovered and resolved
• Design artifacts provide resilient core that scales up to meet the new problems

encountered during programming

275

Code Changes and Iterative Process

Analysis

Design

Implementation
and Testing

Iterative Cycles
of Development

Analysis

Design

Implementation
and Testing

Analysis

Design

Implementation
and Testing

Time

276

Object Analysis and Design- 140

Code Changes and Iterative Process, cont.

• In iterative and incremental development process results of a prior cycle feed
into the beginning of the next cycle

• Subsequent analysis and design results are continually being refined and informed
from prior implementation work

• Diagrams generated during design must be updated to reflect changes in subse-
quent coding phase

• Should be done semi-automatically with a CASE tool that can read source code
and automatically generate, e.g., class and collaboration diagrams

• This is an aspect of reverse engineering: generate logical models from exe-
cutable source code

277

Creating Class Definitions from Design Class Diagrams

public class SalesLineItem
{
public SalesLineItem(ProductSpecification spec, int qty);

public float subtotal();

private int quantity;
}

SalesLineItem

quantity : Integer

subtotal() : Quantity

ProductSpecification

description : Text
price : Quantity
upc : UPC

Described-
by 1 *

• Mapping basic attribute definitions and method signatures is straightforward
• Constructor derived from message create(spec,qty) sent to a SalesLineItem in the

enterItem collaboration diagram
• Return type for subtotal method changed from Quantity to float

278

Object Analysis and Design- 141

Adding Reference Attributes

SalesLineItem

quantity : Integer

subtotal() : Quantity

ProductSpecification

description : Text
price : Quantity
upc : UPC

Described-
by

public class SalesLineItem
{
public SalesLineItem(ProductSpecification spec, int qty);

public float subtotal();

private int quantity;

 private ProductSpecification prodSpec;
}

Reference attribute

Simple attribute

* 1

• Reference attribute: attribute that refers to another complex object not to a
primitive type

• They are suggested by associations and navigability in a class diagram, but they
are not explicit

• Role names may be used to generate instance variable names

279

Generating Class Definitions: POST Class

ProductCatalog

specification()

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
total()

Captures

Looks-in

POST

endSale()
enterItem(upc : Integer, qty : Integer)
makePayment(cashTendered : Float)

public class POST
{
public POST(ProductCatalog pc);

public void endSale();
public void enterItem(int upc, int qty);
public void makePayment(float cashTendered);

private ProductCatalog prodCatalog;
private Sale sale;
}

1

1 1

1

280

Object Analysis and Design- 142

Creating Methods from Collaboration Diagrams

1: [new sale] create()

3: makeLineItem(spec, qty)
enterItem(upc, qty)

2: spec := specification(upc)
3.1: create(spec, qty)

2.1: spec := find(upc)

:POST :Sale

:Product
Catalog

sl: SalesLineItem

SalesLineItem
:SalesLineItem :Product

Specification

1.1: create()

3.2: add(sl)

public void enterItem(int upc, int qty) {

if (isNewSale()) { sale = new Sale; }

ProductSpecification spec = prodCatalog.specification(upc);

sale.makeLineItem(spec,qty);

}

281

Updating Class Definitions

• isNewSale method introduced in POST class while defining method enterItem

• Should test whether sale attribute is null
private boolean isNewSale() {

return (sale == null)

}
• Not a good idea to hard-code this test into the enterItem method

if (isNewSale())

// versus

if (sale == null)
• But, test in inadequate in the general case
• If one sale has completed and a second is about to begin, sale attribute will point

to the last sale
private boolean isNewSale() {

return (sale == null) || (sale.isComplete());

}

282

Object Analysis and Design- 143

Container/Collection Classes in Code

SalesLineItem

quantity : Integer

subtotal()

Contains
1.. *

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
total()

public class Sale
{
...

private Vector lineItems;
}

A container class is necessary to
maintain attribute visibility to all the
SalesLineItems.

