UNIVERSITE :***t ErasmUS M
LIBRE o *
DE BRUXELLES AT Mundus A

In-Memory Databases
and Apache Ignite

Joan Tiffany To Ong Lopez 000457269 jtonglopez@gmail.com

Sergio José Ruiz Sainz 000458874 sergiers@opendeusto.es

18 December 2017

Table of Contents

1
2

INEFOTUCTION ettt et s e s bt e e s bt e e bt e e s ateesabeeesabeesabeeeanteesareeesareens 5

FAY e F= T o T F=d T T TP RPPRPPRN 5
2.1 (O U T =Y o o= PSPPSR 5
2.2 Durable Memory and PErSISEENCEccccuiieieciiee et e et e e e e e stre e e e str e e e seareeeenaaeeaens 6
2.3 D) = G T« [PPSO UPTO PP PPRURRN 7
2.4 DiSTrDULEO SQL c..eeiiiiiiiieieeeeees ettt st et b e b saeesane e 10
2.5 COMPULE Grid fEATUIES ...eviiii ittt ree e e e ee e e st e e e s e e e s s sabee e s ssabeeessnareeas 10
2.6 Other interesting fEAtUIESviii i e e s 10

BUSINESS AOM@IN ..ttt et s e ettt sab e s bt e e sab e s bt e e s abe e s beeesabeesabeeeaneeesabeeenees 11

Database schema and data SETUDcceccuiiie e e e ree e e e are e e e e abe e e s enree e s enreeas 11

Apache 1gnite WalKENrOUGHoviiiiee e e et e e e e aaeeeean 13
51 ENVIFONMENT SEEUD .evtiiiiiiiiiiiteeee ettt e st e e e e s s s s bt aeeeeessessasbraaeeeeessnnns 13
5.2 ClUSTEI/NOTE STAITUD .o.vveeieeieecieeeieeete et ettt e rteeste e e eeebeebe e teesbeesaaesabesabeenbaesbaesseessseenseensens 13
53 DomMain Model BENEIAtIONuiiiiiiiiecceee e s e e s s abae e e s abee e e snreeas 15
5.4 (oY= Yo [1g Y- or- ol o V=TT 23
5.5 COMPULING CACNE dAtaviiiiiiiie et e e et e e e e bee e e e earae e e e rabeee e e areeas 24

QUETIES .ttt ettt e s e s e s st e e s s s e e e s e e s s e e e s e e s 25
6.1 Query 1: Multiple operations in a single procedure (generate inVoiCes)ccoeceervrrvernnenn 25
6.2 Query 2: Aggregate by sum according to a date range (compute revenue)ccceeeueeee. 29
6.3 Query 3: Update all rows of a single column (apply discount)ccccceeeceeeviieicieeenieeennnn, 30

BENCHMAIK FESUIELS ...ttt et b e bt sae e st e et e e sbe e sbeesaeesane e 30
7.1 (O LU LT oV B =T U | ST 30
7.2 (O TUT=T oV A T U | TP 32
7.3 (O UL oV T U | USSP 33
7.4 Additional: Ignite cache [0adiNgG.......ccccuiiiiiiiiie e 33

DLV 2] FoT o] o [T =0 q o T=T 1T ol PP 34
8.1 OPEN SOUICE VS ClOSEA SOUICE....uuiiiiieeei ittt e e e e ettt e e e e e e et e e e e e e s ebrrae e e e e e e e ssnssaaeeaeaas 34
8.2 D TAVZ=Y [o] o X< ol o 12 01U [a 11 Y2 SRR 35
8.3 DAV [o] =T QYT o] oL USSR 36
8.4 DOCUMENTATION coiiiiiiiiiiiiiiiiiii e 37
8.5 e o] L o = RS 37

Apache Ignite vs. other in-memory distributed databasescccccccvviieieeeiicccciiee e, 39
9.1 [T=E Y AU =T oo 0 Y T=1 g 0 o N 39

9.2 PerformanCe COMPATISONSuiiiiiiieieccitee et e st e et e e s sre e e e s abe e e e sabaeeesabaeesenbaeeeensenas 39

10 6o T3 Vol (1 To T3 HO TSROSO 40
11 271 o] [Lo = =T o] o1V PSPPSR 41
List of Tables

Table 1 Size of generated data........cuiiciiii i e s e e e s areaeeas 12
Table 2 Indexed columns in RDBIMScoiiiiiiiiiiiieeiite ettt siee e ste e ste e s saae e sbeessaaeesabeesbaeesaseeene 13
Table 3 Query 1 benchmark rESUILSoeii it e e e srae e e e eaaeeeeas 30
Table 4 Query 2 benchmark rESUIESiii i e e s raaeeeeas 32
Table 5 Query 3 benchmark rESUILSoei i e e e e ae e e eeaaaeeeeas 33
Table 6 Ignite cache [0adiNg TIMEcc.uuiii i e e e e e e e e re e e e aaeeeeas 33
Table 7 Apache Ignite release dates ... iiciiie e e e s sae e e e raaeeeeas 34
Table 8 Product Comparison - Apache Ignite vs other in-memory distributed databases................... 39
List of Figures

Figure 1 Ignite server and client NOde tOPOIOZYccecviiiiiiciiiie ettt e e et ee e 6
Figure 2 Partitioned cache mode. Shards are distributed among nodes, one node is the primary
holder of the data while the rest contain backups.......cc.ueiieciiii e 7
Figure 3 Replicated cache mode. All nodes possess all shards...........ccccvvivciiieiiiiiie i e 8
Figure 4 Collocated joins (left) vs non-collocated joins (Fight)ccccveeeieeeiieeiieeee e 8
FIGUIE 5 ERD SCREIMA ...uiiiiiiiiie ettt ettt e e ettt e e e et e e e ettt e e e e ataee e e ssaeeeessseeeessaeeesansseeesnnseeeannn 11
Figure 6 Node startup from command lNEc.ueiiiiiiiiiiciiie e rare e 13
Figure 7 Node startup command liN€ OULPULueiiieiiiiiciiie e sare e 14
T U ol 0o Yo LI T U] o USSR 14
FISUre 9 SPring XIMIL STartUP..ccciiiiiieiiiiieeee e eesiiiiteee e e s s ettt e e e e s s ssiaaee e e e e e s s ssasabeaeeeeessssnssssnaaeesssssnssssnns 14
Figure 10 Ignite Web Agent system diagram..........ceecciiiiiiiiiie et e s sere e e s saree e 15
Figure 11 Starting ignit@-Web-ageNTccoociiiiieiie et e e e e e e s eata e e e eenrre e e enaneeeaean 15
Figure 12 1gNit€ WED CONSOIEuiiiiieiiiie ettt e e st e e st e e e s atae e e santbeeeesnnreeeeas 16
Figure 13 Remote node discovery Methodsc.uuiiiciiiiiciiiie e e 16
= U T I Yo o o [V o =T T 17
Figure 15 Adding the JDBC ArVEL ...ciiccuiiieicciiiie ettt ee et s et e e st e e e e aa e e e s saaa e e e sntaeeessnsaeeesnnnreeaeas 17
Figure 16 Import domain MOl SCIEENceiieiiiiiiiieie ettt e e e e e e rtae e e ssnbre e e esaaaeeeeas 18
Figure 17 Setting CONNECION PrOPEITIES .ooveiiiiiiiiieeeeeeeee e e e e e e e e eeee e e eeeeeeeereeeseeeeeeeeenees 18
= U I = Yol o 1T s F= Y =1 1Yot o ISR 19
= U R I o] [y =Y 1Yot o ISR 19
Figure 20 Additional configuration SETHINGS........ccuuiiiiiiiii et e et e e e e eaeee e 20
Figure 21 Imported domain MOElcooouiiiiiiiiie e e e e e e saaree e 20
Figure 22 Cache configuration @s Java COOEuuiiiiiiiiiiiciiie ettt e e e e 21
Figure 23 Cache persistence CoONfigUration.........cc.ueieeiiiiieeiiiie ettt are e 21
Figure 24 Generated code in @ MaVen ProjJECEciiiciiieiciiiie ettt e e e s sere e e e sareeeeas 22
Figure 25 Configuration SUMIMATYc..eiiiiiiiiiecciieeeecieeeeectee e e ettt e e e e etteeeeeeataeeeesasseeesessaeeasansseeesnanseeannn 22

Figure 26 Console output on running ServerNodeCodeStartupcccccveeeeciieeeeiieieeeeiiieeescireeeeseveeeens 23

Figure 27 Loading the CAChES.......viii ittt e e e e st e e e ssabre e e s snreeeeas 24
Figure 28 Query 1 benchmark results (Chart)ccceecueeeicie e e e s 31
Figure 29 Ignite cache 10ading (Chart).......occuiii i e e e e e rare e e 33
TV e 10 €] g e [T o T o ol o =P URRSRN 35
Figure 31 GitHub Pulse Report on the Apache Ignite repository [15]cccccvveiiiicieieriiieeeirreee e 35
Figure 32 Contributions to master since Ignite open-sourcing in 2014 [16]ccccceeeviieeeeiiveeeeicveeenn. 36
Figure 33 Commit frequency, year-to-date [17] ...ttt e e s sare e e 36
Figure 34 Most active cONtribULors [16]cccccuiiiieiee it e e e e e e e e rrar e e e e e e e e e ennrnnes 36
Figure 35 Searching for "ignite" in StackOVerfloOW..........cooccuiiiiiiiiii e 37
Figure 36 Web CoNnsSole QUEIES Puiiiiciiieiiiiieeeiiiteeeeiiteeesstreeessteeeeesaeeessssseeeessssaeeesassseesssssseessns 38
Figure 37 Querying the Ignite cache from DBEAVET.........ccccuviiieiiiiieciiee et 38
Figure 38 GridGain vs Hazelcast Performance SUMMArYcoccveieeciiieeecciieeecceeeeecree e ssvreeeesneeee e 39

1 Introduction

Acme Corp. is a fictitious company in the business of equipment rental to individuals as well as
businesses. The equipment they lease are electronic devices such as laptops, desktop computers,
projectors, multifunctional printers, monitors, tablets, servers, electronic blackboards,
videoconferencing systems, lab equipment and smartphones. At present, the company has more than
3 million of these “assets” under management, and regular intervals the company needs to generate
documents and reports out of this dataset. They are therefore exploring recent technologies like
distributed processing and in-memory databases to improve their existing operations, to scale up their
business and to explore other profitable ventures by extracting new business ideas from the data they
already have.

To this end the company has engaged a team of data analytics specialists to study and recommend
the most suitable technologies to use before they invest in new hardware, software and hiring. The
company is asking for a proof of concept with benchmarks in order to compare their database
management system (Microsoft SQL Server 2016) with an alternative solution that offers in-memory
and distributed processing. In this paper we explore Apache Ignite (version 2.2) as an in-memory
computing platform.

2 Apache Ignite

Apache Ignite is an open source in-memory distributed database and computing platform. It was
initially released in 2007 by GridGain Systems (Foster City, California), open-sourced in 2014 and
graduated from the Apache Incubator program in September 2015.

In this section we discuss the core features of Apache Ignite. More details can be found in the Apache
Ignite documentation [1].

2.1 Clustering
There are two types of cluster nodes in Ignite: server or client.

e Server nodes act as containers for data, processing of aggregation requests. These build up
the distributed database. The more server nodes, more RAM and CPU is available for the
workload.

e Client nodes are entry points from applications. They are embedded in application logic, they
function as a gateway to the cluster that is composed of the server nodes.

Compute &
Data Nodes

Client
Connectors

‘ Ignite
Cluster

@ @
\

Public & Private
Clouds

Figure 1 Ignite server and client node topology

Node Discovery

Ignite provides several node discovery options, such as Multicast IP or Static IP discovery, or both.
Apart from Java or XML configuration, the filesystem can also be used to store the nodes’ IP addresses.
Similarly, node discovery can be configured in any of the cloud services that support Ignite.

Cluster Deployment Options

Ignite has flexible deployment options: it can be deployed on-premise or on-cloud, on physical servers
or virtual environments. Ignite can be deployed from Docker, Kubernetes or Mesos containers.
Additionally, images are available in both AWS (ignite-ami) and Google Compute (ignite-image) for
quickly deploying Ignite clusters on the cloud.

Other Features
The following list summarizes other features relating to Ignite’s clustering function:

e Cluster grouping: ability to create logical groups of nodes within the cluster, which provides
the ability to assign specific jobs or tasks to a subset of nodes only.

o leader election: ability to select oldest or youngest nodes in a cluster, in situations a
coordinator node is needed for certain tasks.

e Peer classloading: a special distributed ClassLoader provides zero deployment by avoiding
explicit re-deployment of code to nodes every time it changes.

2.2 Durable Memory and Persistence

Ignite’s durable memory architecture allows storing and processing of data and indexes both on
memory and disk, similar to virtual memory of operating systems. Persistence is optional: Ignite can
be used as a pure in-memory store. However, built-in persistence called Ignite Native Persistence is
provided for writing data to disk, and transparently integrates with Ignite’s durable memory.

2.3 Data Grid

In Apache Ignite’s distributed storage, each node owns a portion of the overall data. It stores data as
key-value pairs in a distributed partitioned hashmap, stored in-memory. The data grid implements the
JCache (JSR 107) specification which provides support for basic cache operations, ConcurrentMap
APIs, collocated processing, events and metrics, etc.

Cache Modes
Ignite supports three Cache Modes: partitioned, replicated or local cache.

e PARTITIONED: the most scalable distributed cache mode, and is the default cache mode. The
data set is divided into partitions (sharding) and all partitions are split equally between
participating nodes. The number of backup nodes can be configured for each cache. Updates
are applied to the primary node and the change is propagated at some point to the backup
nodes. Update performance is good because only one node needs to be updated, but read
performance may suffer because some nodes may have expired copies of the data. However,
this backup behavior can be configured to be fully synchronous.

Partitioned Cache

@®<—® ©
== o
@< ©® ®
Local Client Backup ﬂp
VML NM2
:’D A
=
0<—® ® ©)
@ D PﬁTOFY Primorl
REE:n've CN::h:z 4_'@ Q@
Client JVM ﬂp Backup
VM3 VM4

Figure 2 Partitioned cache mode. Shards are distributed among nodes, one node is the primary holder of the data
while the rest contain backups

e REPLICATED: in this mode, all data is replicated in all nodes in the cluster. Good read

performance but updates are expensive because all changes need to be propagated to all

cache nodes.

Replicated Cache

@®<=0 ©
(c Primary

o o
p.
® 000G @O0
Local Client &:ﬂ | Backup
Mt VM2
‘:_AD A
o< ® ® ®
:D) D Primary Primary
e ®O6 ®O®O
Client JVM [Bockp Backp
VM3 VM4

Figure 3 Replicated cache mode. All nodes possess all shards

e LOCAL: this is the most lightweight cache mode as no data is distributed to the other nodes.
This is ideal for read-only data or data that is only refreshed at a set frequency.

Distributed Joins

Ignite provides the ability to collocate compute with data or data with data to improve performance.
This is called affinity collocation. Cache key objects can be annotated with @AffinityKeyMapped to
mark the relationships to other objects that should be located in the same node. If affinity keys are
not set and distributed joins are not enabled, join results may not be complete because non-collocated
joins are disabled by default.

Ignite Cluster Ignite Cluster
1 Node 1 | Q P che 1 ‘ Q
E(Q)g EHQ) g
. & B e e &
\ Client - D(Q)/\E: Client
Node2 | , @ Node2 | , Q
| Q ! | Q
EHQ) R, R=R+R4R D@1 EQ) R, R=R+R+R
~—~=r KR, | . ~_1>y HRAR, |
Q R ""‘ Q 7 Q
“Node3 | o/ Node3 | /o
&) g Q -SQLquery Q) g Q -SQL query
- R -result : R -result
E(Q) - query execution E(Q) - query execution

D(Q) - potential data movement

Figure 4 Collocated joins (left) vs non-collocated joins (right)

In distributed collocated joins, the join operation is performed locally per node and aggregated at the
client side. Because data is only joined locally, it is possible that only partial results are returned if the
corresponding key is not present on the same node. On the other hand, in distributed non-collocated
joins, each node will send broadcast requests to other nodes in the cluster to retrieve the missing
data. This is a more expensive join operation because it involves additional broadcast messaging and
data movement. Please see Figure 4 for an illustration of this concept.

Cache Atomicity Modes

There are two cache atomicity modes in Ignite: atomic or transactional. In ATOMIC mode, atomicity
and consistency is guaranteed for a single operation. In TRANSACTIONAL mode it is possible to group
several operations into one logical grouping that cannot be interleaved and guarantees ACID
compliance.

Cache Querying

There are many ways to implement a cache query in Ignite, such as scan queries, SQL queries or text
queries.

e ScanQuery provides a way of querying the distributed cache according to a predicate in full
Java code. It can be in lambda form (Java 8) or anonymous functions (Java 7).

try (QueryCursor cursor = cache.query(new ScanQuery<Integer, ContractItem>((k, p) -> p.getPricePerDay() == BigDecimal.ONE))) {
for (Object p : cursor) {
System.out.println(p.toString());
b
i

e SQLQuery provides a way to query using an SQL predicate.

SqlQuery guery = new SqlQuery(Invoice.class, sql "contract_id = ? AND billing date = ?");
QueryCursor<List<?>>» cursor = inwvoiceCache.query(query.setArgs(computeltem.getContractId(), billingDate));
for (List<?> row : cursor) {

invoiceId = (Integer) row.get(@);
break;

e SQLFieldsQuery provides a way to query only specific fields from a distributed cache.