1

• “1-Many” relationships relationships often implemented with the introduction
of a container or collection

• 1-side class defines a reference attribute pointing to a container/collection in-
stance, which contains instances of the many-side class

• Choice of container influenced by requirements: e.g., key-based lookup requires
a Hashtable, growing ordered list requires a Vector

283

Defining the Sale–makeLineItem Method

public void makeLineItem(ProductSpecification spec, int qty)
{
 lineItems.addElement(new SalesLineItem(spec, qty));
}

3: makeLineItem(spec, qty) enterItem(upc, qty)

3.1: create(spec, qty)

:POST :Sale

sl: SalesLineItem SalesLineItem
:SalesLineItem

3.2: add(sl)

284

Object Analysis and Design- 144

Mapping Designs to Code

• Translation process relatively straightforward
! from design-oriented class diagrams to class definitions
! from collaboration diagrams to methods

• Still lots of room for decision-making, desing changes and exploration during
programming phase

• But overall architecture and major decisions have ideally been completed prior
to the coding phase

285

Modeling Behaviour with State Diagrams

• In UML used mainly for showing system events in use cases
• May be additionally applied to any type
• Event: significant or noteworthy occurrence

! a telephone receiver is taken of the hook
• State: condition of an object at a moment in time — the time between events

! a telephone is in state “idle” after the receiver is placed on the hook and until
it is taken off the hook

• Transition: relationship between two states indicating that when an event oc-
curs, the object moves from the prior state to the subsequent state
! when the event “off hook” occurs, transition the telephone from state “idle”

to state “active”

286

Object Analysis and Design- 145

State Diagrams

off hook
Idle Active

on hook

Telephone

state

transition event

initial state

• Shows the lifecyle of an object: interesting events and states of an object, and
the behaviour of an object in reaction to an event

• Initial pseudo-state automatically transitions to another state on instance cre-
ation

• Need not to illustrate every possible event
• If an event arises that is not represented in the diagram, the event is ignored

287

Subjects of a State Diagram

• May be applied to a variety of UML elements including
! software classes
! types (concepts)
! use cases

• The entire system may be represented as a type, concept of a set of systems in
a problem domain including distributed systems

• ⇒ The system may have its own state diagram

288

Object Analysis and Design- 146

Use Case State Diagrams

WatingForSale EnteringItems

enterItem

WaitingForPayment

enterItem

makePayment

endSale (external) system
event

Buy Items

• State diagrams describe legal sequence of external system events that are recog-
nized and handled by a system in the context of a use case

• Use case state diagram: depicts the overall system events and their sequence
within a use case

289

Utility of Use Case State Diagrams

• Complex use cases may have many system events
• A state diagram illustrating the legal order of external events is useful
• Design and implementation must ensure that no out-of-sequence events occur,

otherwise an error condition is possible
! POST should not be allowed to recieve a payment unless a sale is complete

• Posible design solutions include
! hard-coded conditional tests for out-of-order events
! use the State pattern (see later)
! disabling widgets in active windows to disallow illegal events
! a state machine interpreter that runs a state table representing use case state

diagrams

290

Object Analysis and Design- 147

System State Diagrams

• Illustrates for one system all the transitions for system events across all the use
cases

• It is a union of all use case state diagrams
• Only useful if total number of system events is small enough to keep it compre-

hensible

291

Point-of-Sale Application: Use Case State Diagram

WatingForSale EnteringItems

enterItem

WaitingForPayment

enterItem

makeCashPayment

endSale

AuthorizingPayment makeCheckPayment

makeCreditPayment

handleReply

Buy Items

292

Object Analysis and Design- 148

Types with State Diagrams

• If an object always responds the same way to an event ⇒ state-independent
(or modeless) wrt to that event

• State-independent type: always reacts the same way for all events of interest
• State-dependent type: reacts differently to events depending on their state

interest
• State diagrams must be created for state-dependent types with complex behav-

iour
• Business information systems: minority of interesting state-dependent types
• Process control and telecommunication domains: many state-dependent objects

293

Common State-dependent Types and Classes

• Use cases (processes)
! BuyItems reacts differently to endSale event if a sale is underway or not

• Systems
! Point-of-sale system

• Windows
! Edit-Paste action valid only if there is something to paste in clipboard

• Application coordinators
! Applets in Java, Documents in MFC C++ Document-View framework

• Controllers
! POST class, which handles the enterItem and endSale events

• Transactions
! Sale receiving a makeLineItem message after the endSale event

• Devices
! TV, VCR, modem

• Mutators: types that change their type or role
! A person changing roles from student to employee

294

Object Analysis and Design- 149

Event Types

• External (System) Events: caused by something outside system boundary
! System sequence diagrams illustrate external events
! External events causes invocation of system operations to respond to them

• Internal Events: caused by something inside system boundary
! Arises when an operation is invoked via a message or signal sent by another

internal object
! Messages in collaboration diagrams suggest internal events

• Temporal Events: caused by the occurrence of a specific date and time or
passage of time
! Driven by a real-time or simulated-time clock