SglFieldsQuery sql = new SqlFieldsQuery("SELECT i.invoice_id FROM Invoice i WHERE i.contract_id = ? AND i.billing_date = ?"}J
QueryCursor<List<?»>> cursor = invoiceCache.query(sql.setArgs{computeltem.getContractId(), billingDate));
for (List<?> row : cursor) {

invoiceId = (Integer) row.get(@);

break;

e SQLTextQuery provides a way to do a text search in any column in a cache.

TextQuery txtquery = new TextQuery{Item.class, @i "Macbook™);

QueryCursor<Cache.Entry<Integer, Item>> query = itemCache.query(txtquery);

for (Cache.Entry<Integer, Item: integerItemEntry : query) {
System.out.println{integerItemEntry.getValue().toString());

Other Features
The following list summarizes other features relating to Ignite’s data grid function:

e Near Cache: smaller, local caches on client nodes that stores most recently or frequently
accessed data

e Cache grouping: merge caches into groups to reduce overhead and improve performance

e Pessimistic locks: enforce mutual exclusion through explicit locking

e Continuous queries: continuously query real-time listening of data modifications on Ignite
caches

e Data rebalancing: Configurable automatic rebalancing of shards across nodes in a cluster in
response to changes in topology

2.4 Distributed SQL

Apache Ignite is a ANSI-99 compliant horizontally scalable and fault-tolerant distributed SQL database,
by full replication or partitioning. It supports both collocated and non-collocated distributed SQL joins
as already described in a previous section. It supports both DDL (Data Definition Language), for
example table creation), and DML (Data Manipulation Language) such as queries. Ignite ODBC and
JDBC drivers are available so you can use your SQL tool of choice, or establish a connection from your
source code.

The following list summarizes other features relating to Ignite’s distributed SQL function:

e Support for geospatial data (OGS Simple Features Specification)
e Ability to connect Tableau, Pentaho (data visualization tools) and Apache Zeppelin (data
analytics notebook tool) to analyze data stored in a distributed Ignite cluster

2.5 Compute Grid features

Ignite provides distributed parallel processing: computations and data processing are spread across a
set of nodes in the cluster. As already discussed in a previous section, it provides the ability to run
computation on the node where the data is to avoid data serialization.

The following list summarizes other features relating to Ignite’s compute grid function:

e In-memory MapReduce: Run MapReduce and ForklJoin jobs in memory

e Continuous mapping: Ability to generate new jobs on-the-fly for the Map step when
computation is already running

e Shared node state: Ability to share state between different jobs in a node

e Fault tolerance: Configurable job failover in case of node crash

e Load balancing: Configurable job distribution among cluster nodes

e Checkpointing: Ability to save an intermediate job state to protect from node failures

e Job Scheduling: Fine-grained control over scheduling of jobs that arrive at a node

2.6 Other interesting features
The following list summarizes other interesting features or integrations available in Ignite:

e Data streaming: ability to inject large amounts of continuous streams of data into Ignite
caches. Provides integration with major streaming technologies and frameworks such as
Kafka, Camel, Storm, Flume, Flink, MQ, among others

e Hibernate L2 cache: ability to be used as Hibernate’s second-level cache, caching of retrieved
data to avoid expensive database operations

e Machine Learning grid: run machine learning algorithms on data stored in Ignite caches and
avoid having to ETL data out into another system like Mahout or Spark

10

3 Business domain

As mentioned above, Acme Corp. is in the business of leasing high value equipment to individuals and
businesses, who prefer to pay a weekly or monthly rate for the use of these assets in exchange for
convenience and flexibility as they will not need to maintain these assets, and to avoid the large up-
front cost of acquiring them. To start a lease a client fills out an information sheet and signs a contract
that indicates the terms of the lease, which include the start and end dates of the lease, the rental
rate, terms of rental rate adjustments, the billing interval, any charges for pre-terminating the
contract, charges for damages, etc. There are five types of billing periods: Weekly, monthly, quarterly,
semiannual and annual. Each client chooses the option that best fits their necessity.

At regular intervals, Acme Corp. generates an invoice by executing a batch job. The user logs into the
application, selects parameters and clicks on a button that will generate the invoices in PDF format.
These invoices are then sent out electronically to all clients.

Apart from this, the company also has other operations such as bulk insert and update of records, and
report generation. Due to the volume of data involved these jobs are typically ran overnight. This is
also a potential area for improvement if the in-memory computing solution shows significance
performance improvements versus a traditional database. We will also cover some of these queries
in this analysis.

4 Database schema and data setup

A subset of Acme Corp’s existing database schema can be seen in the Figure 5.

Customer Contract ContractItems ItemInstance Item
PK customer_id mPK contract_id H_L%PK contract_items_id PK item_instance_id PK item_id
first_name FK customer_id FK1 contract_id jFK item_id 9of_H. name
last_name start_date FK2 item_instance_id serial_number brand
address end_date price_per_day purchase_date type
billing_interval discount_rate purchase_amount manufacturer
item_condition description
Invoice Invoiceltem Accessory
PK invoice_id } 1 P invoice_id PK accessory_id
FK contract_id PK contract_items_id FK item_instance_id
billing_date base_amount name
total_amount discount_amount

net_amount

Figure 5 ERD Schema

We can see a mapping to the business domain in the schema. A Customer has a first name, a last name
and a billing address. The customer is associated with zero or many Contracts. These contracts have
a start date, an end date and a billing interval (as mentioned before, weekly, monthly, quarterly,
semiannual or annual). The contract contains one or many contract items. ContractItem is a table
for storing the rental rate of the items. It contains a price per day, and a discount rate. Every item
owned by Acme Corp is stored in the table ItemInstance. In this table we store the serial number of
the item, the purchase date, the purchase amount, and its condition (working or defective). Each type

11

of item is stored in the table Item, and it contains the name of the item (this is, the commercial name
of the product, for example “Macbook”), the brand, the type (as mentioned before, laptops, desktop
computers, projectors, multifunctional printers, monitors, tablets, servers, electronic blackboards,
videoconferencing systems, lab equipment and smartphones). We also store the manufacturer and a
short description of the item. Each item instance has an accessory, stored in the table Accessory, with
a name.

Everything related with the billing is stored in two tables: InvoiceItem and Invoice. When we want
to calculate an invoice for a date and a specific billing period, we invoke a stored procedure that
calculates the amount for each item for each contract match the parameters. This is stored in
InvoiceItem (base amount, discount amount and net amount). Finally, the Invoice aggregates the
InvoiceItems computed for that billing period and contract.

For this this POC we have created a test database with randomly generated data. In our dummy
database we can find the following tables and their corresponding volume:

Table # of records
Customer 1,000,000
Contract 1,200,000
Contractitem 3,120,000
ItemInstance 3,120,000
Accessory 3,120,000
Item 1,000,000
Invoice 0
Invoiceltem 0

Table 1 Size of generated data

1 million customers have 1.12 million Contracts associated (the first 20,000 customers have two
active contracts, and the next 100,000 customers have one inactive contract and one active contract),
3.12 million ContractItems, 3.12 million ItemInstances (3 million working items, 120,000 defective
items) with 3.12 million Accessories and 1 million Items. Tables Invoice and InvoiceItem are
empty. As we said, this data is randomly generated by a script. The contracts are uniformly distributed
among the different billing_intervals.

As we can see, the main job of this database is to extract, compute and load invoices. No new records
will be inserted on tables Customer, Contract, ContractItem, ItemInstance, Accessory or Item.

Finally, below in Table 2 is a summary of the indexed columns, either from primary keys or index

definitions.
Table Indexed column By
Customer customer_id Primary key (clustered)
Contract contract_id Primary key (clustered)
Contract customer_id
Contract start_date, end_date, billing_interval
Accessory accessory_id Primary key (clustered)
Accessory item_instance_id
Contractltem contract_item_id Primary key (clustered)
Contractltem contract_id

12

Contractitem
Item
Iteminstance
Iteminstance
Invoice
Invoice
Invoiceltem

item_instance_id

item_id

item_instance_id

item_id

invoice_id

contract_id, billing_date

contract_item_id, invoice_id
Table 2 Indexed columns in RDBMS

5 Apache Ignite Walkthrough

5.1 Environment Setup

Primary key (clustered)
Primary key (clustered)

Primary key (clustered)

Primary key (clustered)

Download and install apache-ignite-fabric from https://ignite.apache.org/download.cgi.

Then add a IGNITE_HOME environment variable as well as to PATH (pointing to IGNITE_HOME/bin).

5.2 Cluster/Node startup
There are two ways to start an Ingite node: through Java code, or through command line. If there is
no existing cluster with the same node configuration, a new cluster will be created. Otherwise the new

node will join the existing cluster.

5.2.1 Via Command Line

To create a node, run ignite.[bat|sh] and provide the path of the XML configuration file. For

example:

ignite.bat con

mecorp.xml

Figure 6 Node startup from command line

13

https://ignite.apache.org/download.cgi

C:\Windows\System32\cmd.exe - ignite.bat config/acmecorp.xml — [m] X

re Foundation

Runtime Envi nt 1.8.8_144-b 0 e G tion HotSpot (TM) 64-Bit Server 25.144-b01

0] Topol

Figure 7 Node startup command line output

5.2.2 From Java

Nodes can be started by calling Ignition.start(). Similar to command line, you can pass the path
of the XML configuration file, or use the Java configuration code. Both examples are shown below.
These files are provided in the auto-generated Maven project created from the Web Console,
described in section 5.3.

< ServerNodeCodeStartup.java
package startup;

import ...

public class ServerNodeCodeStértQp {

args Comman
s Exception I

public static void main(String[] args) throws Exception {
Ignition.start(ServerConfigurationFactory.createConfiguration());

H

Figure 8 Code startup

a1 ServerNodeSpringStartup.java
package startup;

import org.apache.ignite.Ignition;

public static wvoid main(String[] args) throws Exception {
Ignition.start(s "acnecorﬂ.xnl");

Figure 9 Spring XML startup

14

5.3 Domain Model generation

Once the database tables have been created, we can use Ignite’s Web Console [2] to automatically
generate the domain model from the database schema. The domain model, in Java or XML code, can
be downloaded as a Maven package and used in your application. The import is performed through a
wizard-style form with a live preview of the configuration code.

Web Console can be deployed locally, but for convenience, GridGain also hosts an instance that is
accessible for free on the internet through http://console.gridgain.com/.

To use the Web Console, one needs to download a web agent that establishes a connection between
the Ignite cluster and the Web Console [3]:

https;//consolegridgaincom| Web Web Web i Web HTTP Apache:lanite
Sockets P 9

Sockets Console (REST)
Browser e—/\ Console %——} et %——/\ Cluster

Figure 10 Ignite Web Agent system diagram

The link to download ignite-web-agent is provided from the Web Console interface, already pre-
configured with the appropriate security token. Unzip the package and run ignite-web-agent.bat.
At least one cluster node running from apache-ignite-fabric (command line) should be started
before running the agent.

che Ignite Web Console

agent property
1 to JDB
Demo mode

gain.com

111y established to cluster with nodes: [4A

Figure 11 Starting ignite-web-agent

If the connection is successful, Web Console will show the name of the cluster detected.

15

- ,‘,’ﬁ Configure Clusters - GridGain V' X

&« c m‘ [0 https://console.gridgain.com/configuration/advanced/clusters sos i m o =
A
. . B)
GridGain/«m Configure Queries v Monitoring ~ Snapshots & Cluster EBF7CASD ® Tiffany ON G}é
Configure CIIEED ®
Basic Advanced

(@ Clusters

@ Model Configure Ignite Clusters

(3 Caches

@ IGFS : iz:(f)lgiii f:llissltillz F\:vri(I)Eecr;f:es and in-memory file systems
() GridGain

(® Summary

Add cluster

Figure 12 Ignite Web Console

The first step is to configure an Ignite cluster. From the header, click on Configure and then the
Advanced tab. Click on the Add cluster button and give a name for the cluster. We will use the default
Multicast discovery method for finding remote nodes on the grid. Other available discovery methods
can be found by hovering over the (?) icon.

Discovery allows to discover remote nodes in grid

® Static IPs - IP Finder which works only with pre configured list
of IP addresses specified

® Multicast - Multicast based IP finder

* AWS S3 - AWS S3 based IP finder that automatically discover
cluster nodes on Amazon EC2 cloud

& Apache jclouds - Apache jclouds multi cloud toolkit based IP
finder for cloud platforms with unstable IP addresses

® Google cloud storage - Google Cloud Storage based IP finder
that automatically discover cluster nodes on Google Compute
Engine cluster

* JDBC - JDBC based IP finder that use database to store node
IP address

® Shared filesystem - Shared filesystem based IP finder that
use file to store node IP address

® Apache ZooKeeper - Apache ZooKeeper based IP finder when
you use ZooKeeper to coordinate your distributed
environment

® Kubernetes - IP finder for automatic lookup of Ignite nodes
running in Kubernetes environment

Figure 13 Remote node discovery methods

16

@ Clusters add cluster | save | 9]

() Model
() Caches
® IGFs © General @ o)
() GridGain
Java
Summary Name: * acmecorp @ 1 | cfg.setIgniteInstanceName("acmecorp”);
2
Caches: (add) 3 TepDiscoverySpi discovery = new TepDiscoverySpi()s
5 TepbiscoveryMulticastIpFinder ipFinder = new TepDiscoveryMu
6
Local host: 7 ipFinder.setAddresses(Arrays.asList("127.6.8.1:47568. .47518
8
. . 9 di .setIpFinder(ipFinder);
Discovery: Multicast L@ 2 iscovery.setIpFinder(ipFinder)
11 cfg.setDiscoverySpi(discovery);
< >
IP address: @
Port number: @
Waits for reply: @
Attempts count: @
Local address: @
Addresses + ®
1) 127.0.0.1:47500..47510 x

© Show advanced settings...

Figure 14 Add cluster

As you modify some of these fields you will notice that the XML/Java code at the right side changes as
you type or modify selections. This is a useful feature that shows you exactly what your changes will
do to the configuration code, which you can use to look up in the Ignite APl documentation or Javadoc
for more information on their behavior.

If you want other nodes in a remote host to connect to the cluster, you will need to check that the
firewall rules are not blocking the connection.?

Save the changes in the Clusters page and go to the Model section from the left side menu.

To import the database schema, a JDBC driver must be provided in the ignite-web-agent-*/jdbc-
drivers directory:

| M = | jdbc-drivers
“ Home Share View
E W Preview pane & Extra large icons [=] Large icons < Medium icons l Group by ™
& Small icons FF List f== Details [T Add columns ~
Navigation Sort
paﬁg o b 1= z= Content N by~ [Size all columns
Panes Layout Current view
“— v > This PC > Do its > tools > ignite-web-agent-2.1.8 > jdbc-drivers
Name Date modified Type Size
% mssql-jdbc-6.2.2,jre8jar 12/9/2017 12:30 PM JARFile 807 KB
=] README.txt 12/1/2017 435 AM Text Document 1KB

Figure 15 Adding the JDBC driver

1 For Windows Firewall please refer to https://technet.microsoft.com/en-us/library/cc749323(v=ws.10).aspx

17

https://technet.microsoft.com/en-us/library/cc749323(v=ws.10).aspx

INFOH415 — In-Memory databases with Apache Ignite

After doing so, click the Import from database button.

Configure CIEED @

Basic Advanced

Q@ Clusters
(@ Model Configure Domain Model And SQL Queries

() Caches
@ IGFS e Import database schemas

* Configure indexed types
() GridGain

() Summary

Add domain model | Import from database

Import domain models from database

Figure 16 Import domain model screen

In the next screen specify the connection details to the database where the tables have been created.

= Import domain models from database

Driver JAR: * mssql-jdbc-6.2.2.jre8 jar
JDBC driver: * com microsoft.sqlserver.jdbc.SQLServerDriver
JDBC URL: * jdbersglserver:/localhost,databaseName=acmecorp

User: admin

Password: ‘oo--co-o-o--u-a

Tables only @

Configure connection to database

Figure 17 Setting connection properties

In the next screen select the appropriate schema.

18

INFOH415 — In-Memory databases with Apache Ignite

(]

O o ogcg

&

dbo

guest

0o d

sys

Schema

up_uelyudldiEdues

db_owner

Import domain models from database

db_denydatawriter

db_securityadmin

Select schemas to load tables from

Filter schemas

Figure 18 Schema selection

In the next screen we select the tables to be imported. Select the appropriate tables. At the bottom
there is an option to choose different Cache Modes: PARTITIONED or REPLICATED — leave the defaults

for now and click Next.

(]

Kl

Schema

&l

dbo

&l

dbo

&l

dbo

&l

dbo

Import domain models from database

Table name
Accessory
Contract
Contractltem

Customer

Defaults to be applied for filtered tables @

Create new cache by template -

Select tables to import as domain model

Filter tables

Cache

Create AccessoryCache (PARTITIONED)
Create ContractCache (PARTITIONED)
Create ContractitemCache (PARTITION...

Create CustomerCache (PARTITIONED)

PARTITIONED Ml Arply

Accept defaults and click Save.

Figure 19 Table selection

19

= Import domain models from database

Use Java built-in types for keys @

Use primitive types for NOT NULL table columns &
Generate query entity key fields @

Generate POJO classes @

Generate aliases for query entity @

Generate aliases for query fields @

Package: * acmecorp.model

Clusters: Choose clusters for generated caches - @

Select import domain model options

Figure 20 Additional configuration settings

You will see that a list of caches has been generated with default settings. It is possible to modify the
configuration for each cache, such as setting the Cache Mode (PARTITIONED/REPLICATED/LOCAL) and
Cache Atomicity (ATOMIC/TRANSACTIONAL). Please refer to section 2.3 for a description of these
features.