295

Transition Actions, Conditions

Idle

on hook

Active

guard condition

[valid subscriber]

off hook / play dial tone

transition action

• A transition can cause an action to fire
! may represent the invocation of a method of the class of the state diagram

• A transition may have a conditional guard (a boolean test)
! transition is only taken if the test passes

296

Object Analysis and Design- 150

Nested States

Idle

off hook / play dial tone

on hook

Active [valid subscriber]

PlayingDialTone

Dialing Connecting

digit digit

complete

Talking

connected

• A state allows nesting to contain substates
• A substate inherits the transitions of its superstate (the enclosing state)
• This allows succint state diagrams

297

Concurrency in State Diagrams

• A state is decomposed into orthogonal components
• State Y consists of two orthogonal states A and D, each with its default state

! To be in Y is tantamount to being in both A and D
• Merging transitions: From states C and E to H
• Splitting transitions: From I to C and G
• Conditional transitions: from C to B provided the system is in substate G in

the other component

298

Object Analysis and Design- 151

Statechart for a Digital Watch

299

A simplified version of a digital watch.
David Harel, On Visual Formalisms. Communications of the ACM, 31(5), pp. 514-530

(May 1988).
The watch has four external control buttons, as well as a main display that can be used

to show the time (hour, minutes, and seconds) or the date (weekday, day of month, and
month). It has a chime that can be enabled or disabled, beeping on the hour if enabled. It
has an alarm that can also be enabled, and beeps for 2 minutes when the time in the alarm
setting is reached unless any one of the buttons is pressed earlier. It has a stopwatch with
two display modes (regular and lap), a ligth for illumination, and a weak-battery blinking
indication.

Some of the external events relevant to the watch are a, b, c, and d, which signify the
pressing of the four buttons, respectively, and b-up, for example, which signifies the release
of button b. Another event is 2-min, which signifies that 2 minutes have elapsed since the
last time a button was pressed.

The specification of the watch contains examples of orthogonal states on various levels.
The stopwatch state has two substates, zero and {disp,run}, the first being the default.
Pressing b takes the stopwatch from the former to the latter causing it to start running with
a regular display. Repeatedly pressing b causes it to stop and start alternately. Pressing d
can be seen to cause the display to switch to lap and back to reg, or to leave the orthogonal
state and return to zero depending on the present state configuration. The encircled and
starred H prescribes that upon entering stopwatch from chime by pressing a, the state
actually entered will be the one in which the system was in most recently. Thus, we are
entering the stopwatch state by “history”. The default will be used if this is the first time
stopwatch is entered, or if the history has been cleared.

The description of the high levels of the watch also uses orthogonality. The watch is
either dead or alive, with the latter consisting of five orthogonal components. The events
bt-in, bt-rm, bt-dy, and bt-wk signify, respectively, the insertion, removal, expiration, and
weakening (below a certain level) of the battery. We use the event t-hits-hr to signify

Object Analysis and Design- 152

that the internal time of the watch has reached the internal time setting of the alarm, and
t-hits-hr to signify that it has reached a whole hour. Also, beep-rt occurs when either
any button is pressed or 2 minutes have elapsed since entering beep, and beep-st occurs 2
seconds after entering c-beep.

State main specifies the transitions between displaying and beeping. The alarm-st
component describes the status of the alarm, specifiying that it can be changed using d when
control is in the alarm display state. The chime-st state is similar, with the additional
provision for beeping on the hour given within. The power state is self-explanatory, where
the activity that would take place in the weak state would involve the displays blinking
frantically.

In considering the innocent-looking light state, the default is off, and depressing and
releasing b cause the light to switch alternatively between on and off. What is interesting
is the effect these actions might have elsewhere. If the entire statechart is contemplated,
pressing b for illumination has significant side effects: It will cause a return from an update
state if we happen to be in one, the stopping of the alarm if it happens to be beeping,
and a change in the stopwatch’s behavior if we happen to be working with it. Conversely,
if we use b in displays for any one of these things the light will go on, whether we like it
or not. These seeming anomalies are all a result of the fact that the light component is
orthogonal to the main component, meaning that its scope is very broad. One can imagine
a far more humble light component, applicable only in the time and date states, which
would not cause any of these problems. Its specification could be carried out by attaching
it orthogonally, not to main, but to a new state surrounding time and date.

Other UML Notation: Notes and Constraints

design this carefully

Person--age()
{
 return today - birthDate
}

A note is a diagram comment.
It has no semantic influence on
elements.

A constraint is attached to an
element. It has semantic
influence on the element.

second format for
constraints {today - birthDate}

Person

birthDate : Date

age()

300

Object Analysis and Design- 153

Other UML Notation: Dependency

Dependent
Class

...

...

Class
Depended-On

...

...

• Dependencies can exist between any elements

301

Other UML Notation: Stereotypes and Property

Specifications

«actor»
Person

name

«threading»
run()

«printing»
printPretty()
printTerse()

Stereotypes are used to classify
elements. An element can have
at most one stereotype.

«interface»
Runnable

run()

{ author = "Craig", creationDate = 12/1/98 }

A property specification may contain
tagged values, which are key-value pairs.

The tagged values attach arbitrary
information to elements.

«implements»

302

Object Analysis and Design- 154

Other UML Notation: Interfaces

Runnable

Person

name

«threading»
run()

«printing»
printPretty()
printTerse()

An interface can be indicated by
stereotyping the type.

«interface»
Runnable

run()

Implementing an interface can be
shown with a dashed-line
specialization, or using the circle
notation.

Plane

...

«threading»
run()

«simulate»
fly()

303

Other UML Notation: Component Diagrams

iostream.h iostream.cpp

• Show compiler and runtime dependencies between software components, such as
source code files and DLLs

304

Object Analysis and Design- 155

Other UML Notation: Deployment Diagrams

Client1

ReservationApp

Server1 «database»
ReservationsDB

Scheduler

Reservations

• Show the distribution of processes and components to processing nodes

305

Other UML Notation: Asynchronous Messages

p :Plane go()

Runnable

Plane

...

run()

go()
fly()

:Thread 1: create(p)

2a: start()

2.1a: run()

An asynchronous message is
shown with a half arrow head.

The sequence number
includes an identifying thread
letter.

An active object runs in its own thread of
control (e.g., supports the Java
Runnable interface).

It is illustrated with a thick box.

2.1.1a:
fly()

306

Object Analysis and Design- 156

Other UML Notation: Asynchronous Messages, cont

Although Thread.start() is the actual
asynchronous message in terms of Java,
Plane.go() may be considered the
asynchronous message if one hides the
explicit (and repetitive) Thread creation
details.

p :Plane go()

1a: fly()

307

Other UML Notation: Package Interfaces

IPServer
Database Services

«interface»
IPServer

commit()
getObject()
insert()
rollback()

• Packages may also indicate implementation of an interface which they expose to
clients

308

Object Analysis and Design- 157

More Patterns: Polymorphism

• Problem:
! How to handle alternatives based on type ?
∗ Using if-then-else or case statement conditional logic, when a new variation

arise this implies modification of program
∗ Modifications tend to be required in several places

! How to create pluggable software components ?
∗ How can one replace one server component with another, without affecting

the client ?
• Solution: When related alternatives or behaviours vary by type (class) assign

responsibility for the behaviour (using polymorphic operations) to the types
• Avoid testing for the type of an object and using conditional logic

309

Polymorphism Pattern: Example

Payment

amount

CashPayment

authorize()

CreditPayment

authorize()

CheckPayment

authorize()

• Who should be responsible for authorizing different kinds of payments ?
• The behaviour of authorizing varies with the kind of payment
• By Polymorphism, the responsibility for authorizing should be assigned to each

payment type
• Implemented with a polymorphic authorize operation
• Each implementation will communicate with a different authorization service

310

Object Analysis and Design- 158

Polymorphism Example: Credit Payment

:POST :Sale

:CreditPayment :CreditCard

1.1: create(ccNum,expiryDate,total)
1.2: authorize()

 1:
makeCreditPayment(cardNum expiryDate)

1.1.1:
create (ccNum,expiryDate)

makeCreditPayment(ccNum,expiryDate)

by Polymorphism

by Creator

by Creator

311

Polymorphism Example: Check Payment

:POST :Sale

:CheckPayment :DriversLicense

1.1: create(driversLicenseNum ,total)

1.2: authorize()

 1:
makeCheckPayment(driversLicenseNum)

1.1.1:
create (driversLicenseNum)

makeCheckPayment(driversLicenseNum)

by Polymorphism

by Creator

:Check
1.1.2:

create(total)
by Creator

312

Object Analysis and Design- 159

Polymorphism Pattern: Discussion

• Expert: most important basic tactical pattern
• Polymorphism: most important basic strategic pattern
• Viewing objects in client-server relationships, client objects need little or no

modification when a new server object is introduced
• Provided it supports the polymorphic operations that the client expects
• Benefits: Future extensions required for unanticipated new variations are easy

to add
• Also known as: Do it Myself, Choosing Message, Don’t Ask ‘What Kind’