- /& Configure Caches - GridGain V' X [- o X
& C @ | ® @ hitps//console.gridgain.com/configuration/advanced,/caches v @ Y IND =
= Cunnguie puisisicioe

@ Clusters "

® Model

@ Caches Caches: Filter caches

@ IGFS 1) AccessoryCache, PARTITIONED, ATOMIC

. . 2) ContractCache, PARTITIONED, ATOMIC
(® GridGain

3) ContractitemCache, PARTITIONED, ATOMIC
@ Summary 4) CustomerCache, PARTITIONED, ATOMIC

5) InvoiceCache, PARTITIONED, ATOMIC

6) InvoiceitemCache, PARTITIONED, ATOMIC
7) ltemCache, PARTITIONED, ATOMIC

8) lteminstanceCache, PARTITIONED, ATOMIC

© General ®
Spring Java
Name; * AccessoryCache @ 1 | <property name="name" value="AccessoryCach
2 <property name="cachetode” value="PARTITIO
3 | <property name="atomicityMode" value="ATOM
Group: Input group name @ < >

Clusters: (add) No clusters configured ~

Domain

models: (add) acmecorp.model.Acces... v @

Mode: PARTITIONED - @
Atomicity: ATOMIC - @
Backups: 0

zsl';;(’""’ss IGNORE - @

[J Copy onread @

Figure 21 Imported domain model

Click on the Java label to view the configuration as Java code.

20

INFOH415 — In-Memory databases with Apache Ignite

Spring Java
1 ccfg.setName("AccessoryCache™);
2 ccfg.setCacheMode(CacheMode . PARTITIONED) ;
3 ccfg. setAtomicityMode (CacheAtomicityMode ATOMIC) ;

Figure 22 Cache configuration as Java code

Scrolling down under the Store section there are more configurable settings on persistence.

© Store @
Java
Store factory:. JDBC POJO store factory - @ 1 CacheldbcPojoStoreFactory cacheStoreFactory = new Cacheldbc
Hide settings 3w cacheStoreFactory.setDataSourceFactory(new Factory DataSour
s 8o ic Datasource create() {
Data source bean . i
- dsSQLServer_Acmecorp @ i aSources. INSTANCE_dsSQUServer_Acwecorp;
n;
Dialect: * Microsoft SQL Server - ® 10 cacheStoreFactory.setDialect(new SQiServerDialect());
1
12 JdbcType jdbcTypeAccessory = new JdbcType();
Batch size
jdbcTypeAccessory. setCachelame (~
jdbcTypeAccessory. setleyType(]
Thread count JdbcTypeAccessory. setvalueType ")
jdbcTypeAccessory . setDatabaseSchems H
JdbeTy
Maximum write jdocTypeAccessory. setDatabaseTable(“Accessory™);
@
attemplts: jdbcTypeAccessory. setkeyFields(new JdbcTypeField(Types. INTE
Parallel load jdbcTypeAccessory. setValueFields(
@ 23 new)dbcTypeField(Types. INTEGER, "ites instance id”, in
threshold 24 new JdbcTypeField(Types.VARCHAR, “neme”, String.class,
25)
2
Hasher @ 2 cacheStoreFactory. setTypes(jdbcTypeAccessory);
5. . - - ry)i
Transformer ' @ » ccfg. setCacheStoreFactory(cacheStorefactory)
n ccfg. setReadThrough(true);
[C) Escape table and filed names @ 32 | ccfg.setiriteThrough(true)}
< >

[CJ Keep binary in store @
[J Load previous value @
(4] Read-through @
(] write-through @
Wiite-behind @
[J Enabled ®
Batch size:
Flush size
Flush frequency:

Flush threads
count

Write coalescing @

Figure 23 Cache persistence configuration

Once satisfied with the cache configuration, go to the Summary section. You will see a preview of the
configuration code based on selections made in the previous screens. The source code can be
downloaded as a ready-to-use Maven project. You can view the files and directories created by clicking
the Project Structure button.

21

INFOH415 — In-Memory databases with Apache Ignite

Project structure

'V€ &> acmecorp-project.zip ~

& jdbc-drivers

[3 README.txt

B src
ag £ main
g = java
mp & config igu
:ﬁ [ClientConfigurationFactory.java e

[@ ServerConfigurationFactory.java

b | & startup S
ub

[ClientNodeCodeStartup.java

[@ ClientNodeSpringStartup.java

[@ ServerNodeCodeStartup.java

B ServerNodeSpringStartup java b
~

& resources
public static IaniteConficuration createConfigu:

Figure 24 Generated code in a Maven project

Configure Queries ~ Monitoring ~ Snapshots & Cluster 94BE4219 @ Tiffany OL ~

Configure @zzEED ©

Basic Advanced

@ Clusters

© Model Configurations Summary

(@ Caches

® IGFS « Preview XML configurations for serves and client nodes

* Preview code configuiation
@ GridGain o Preview Docker file
@® Summey * Preview POM dependencies

* Dovmload ready-to-use Maven project

Clusters:
1) acmecorp

& Download project | & Project stiucture

© Server

B xMe B Java B pom % Dockerfile

cfg.setIgniteInatanceNams (“ac:

Tepbiscoveryspi discovery

TephiscoveryiulticastIpF: ryalticastipPinder() s

23 ipPinder. setAddresses (X

© Client

Sxm B osava B pom

package configs a

ava.util.Arcaye;

Figure 25 Configuration summary

Click on the Download Project button and open pom.xml from your favorite Java IDE.

22

Inside the src/main/java/startup directory there are startup classes which you can use to start
server or client nodes, based on either XML or Java configuration files.

“C:\Program Files\Java\jdki.8.0_144\bin\java" ...
[23:32:58]

[23:32:38) / _/ _/ |/ [_/i_ r_r
[23:32:58] _/ // (77 il / 1
[23:32:58) /__/__J/_/|_I___t I_I /.
[23:32:58]

[23:32:58] ver. 2.2.8428178915-chal:5747ce6b

[23:32:58] 2017 Copyright(C) Apache Software Foundation

[23:32:58]
[23:32:58] Ignite documentation: http://ignite.apache.org
[23:32:58]

[23:32:58] Quiet mode.

[22:32:58] ~-- Logging to file D:\apany\Documents\tools\apache-ignite-fabric-2.2.8-bin\work\log\ignite-bedb3es7.e.log"

[23:32:58] “-- To see **FULL** console log here add -DIGNITE_QUIET=false or "-v" to ignite.{sh|bat}

[23:32:58]

[23:32:58] 05: Windows 10 16.8 amd64

[23:32:58] VM information: Java(TM) SE Runtime Environment 1.8.e_144-bel Oracle Corporation Java HotSpot(TH) 64-Bit Server VM 25.144-bei

[23:32:58] Configured plugins:

[23:32:58] “-- None

[23:32:58]

[23:32:50] Message queue limit is set to @ which may lead to potential OOMEs when running cache operations in FULL_ASYNC or PRIMARY_SYNC modes due to message queues growth on sender and receiver sides.
[23:32:59] Security status [authentication=off, tls/ssl=off]

[23:33:12] Performance suggestions for grid ‘acmecorp’ (fix if possible)

[23:33:12] To disable, set -DIGNITE_PERFORMANCE_SUGGESTIONS_DISABLED=true

[23:33:12] *-- Enable Gl Garbage Collector (add '-XX:+UseG1GC' to JVM options)

[23:33:12] “-- Set max direct memory size if getting 'OOME: Direct buffer memory' (add '-XX:MaxDirectMemorySize=csize>[g|G|m|M|k|K]' to IVM options)

[23:33:12] - Disable processing of calls to System.gc() (add '-XX:+DisableExplicitGC' to JVM options)

[23:33:12] ~-- Enable ATOMIC mode if not using transactions (set "atomicityMode' to ATOMIC)

[23:33:12] Refer to this page for more performance suggestions: https://apacheignite.readme.io/docs/{vm-and-system-tuning
[23:33:12]

[23:33:12] To start Console Management & Monitoring run ignitevisorcmd.{sh|bat}

[23:33:12]

[23:33:12] Ignite node started OK (id-bedb3es7, instance name-acmecorp)
[23:33:12] Topology snapshot [ver=1, servers=1, clients-@, CPUs-4, heap-@.5GB]

Figure 26 Console output on running ServerNodeCodeStartup

5.4 Loading caches

After initializing the node, the caches can be accessed through the ignite.cache() or
ignite.getOrCreateCache() call. The only difference between these two is the cache() call will
return null if the cache does not exist, while the getOorCreateCache() will create the cache [4].

Once you have a handle to the cache, you may load the data by calling the 1loadCache () method. This
call reads from the tables in the database and loads them all into memory, automatically sharding the
data across nodes according to the configuration given in the Java or XML code. It already knows the
schema of your data when it auto-generated the domain model (as seen in section 5.3). The
connection is established according to the credentials given in secret.properties (also included in
the Maven project).

23

public class LoadCaches {

FE L

* <p>

* Utility to load caches from database.
* o<p>

* How to use:

* oyl

<LirStart cluster.
<lixStart this wtility and wait while load complete.

* f@param args Command Line arguments, none required.
* @throws Exception If failed.
FH 7
public static void main{String[] args) throws Exception {
Ignite ignite = Ignition.start(ServerConfigurationFactory.createConfiguration());

StoplWatch stoplWatch = new StopWatch();

System.out.printf("[%s] »>»> Loading caches...%n", stopWatch);
stopWatch.start();

System.out.printf("[%s] »»> Loading cache: AccessoryCache¥n”, stopWatch);
ignite.getOrCreateCache(cacheMame: "AccessoryCache™).loadCache{ p: null);
stopWatch.split();

System.out.printf("[%s] »>>» Loading cache: ContractCache¥®n”, stopWatch.toSplitString());
ignite.getOrCreateCache(cacheMame: "ContractCache”).loadCache(p: null);
stoplatch.split();

System.out.printf("[%s] »>»> Loading cache: ContractItemCacheX®n”, stopWatch.toSplitstring());
ignite.getOrCreateCache(cacheMame: "ContractItemCache").loadCache(p: null);
stoplatch.split();

System.out.printf("[%s] >»> Loading cache: CustomerCacheXn”, stoplWatch.toSplitString());
ignite.getOrCreateCache(cacheMame: "CustomerCache").loadCache(p: null);
stoplatch.split();

System.out.printf("[%s] »»> Loading cache: InvoiceCache¥n”, stopWatch.toSplitString());
ignite.getOrCreateCache(cacheMame: "InvoiceCache”).loadCache(p: null);
stoplatch.split();

System.out.printf("[%s] »»> Loading cache: InvoiceItemCache¥n", stoplatch.toSplitString());
ignite.getOrCreateCache(cacheMame: "InvoiceItemCache”).loadCache(p: null);
stopWatch.split();

System.out.printf("[%s] »»> Loading cache: ItemCache¥n", stopWatch.toSplitstring());
ipgnite.getOrCreateCache(cacheMame: "ItemCache™).loadCache{ p: null);

stopWatch.split();

System.out.printf("[%s] »>>> Loading cache: ItemInstanceCache®n”, stopWatch.toSplitString());
ignite.getOrCreateCache(cacheMame: "ItemInstanceCache").loadCache(p: null);
stoplatch.split();

System.out.printf("[%s] »>»> All caches loaded!%n", stopWatch.toSplitstring());

System.out.println{"END");

Figure 27 Loading the caches

5.5 Computing cache data
Once the application has a reference to the cache with data already loaded, it is possible to run any of
the query types described in section 2.3. In section 6 we will discuss the different queries we
implemented for this POC. For additional examples you may refer to the Ignite documentation [1] or
the ignite-examples project [5].

24

6 Queries
In this section we explain the queries that we developed in both SQL and Apache Ignite. These queries
are representative of the typical database operations that will be done in normal business processing.

6.1 Query 1: Multiple operations in a single procedure (generate invoices)

This job is a procedure that will generate invoices that will be sent out to clients regularly. As described
in section 3, improving the performance of this job is our main goal in this proof of concept. The job
can be broken down into the following:

Parameters:

e billing_date — date at which contracts are active to be picked up by the job
e billing_interval - billing interval of contracts to be picked up by the job

Steps:

1. Query the Contract and ContractItems tables to get a list of items that are billable
(according to given parameters)

Delete any existing InvoiceItem records for the given parameters

Delete any existing Invoice records for the given parameters

Insert new Invoice records for each distinct contract in Step 1

vk W

Insert new InvoiceItem records for each ContractItem returned in the Step 1 and set its
foreign key to Invoice, which are the values inserted in Step 4.

This procedure is roughly the same in both the SQL implementation and in Ignite, but could differ in
thatin SQL it is possible to do an INSERT INTO SELECT that bulk-computes and bulk-inserts rows into
the table, whereas in Ignite we have to loop over each one.

6.1.1 SQL
Below is the code for generating invoices along the same steps described in the beginning of section
6.1.

Step 1: Query billable items

--Retrieve items to be computed
INSERT INTO @ContractItemsToCompute
SELECT

c.contract_id,
ci.contract_item_id,
ci.price_per_day,
ci.discount_rate
FROM contract c,
ContractItem ci
WHERE c.contract_id = ci.contract_id
AND c¢.billing interval = @billingInterval
AND c.start_date <= @billingDate
AND (c.end date = "31-DEC-9999' OR @billingDate < dateadd(DAY, 1, c.end date));

Step 2: Delete existing InvoiceItem records

25

DELETE FROM InvoiceItem;

Step 3: Delete existing Invoice records

DELETE FROM Invoice;

Step 4: Insert new Invoice records

-- from page 8 to page N times, buckets of [@rangeSize,

WHILE @pos <= @numberOfInvoicePages
BEGIN
BEGIN TRANSACTION;

INSERT INTO Invoice (contract_id, billing date, total_amount)
SELECT T.contract_id, @billingDate, &
FROM (SELECT DISTINCT cic.contract_id AS contract_id
FROM @ContractItemsToCompute cic

ORDER BY contract_id ASC
OFFSET @from ROWS

FETCH NEXT @rangeSize ROWS ONLY) T

--move to next page
SET @pos = @pos + 1;

--set the next "first tuple” to the Last page’s tuple

SET @from = @from + @rangeSize
COMMIT TRANSACTION;
END

Step 5: Insert new InvoiceItem records

WHILE @pos <= @numberOfInvoicePages
BEGIN
BEGIN TRANSACTION;

INSERT INTO InvoiceItem (invoice_id, contract_item_id, base amount, discount_amount, net_amount)

SELECT
(SELECT i.invoice_id
FROM Invoice i

WHERE i.contract_id = c.contract_id AND i.billing date

OFFSET @from ROWS

FETCH NEXT @rangeSize ROWS ONLY),
c.contract_item id,
@chargeDays * c.price_per_day,

@chargeDays * c.price_per_day * (c.discount_rate / 16@),

(@chargeDays * c.price_per_day) -

(@chargeDays * c.price_per_day * (c.discount_rate / 18@))

FROM @ContractItemsToCompute c;

--move to next page
SET {@pos = {@pos + 1;

--set the next "first tuple” to the Last page’'s tuple

SET @from = @from + @rangeSize
COMMIT TRANSACTION;
END

Starting from |
] (8

@billingDate ORDER BY i.invoice_id ASC

26

6.1.2 Apache Ignite
Below is the code for generating invoices along the same steps described in the beginning of section
6.1.

Step 1: Query billable items

try (Transaction tx = Ignition.ignite(name: "acmecorp”).transactions().txStart()) {
try (QueryCursor<lList<?>> cursor = getComputeCursor(contractCache, billingIntervalType, billingDate)) {
for (List<?> row : cursor) {
computeltems.add(new ComputeP0JO(rou));

¥
¥

//Get a List of all distinct contractIds from computeltems
contractIds = computeIltems.stream().map({ComputeP0J]0: getContractId).collect(Collectors.toSet());

tx.commit();

stoplatch.split();
System.out.printf("[%s] Found ¥%s compute items in %s distinct contracts.%n”, stopWatch.toSplitString(), computeItems.size(), contractIds.size());

private QueryCursor<List<?>> getComputeCursor{IgniteCache<Integer, Contract> contractCache, BillingIntervalType billingIntervalType, Date billingDate) {
//Look for all contracts and contractitems which satisfy the given billingInterval and billingDate.
SqlFieldsQuery sql = new SglFieldsQuery("SELECT c.contract_id, ci.contract_item_id, ci.price_per_day, ci.discount_rate " +
"FROM Contract c, \"" + IgniteCacheMame.CONTRACT_ITEM_CACHE.getCacheName() + "\".ContractItem ci " +
"WHERE c.contract_id = ci.contract_id " + //"and c.contract_id < 1ee@ " +
"AND c.billing interval = ? " +
"AND c.start_date <= ? " +
"AND (c.end_date = ? OR ? < dateadd(DAY, 1, c.end_date))")
.setDistributedloins(true);

return contractCache.query(sql.setArgs(billingIntervalType.name(), billingDate, DateUtility.parseDate(string: "31-DEC-9999"), billingDate));

i

The main things of interest here is the transaction boundaries around the getComputeCursor call (the
try() and tx.commit () statements). In the getComputeCursor call we can see that the query is SQL-
likem apart from the second line where we prefix the name of the ContractItemCache to the
ContractItem table. This is because the query is run against contractCache but it has a reference
to another cache. Also, note that we call setDistributedJoins to true. This is to ensure that we get
complete results — this behavior has been described in section 2.3 under distributed joins.