313

Pure Fabrication Pattern

• Problem: Who should have the responsibility, but do not want to violate High
Cohesion and Low Coupling
! In many situations, assigning responsibilities to domain classes leads to poor

cohesion or coupling, low reuse potential
• Solution: Assign a highly cohesive set of responsibilities to an artificial class,

does not represent anything in the problem domain
• Such a class is a fabrication of the imagination
• Its responsibilities must support high cohesion and low coupling ⇒ pure fabri-

cation

314

Object Analysis and Design- 160

Pure Fabrication Pattern: Example

• Suppose Sale instances must be saved in a relational database
• By Expert, this responsibilities must be assigned to the Sale class
• Implications

! Relatively large number of database-oriented operations, none of them related
to the concept of Sale ⇒ class become incohesive

! Sale class has to be coupled to the RDB interface (usually provided by the
development tool vendor) ⇒ coupling increases

! Saving objects in a RDB is a very general task needed by many classes ⇒
placing this reponsibilities in Sale implies poor reuse and code duplication

315

Pure Fabrication Pattern: Example, cont.

• Solution: create a class solely responsible for saving objects in some kind of
persistent storage medium

PersistentStorageBroker

save()

By Pure Fabrication

• Sale remains well-designed with high cohesion and low coupling
• PersistentStorageBroker is

! relatively cohesive
! very generic and reusable

316

Object Analysis and Design- 161

Pure Fabrication Pattern: Discussion

• A Pure Fabrication should have a high potential for reuse
• Their responsabilities are small and cohesive ⇒ fine-grained responsibilities
• Usually a function-centric object
• Usually considered part of the High-level Service Layer in an architecure
• Many design patterns are examples of Pure Fabrication

! Adapter, Observer, Visitor, . . .

• Benefits
! High cohesion supported: responsibilities factored in fine-grain class focusing

on a specific set of related tasks
! Reuse potential may increase with several Pure Fabrications classes that can

be used in other applications
• Potential Problem: Object-centric design may be lost, since in Pure Fabrica-

tions a class is made for a set of functions
! May lead to a function or process-oriented design implemented in an OPL

317

Indirection Pattern

• Problem: To whom assign responsibility, for avoiding direct coupling ? How
to de-couple objects so that Low Coupling is supported, reuse potential remains
high ?

• Solution: Assign responsibility to an intermediate object to mediate between
other components or services so that they are not directly coupled

• Intermediary creates and indirection between the other components or services
• Examples

! De-coupling the Sale from the RDB services through the introduction of Per-

sistentStorageBroker: it is the intermediary between the Sale and the database
! Publish-Subscribe or Observer pattern: through the indirection of an Event-

Manager publishers and subscribers are de-coupled
! Adapter, Façade are also examples

• Motivation for Indirection: low coupling

318

Object Analysis and Design- 162

Indirection Pattern: Example

• POST application need to manipulate a modem for transmitting credit payment
requests

• OS provides a low-level function call API for doing this
• Class CreditAuthorizationService is responsible for talking to the modem
• If this class invokes the low-level API function calls directly, highly coupled to

the particular API
• If class must be ported to another OS it will require modification

319

Indirection Pattern: Example

Modem

dial()
receive()
send()
...

CreditAuthorization
Service Modem authorize(payment)

1: dial(phoneNum)

Modem::dial(phoneNum)
{
::OS_OpenPort(1);
::OS_Dial(phoneNum);
}

By Indirection

• Solution: intermediate Modem class responsible for translating abstract modem
resquests to the API

• Device proxy: class representing and interfacing with an electro-mechanical
device

320

Object Analysis and Design- 163

Don’t Talk to Strangers Pattern

• Problem: Who should have the responsibility, to avoid knowing the structure
of indirect objects ?
! If an object has knowledge of internal connections and structure of other

objects ⇒ high coupling
! When a client has to use a service from an indirect object, how to do it

without being coupled to the internals of the server or indirect objects
• Solution: A client’s direct object should have the responsibility of collaborating

with an indirect object
• A.k.a Law of Demeter: within a method, messages should only be sent to

! the this or self object
! a parameter of the method
! an attribute of self

! an element of a collection which is an attribute of self

! an object created within the method
• Direct objects are a client’s “familiars”, indirect objects are “strangers”
• A client should only talk to familiars not to strangers