Step 2: Delete existing InvoiceItem records

try (Transaction tx = Ignition.ignite(name: "acmecorp”).transactions().txStart()) {

SglFieldsQuery sql = new SqlFieldsQuery("DELETE FROM InvoiceItem");
invoiceItemCache.query(sql);

tx.commit();

stopllatch.split();
System.out.printf("[%s] Cleared InvoiceItem.%n", stoplatch.toSplitString());

This is similar to the previous query but a different SQL statement.
Step 3: Delete existing Invoice records

try (Transaction tx = Ignition.dignite(name: "acmecorp”).transactions().txStart()) {

5glFieldsQuery sgl = new SglFieldsQuery({"DELETE FROM Invoice");
invoiceCache.query(sgl);

tx.commit();

stopllatch.split();
system.out.printf("[¥%s] Cleared Invoice.¥n", stopWatch.tosplitstring());

This is nearly identical to the query in Step 3, but against the Invoice table.

27

Step 4: Insert new Invoice records

try (Transaction tx = Ignition.ignite(name: "acmecorp”).transactions().txStart()) {
generateInvoices(contractIds, billingDate);

tx.commit();

stopWatch.split();
System.out.printf("[%s] Generated Invoices.¥n", stopWatch.toSplitString());

private void generateInvoices(5et<Integer> contractIds, Date billingDate) {
stoplatch.split();
System.out.printf("[%s] Generating Invoice...%n", stopWatch.toSplitstring());

J/Insert Invoice records according to contract_id and billing date {(with @ amount)

for (Integer contractId : contractIds) {
Invoice invoice = new Invoice{contractId, new Timestamp(billingDate.getTime()), BigDecimal.ZERO);
invoiceCache.put{{{Long) invoiceCacheKey.incrementAndGet()).intValue(), invoice);

This operation is the code that generates the Invoice records. Some of these lines have been
discussed in previous steps. The thing to note here is the invoiceCache.put call — this is the act of
writing to the cache. As you can see we don’t need to write explicit SQL code — Ignite will manage the
persistence to SQL database.

Step 5: Insert new InvoiceItem records

try (Transaction tx = Ignition.ignite(name: "acmecorp”).transactions().txStart()) {
generateInvoiceItems(computeItems, billingIntervalType, billingDate);

tx.commit();

stopWatch.split();
System.out.printf("[%s] Generated InvoiceItems.%n", stopllatch.toSplitString());

private void generateInvoiceItems(List<ComputePQ]0> computeltems, BillingIntervalType billingIntervalType, Date billingDate) {
stopllatch.split();
System.out.printf("[%s] Generating InvoiceItems...%n", stopWatch.toSplitString());

int i = 6;

for (ComputeP0JO computeItem : computeltems) {
InvoiceItem invoiceItem = computeItem.calculateInvoiceItem(billingIntervalType.computeBillingPeriodDays{billingDate));

Integer invoiceld = @;
SqlFieldsQuery sgl = new SqlFieldsQuery("SELECT i.invoice_id FROM Invoice i WHERE i.contract_id = ? AND i.billing_date = ?")
.setDistributedloins(true);
QueryCursor<List<?>> cursor = invoiceCache.query(sql.setArgs(computeIltem.getContractId(), billingDate));
for (List<?> row : cursor) {
invoiceId = (Integer) row.get(8);
break;

b

InvoiceItemKey key = new InvoiceItemKey(invoiceId, computeItem.getContractItemId());
invoiceItemCache.put{key, invoiceItem);

i++;
if (1 % 1068 == 8) {

stopWatch.split();
System.out.printf("[%s] Computed %s Invoiceltems...%n", stoplatch.toSplitString(), i);

This query does the work of the actual calculation of the InvoiceItem. The syntax is similar to what
is already seen in previous steps.

28

6.2 Query 2: Aggregate by sum according to a date range (compute revenue)

In this example we will see how the revenue is computed in two ways, with SQL and with Apache
Ignite. We can calculate the total revenue in two ways. First one is to obtain all Invoices from a specific
period, and then, make a SUM aggregation in order to obtain the revenue. The other way is by Joining
Contracts, Invoices and InvoiceItems, and then, making the SUM aggregation in the
Invoiceltenms, using the Invoice table as a bridge to obtain the billing period from the contract. As
we can see, this last option is more complex and it has approximately three times more data in our
database. Since we want to test our system, we decided to proceed with this last method.

6.2.1 SQL
In contrast with the previous query, we do not need to create a stored procedure.

SELECT c.billing_interval AS INTERVAL, SUM(ii.net_amount) AS TOTAL

FROM Invoice i, Contract c, InvoicelItem ii

WHERE c.contract_id = i.contract_id AND ii.invoice_id = i.invoice_id
AND i.billing_date BETWEEN '1-DEC-2017' AND '31-DEC-2017'

GROUP BY c.billing_interval

As we can see, we project the billing interval and the sum of the individual net amounts of each
contractItem for the period between 1% of December 2017 and 31° of December 2017.

6.2.2 Apache Ignite

For querying the Ignite cache, we are going to use the Web Console application. As we can see in the
figure below, the syntax is very close to SQL. The only appreciable difference is that we need to specify
the cache name for Invoice and InvoiceItem in order to obtain the tables, because they reside in a
different cache.

& Query ¢ x

1 SELECT c.billing interval AS INTERVAL, SUM(ii.net_amount) AS TOTAL Caches: g
2 FROM Contract c, "InvoiceCache".Invoice i,

3 "InvoiceItemCache".InvoiceItem ii AccessoryCache

4 WHERE c.contract_id = i.contract_id AND ii.invoice_ id = i.invoice_id © ContractCache

5 AND i.billing date BETWEEN '2017-12-01"' AND '2017-12-31" ContractlitemCache

6 GROUP BY c.billing interval CustomerCache

7

InvoiceCache
InvoiceltemCache
ItemCache
ItemInstanceCache

P Execute on selected node [R=4sEN Refresh rate: @ Page size: 100~ Max pages: Unlimited~ Allow non-collocated joins

Enforce join order

The output result of the query can be found below.

INTERVAL TOTAL
WEEKLY 32125.43
QUARTERLY 330585.15
SEMIANNUAL 653551.01
MONTHLY 117929.7
ANNUAL 6735.88

Show query

29

6.3 Query 3: Update all rows of a single column (apply discount)
In this query the aim is to explore the performance of an UPDATE statement on the entire table with
3,120,000 rows. We will update the entire ContractItem table and add a 5% discount to all items.

6.3.1 SQL

UPDATE ContractItem SET discount_rate = discount_rate + 5;

6.3.2 Apache Ignite

Since the query involves only a single cache, the same SQL can be executed as-is in Ignite’s Web
Console application.

© Apply Discount # x

1 UPDATE ContractItem Caches:
2 SET discount rate = discount rate + 5;

5 (O AccessoryCache
O ContractCache
@ ContractltemCache
(O CustomerCache
(O InvoiceCache
O InvoiceltemCache
O ItemCache
O ItemInstanceCache

(i

[][Explain Refresh rate: @ Page size: 100~ Max pages: Unlimited~] Allow non-collocated joins

1 Enforce join order

7 Benchmark results

In the following section we summarize the benchmark results.

7.1 Query 1 result

The benchmark result of Query 1 is summarized in the table below.

ID | Ranon Topology Time Total
rows
inserted

1 | Ignite cluster 1 local node Om50.4s | 292,780

2 | Ignite cluster 2 local nodes 1m47.6s | 292,780

3 | Ignite cluster 3 local nodes 2m44.7s | 292,780

4 | Ignite cluster 4 local nodes 7m05.3s | 292,780

5 Ignite cluster 3 local nodes, 1 remote node 19m40.4s | 292,780

6 | Ignite cluster 3 local nodes, 2 remote nodes | 23 m08.7s | 292,780

7 | SQL Server Stored Procedure | n/a O0m09.0s | 292,780

Table 3 Query 1 benchmark results

We ran Query 1 using a mix of topologies: some with remote nodes, some without, to compare the
performance as we modify the topology of the cluster.

30

Time (Seconds)

3L 3L1R 3L2R

IGNITE

Figure 28 Query 1 benchmark results (chart)

1 Local node vs Stored Procedure comparison

As we can see, the best performance is seen on the SQL Server stored procedure, which ran for 9
seconds versus Ignite’s one-node execution (50.4 seconds) — see results {1, 7} in Table 3. We believe
it is due to the following reasons:

e The stored procedure was using an INSERT INTO SELECT query which just copies data from
one table to another with a simple computation inside (multiplication). On the other hand,
the Ignite implementation requires the use of cursors and looping over all results individually,
doing the calculation, and writing the result back.

e Second, the stored procedure is executing on the same database server as the data. On the
other hand, although the Ignite implementation is ran on the same machine as the SQL Server
database, we believe that the overhead in loading the data into Ignite’s in-memory data
structure is a contributing factor to its slower performance.

e Third, SQL Server caches the query plan the first time a query is executed. On the other hand,
ad-hoc queries can also be cached but may be evicted due to memory usage [6]. The
procedure was not defined with the WITH RECOMPILE option, which means that the stored
procedure’s query plan was cached. [7]

e Fourth, using Ignite involves overhead that do not apply to the stored procedure. For example,
data in Ignite caches all need to be SERIALIZABLE for transmission between nodes. This
marshalling-unmarshalling of data is just one of the overhead operations that do not apply to
the stored procedure implementation.

e Fifth, Microsoft SQL Server is a commercial database product in existence since 1989. Over
the decades it has been optimized to perform well in scenarios like this. In contrast, Apache
Ignite was launched in 2015 and could probably still be optimized to perform better.