321

Don’t Talk to Strangers Pattern: Example

Payment

amountTendered

amountTendered() : Float

POST

paymentAmount() : Float
endSale()
enterItem()
makePayment()

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
payment() : Payment
total() : Float

Captures Paid-by

1 1 1 1

• One approach to return the payment amount

:POST :Sale

pmt: Payment

amt := paymentAmount() : Float 1: pmt := payment() : Payment

1.1: amt := amountTendered() : Float

Violates "Don't Talk to
Strangers"

POST::PaymentAmount()
{
pmt := m_sale->Payment();

// violates "Don't Talk to Strangers"
return pmt->amountTendered();
}

pmt is a 'stranger'
to POST

322

Object Analysis and Design- 164

Don’t Talk to Strangers Pattern: Example, cont.

:POST :Sale

pmt: Payment

amt := paymentAmount() : Float 1: amt := paymentAmount() : Float

1.1: amt := amountTendered() : Float

Supports the "Don't Talk
to Strangers" principle

POST::PaymentAmount()
{
return m_sale->PaymentAmount();
}

Sale

date : Date
isComplete : Boolean
time : Time

becomeComplete()
makeLineItem()
makePayment()
payment() : Payment
paymentAmount() : Float
total() : Float

323

Don’t Talk to Strangers Pattern: Discussion

• Avoids gaining temporary visibility to indirect objects
• Disadvantage of gaining visibility to strangers: solution coupled to knowledge of

internal structure of other objects
• This leads to high coupling, makes the design less robust, more likely to require

a change if indirect structural relationships change
• But software laws are meant to be broken
• Sometimes it is reasonable to ignore the law of Demeter
• Example: a broker or object server responsible for returning other objects based

upon lookup by a key value
• Benefits: Low coupling
• Related Patterns: Low coupling, Indirection, Chain of Responsibility

324

Object Analysis and Design- 165

Designing with More Patterns

• Essence of object design: assignment of responsibilities to objects, object collab-
oration design

• Object design and assignment of responsibilities can be explained and learned
based on the application of patterns: a vocabulary of principles and idioms that
can be combined to design objects

• Desing Patterns by Gamma et al. (1995)
! seminal work, presents 33 patterns (Gang of Four patterns)

325

State Pattern

• Problem: An object’s behaviour is dependent on its state
! Conditional logic is undesirable because of complexity, scalability, duplication

• Solution
! Create a class for each state that influences the behaviour of the state-

dependent object (the “context” object
! Based on Polymorphism, assign methods to each state class to handle the

behaviour of the context calss
! When a state-dependent message is received by the context object, forward

it to the state object
• State pattern used to eliminate conditional tests caused by state dependencies

326

Object Analysis and Design- 166

State Pattern: Example

• POST class reacts differently to EnterItem message depending on its state

1: [new sale] create()

3: makeLineItem(spec, qty)
enterItem(upc, qty)

2: spec := specification(upc)

:POST :Sale

:Product
Catalog

enterItem Waiting
ForSale EnteringSale

POST

327

State Pattern Example: State Classes

POSTState

enterItem()

WaitingForSaleState

enterItem()

EnteringSaleState

enterItem()

italics indicate abstract
class and method

each state subclass
defines enterItem()

creates new sale
and records item sold

records item sold

POST

endSale()
enterItem()
makeCashPayment()
makeCheckPayment()
makeCreditPayment()

Dependent-on

1 1

Context object has an
attribute referring to its
current state.

328

Object Analysis and Design- 167

State Pattern Example: Forwarding Message

1: enterItem(p, upc, qty) enterItem(upc, qty)
p: POST :POSTState

State pattern forwards message
from context object to a state
object which reacts based on
Polymorphism.

Context object may
be associated with
different states.

Context object passed
along for backward
parameter visibility.

«parameter» «association»

329

State Pattern Example: WaitingForSale State

1: makeSale()
2: recordItemSale(upc, qty)
4: setState(s) p: POST :WaitingFor

SaleState

State pattern forwards message from context
object to a state object which reacts based on
Polymorphism. The state object may turn
around and collaborate back with the context
object.

1.1: create()

:Sale

SalesLineItem
:SalesLineItem

1.1.1: create()

3: create()

s :Entering
SaleState

A phase of the State
pattern is to possibly
assign a new state to
the context object.

Context object may
be associated with
different states.

enterItem(p, upc, qty)

330

Object Analysis and Design- 168

State Pattern Example: EnteringSale State

1: recordItemSale(upc, qty) enterItem(p, upc, qty) : Entering
SaleState p:POST

State
Polymorphism

331

State Pattern Example: RecordItemSale Method

recordItemSale(upc, qty) p : POST
2: makeLineItem(spec, qty)

2.1: create(spec, qty)

:Sale

sl: SalesLineItem SalesLineItem
:SalesLineItem

2.2: add(sl)

1: spec := specification(upc)

1.1: spec := find(upc)

:Product
Catalog

:Product
Specification

332

Object Analysis and Design- 169

State Pattern: Conclusion

• Useful when an object’s behaviour is dependent on its state
• Eliminates conditional logic in the methods of context object
• Provides elegant mechanism for extending behaviour of context object without

modifying it
• Not suitable if many states in a system: class explosion
• Alternative: define a state machine interpreter that runs against a set of transi-

tion rules

333

Singleton Pattern

• Problem: Exactly one instance of a class is allowed — it is a “singleton”
! Objects need a single point of access

• Solution: Define a class method or non-member function (in C++) that returns
the singleton

• Example: CreditPayment receives an Authorize message
• It needs to send a message to Store to find which authorization service to com-

municate with
• Visibility problem: CreditPayment does not have access to Store

• Alternatives
! pass the Store down as a parameter
! Singleton pattern

334

Object Analysis and Design- 170

Singleton Pattern: Example

Store

address
$instance : Store
name

$instance()

singleton class attribute

singleton class method

class method
Store Store--instance()
{
if (instance == NIL)
 instance := new Store
return instance
}

• Attribute instance and method instance(): implemented as static data and meth-
ods in Java

335

Singleton Pattern: Example, cont.

:CreditPayment

st: Store

2: cas := getCreditAuthorizationService(c:CreditCard)

authorize()

Store
1: st := instance()

This is a class object, not an
instance object.

In UML this is indicated by the lack of
underlining. Underlining indicates an
instance. Visibility to the store

instance was achieived by
the Singleton pattern.

By Singleton

336

Object Analysis and Design- 171

Singleton Pattern: Example, cont.

• UML Shorthand for a Singleton

:CreditPayment

«singleton»
st: Store

1: cas := getCreditAuthorizationService(c)

authorize()

implied Singleton
access first

• In an OPL, use of Singleton require sending a message to the class to get visibility
to the instance, which can then be sent messages
! C++: Store::getInstance()->getCAS(aCard);

! Java: Store.getInstance().getCAS(aCard);

337

Remote Proxy and Proxy Patterns

Remote Proxy

• Problem: The system must communicate with a component in another address
space. Who should be responsible ?

• Solution: Make a local software class that represents the external component
and give it the responsibility to communicating with the real component

• It is a special case of the general Proxy pattern

Proxy

• Problem: Direct access to a component is not desirable or possible.
• Solution: Define a surrogate software class that represents the component and

give it responsibility for communicating with the real component

338

Object Analysis and Design- 172

Remote Proxy Pattern: Example

p:CreditPayment

1: cas := getCreditAuthorizationService(c:CreditCard)

authorize()

c : CreditCard 1.1: t := type() : string

:CreditAuthorizationService :AuthorizationService

1.2: cas := find(t)

by Expert by Expert

<<parameter>>
«singleton»

st: Store

AuthorizationServices are
indexed by a type code. e.g.,
"Visa', 'Amex', 'Check'

339

Remote Proxy Pattern: Example, cont.

p : CreditPayment

1: cas := getCreditAuthorizationService(c)

authorize()

«singleton»
st : Store

cas
:AuthorizationService

2: authorize(p:Payment)

by Indirection
by Remote Proxy

1: sendRequest(p : Payment)
2: receiveReply()

by Remote Proxy

340

Object Analysis and Design- 173

Wrapping and Façade

Wrapping

• POST system must use a modem to dial into the external service
• Underlying OS provides function-based interface for using a modem
• These non-object functions can be wrapped within a class that groups them

together
• Applied to create an object interface to any non-object one

Façade

• Problem: Common, unified interface to a disparate set of interfaces (e.g., to a
subsystem) is required

• Solution: Define a single class that unifies the interface and give it responsibility
for communicating with the subsystem

341

Device Proxy

Device Proxy

• Problem: Interaction with an electro-mechanical device is required
• Solution: Define a single class that represents the device and give it responsi-

bility for interacting with it

Indirection

• Façade, Remote Proxy, and Device Proxy, like many patterns, are a variation of
the basic Indirection pattern

342

Object Analysis and Design- 174

Marshaling and Serialization

• Serialization: transformation of an object into a string representation
• Some languages (e.g., Java) provides built-in support
• Marshalling: sending messages and parameters to an object over a non-object

comunication message (e.g., sockets, queues)
• Usually requires transforming the message and parameters (via serialization)

into a stream of bytes suitable for transmission and for the receiving server
• Unmarshalling: transforming returning strings into commands and objects
• Responsibility for marshalling and serialization depends on the language and

communication mechanism
• If using Java and its Remote Method Invocation (RMI) mechanism, only neces-

sary to ensure that the serialization produces a suitable string layout for para-
meters

• Otherwise, usually the Remote Proxy is responsible for marshalling and unmar-
shalling

343

Marshalling The process of packing one or more items of data into a message buffer,
prior to transmitting that message buffer over a communication channel. The packing
process not only collects together values which may be stored in non-consecutive mem-
ory locations but also converts data of different types into a standard representation
agreed with the recipient of the message.
Definition from ”The Free On-line Dictionary of Computing” http://foldoc.doc.ic.ac.uk/

Serialization Object Serialization supports the encoding of objects, and the objects reach-
able from them, into a stream of bytes; and it supports the complementary recon-
struction of the object graph from the stream. Serialization is used for lightweight
persistence and for communication via sockets or Remote Method Invocation (RMI).
From documentation of JDK.
Serialization is often thought of, in a limited sense, as a means to preserve objects in
disk files. Actually, serialization abstracts the save/load mechanism away from any
specific storage device, objects can be stored on disk or memory in various formats.
Though developers often use the term serialization for both the store and load steps,
the correct term for rebuilding objects is de-serialization.
From Object Persistence and Versioning: Serialization in MFC, by John Stout, Visual
C++ Developpers Magazine, November 1997.

Object Analysis and Design- 175

Using the Remote and Device Proxies

as : AuthorizationService

sendRequest(p : Payment)

2: s := marshall(r : PaymentAuthorizationRequest) : string

by Device Proxy

:Modem

3: setUp(...)

4: dial(phoneNum)

5: send(s)

r : PaymentAuthorizationRequest 1: create(p, as)

344

Command Pattern

• Problem
! A variety of requests, or commands can be received by an object or system
! Reduce the receiver’s responsibility in handling the commands, increase the

use with which new commands can be added, provide a foundation for logging,
queuing, and undoing commands

• Solution: For each command, define a class that represents it and give it re-
sponsibility for executing it

345

Object Analysis and Design- 176

Command Classes: Example

CreditPayment
Approval

Reply

execute()

CreditPayment
Denial
Reply

execute()

CheckPayment
Approval

Reply

execute()

CheckPayment
Denial
Reply

execute()

Payment
Authorization

Reply

execute()

may be considered
Command objects

polymorphic methods

346

Command Pattern: Example

as : AuthorizationService

receiveReply() 3: r := unmarshall(s) : PaymentAuthorizationReply

by Command (which relies
on Polymorphism)

:Modem

1: s := receive() : string
2: hangUp()

r : PaymentAuthorizationReply
3.1: create(p : Payment)

4: execute()

The abstract superclass is
shown, but actually an instance
of a subclass is created.

347

Object Analysis and Design- 177

Command Pattern: CreditPaymentApprovalReply

r : CreditPayment
ApprovalReply

execute() by Remote Proxy
and Facade

:AccountsReceivable

1.1: logReceivable(r)

<<singleton>>
Store

1: logReceivable(r)

collaborate with AccountsReceivable
via Store by Don't Talk to Strangers (Indirection)

communication with
external system not shown

p : CreditPayment

2: becomeAuthorized()

by Expert

348

Command Pattern: CreditPaymentDenialReply

r : CreditPayment
DenialReply

execute()

p : CreditPayment 1: becomeDenied()

by Expert

349

Object Analysis and Design- 178

UML: A Very Short Conclusion

• UML is unavoidable: became a standard for the modeling of applications
• Missing semanctics: it is hard to find a jugement about UML
• Ignores almost every theory that is known in the fields of conceptual modeling,

software engineering, . . .

• It is a “modern dinosaur”
• But, many work is being done around UML

! Extensions, e.g., Real-Time UML, Agent UML, . . .

! Conferences, e.g., ACM/IEEE International Conference on Model Driven En-
gineering Languages and Systems (formerly the UML series of conferences)
(11th edition in 2008)

• Little by little serious and formal work are finding its way into the standard

350

Object Analysis and Design- 179