31

Local node only comparisons

Inspecting the results among the local Apache Ignite executions (see results {1, 2, 3, 4} in Table 3), we
can observe that the execution time rises proportionally with the number of nodes in the cluster. We
believe this is due to the following reason:

e The implementation of the domain objects is not collocated. We tried to implement affinity
keys but it requires an object key, whereas the generated key from Web Console is a simple
Integer, which does not satisfy the requirement for defining affinity keys. [8] This means that
any join performed requires multiple broadcast messages to retrieve the missing data, as
described in section 2.3 under Distributed Joins.

Local node and remote node comparisons

Lastly, inspecting the results between local nodes and remote nodes (see results {3, 4, 5, 6} in Table
3), we can see that adding a remote node increases the run time. We believe it is due to the following
reasons:

e Similar to the previous analysis, the main culprit is non-collocated joins.

e The first reason is worsened by the fact that the broadcast and data transfers are happening
over a network.

e The network over which the cluster nodes were connected is a Wi-Fi network. It is known that
Wi-Fi networks have higher latency and interference versus wired Ethernet. [9] We would be
interested to retest the benchmark over a wired network.

7.2 Query 2 result
The benchmark result of Query 2 is summarized in the table below.

ID | Ranon Topology Time Total rows selected
1 | Ignite cluster 3 local nodes 0m05.9s Inner join of 3 tables with
(1120000 x 1208713 x 408193)
rows
2 | SQL Server Query n/a 0mO02.3s Inner join of 3 tables with
(1120000 x 1208713 x 408193)
rows

Table 4 Query 2 benchmark results

Here we find a similar scenario than in Query 1 wherein SQL Server is still faster than Apache Ignite.
This is due to the same results as in Query 1, namely: affinity keys are not defined; non-collocation of
query joins; serialized data for inter-node transmission.

32

7.3 Query 3 result

The benchmark result of Query 3 is summarized in the table below.

ID | Ranon Topology Time Total rows updated
1 | Ignite cluster 2 local nodes 9m45.0s 3,120,000
2 |saL n/a 0m25.4s 3,120,000

Table 5 Query 3 benchmark results

Query 3 is a single table operation that updates a single column. We expect that the Ignite update

operation will take more time because it needs to update the cache in addition to the database
update. However, at almost 10 minutes in Ignite vs. 25 seconds in SQL Server, the time difference is
significant. We were not expecting the time difference to be this severe because the Ignite nodes were

in a local cluster, and there is no table join in this query. Because it is difficult to interpret these results,

we will need to run more tests to see if this behavior is consistent.

7.4 Additional: Ignite cache loading
As a side note we are listing some run times for loading the entire database into memory. Please refer

to Table 1 in section 0 for the amount of records in the database.

ID | Ranon Topology Time

1 | Ignite cluster 1 local node 3mO04.0s
2 | Ignite cluster 2 local nodes 5m47.0s
3 | Ignite cluster 3 local nodes 9mO03.0s
4 | Ignite cluster 4 local nodes 12m 10.0s
5 | Ignite cluster 3 local nodes, 1 remote node 10m54.0s

1L

Table 6 Ignite cache loading time

Time (Seconds)

2L 3L 4L 3L1R

Figure 29 Ignite cache loading (chart)

We definitely see a correlation between the number of nodes and the time it takes to load the cache.

We can observe this in runs {1, 2, 3, 4}. We can attribute this to load balancing of partitions/shards

across nodes in the cluster.

33

However, the load time of {5}, where the topology includes 1 remote node, is not as severe as what
we saw in the benchmark results of Query 1 in section 7.1. We cannot draw a conclusion from this
behavior as yet; we will need to execute more tests to verify whether this is an intermittent
occurrence.

8 Development experience

As with any technology, the development experience is also an important consideration in a decision
to adopt any library. One should choose a library that not only satisfies your technical requirement,
but also aligns with other factors such as maintenance activity, ease-of-use, availability of developer
skills, etc. In this section we briefly go through these factors and give a rating in this aspect of
technology selection.

8.1 Open source vs closed source

In choosing a technology we must consider the how our dependency on the library will play out over
the long term. In closed-source projects one has to pay licensing fees, and there is a risk that the
company will end development and/or support to the product, which could be troublesome as it could
necessitate significant development work to eliminate the dependency when those events happen.
Therefore it is often a good idea to use open source libraries.

As mentioned in section 2, Ignite became an official Apache open source project since 2015. The latest
version (2.3.0) was released in 31 October 2017, one and a half months after the previous release
(2.2.0 in mid-September). Below is a summary of the last ten Ignite releases and their rcl release dates
[10].

Version Release Date
2.3.0 (rcl) 2017 Oct 27
2.2.0 (rcl) 2017 Sep 11
2.1.0 (rcl) 2017 Jul 13
2.0.0 (rcl) 2017 Apr 28
1.9.0 (rcl) 2017 Feb 28
1.8.0 (rcl) 2016 Dec 1
1.7.0 (rcl) 2016 Aug 1
1.6.0 (rcl) 2016 May 18
1.5.0 (rcl) 2015 Dec 1
1.4.0 (rcl) 2015 Sep 24

Table 7 Apache Ignite release dates

As can be seen here, Apache Ignite releases a new version approximately every 2-3 months. This
frequency is at par with other “hot” libraries of today such as Apache Spark, or other popular in-
memory databases like Memcached [11] or Redis [12].

As a side note, GridGain Systems, Ignite’s original developer, operates a business around Apache Ignite
in two ways: selling enterprise-grade features or through support contracts. Below is a screenshot of
GridGain’s pricing model [13].

34

Soluti Open Standard Standard Premium Premium
olution . . . "
Source Professional Enterprise Enterprise Ultimate
Software Apache GridGain GridGain GridGain GridGain
Ignite Professional Enterprise Enterprise Ultimate
Edition Edition Edition Edition
Maintenance Releases LY 4 (v 4 (v 4 (¥ 4
Hot Bug Fixes (v 4 v (v 4 v 4
Enterprise Features v (v 4 <
Cluster Snapshots (v 4
Support Hours (Phone or x5 9x5 24x7 24x7
Online)
SLA 1Business Day 1 Business Day 1 Hour 1 Hour
Unlimited Support Incidents (v 4 < (¥ 4 (¥ 4
Installation/Upgrade Assistance (V4 v (¥ 4
Software Indemnification (V4 (v 4 (¥ 4

Figure 30 GridGain Pricing

8.2 Developer community

In choosing a library or a technology it is important to also assess the activeness of the developer
community in implementing new features, upgrades or fixing issues. This can be measured through a
few metrics such as the number of commits, size and demographics of the community, etc. [14]

The following figures show the available data on the Apache Ignite GitHub repository in

https://github.com/apache/ignite.

November 17, 2017 — December 17, 2017

Overview

117 Active Pull Requests 0 Active Issues

®0

Closed Issues

in0
Merged Pull Requests

w17
Proposed Pull Requests

Excluding merges, 48 authors have 100
pushed 148 commits to master and 264
commits to all branches. On master, 899 50

files have changed and there have been

Period: 1 month

®o

New Issues

0
34,648 additions and 8,078 deletions. LEVEREL SRENAE M
1 117 Pull requests proposed by 46 people

Figure 31 GitHub Pulse Report on the Apache Ignite repository [15]

35

https://github.com/apache/ignite

INFOH415 — In-Memory databases with Apache Ignite

Feb 16, 2014 - DEC 17, 2017 Contributions: Commits v

Contributions to master, excluding merge commits

400
300
200

100

April July October 2015 April July October 2016 April July October 2017 April July October

Figure 32 Contributions to master since Ignite open-sourcing in 2014 [16]

200
150
100

50
0 I_||IlIIIlul|||IIII-ll'IIIIlI-I-.II-IIhl.-l-.n.ll

1225 0115 0205 02/26 03/19 04/09 0430 05/21 06M11 07/02 07/23 0813 0903 0924 1015 11705 1126 '12’17

Figure 33 Commit frequency, year-to-date [17]

Q shoikov # L= devozerov #2
= 2,329 commits 1,594,648 ++ 1,229,926 -- =N 1,397 commits 770,786 ++ 694,924 —-
200 200
100 100
MA_A.L‘-‘A.A._ IO SO W " L_ I PP S
April October April October April October April Octobel April October April October April October April October
! agoncharuk # | yzhdanov #
1,305 commits 270,682 ++ 232,097 -- 879 commits 70,079 ++ 96,902 --
200 200
100 100
maha o widd - -~ (W N " O .
Apil Octaber April October April October April October Apil October April October April October April October
ﬁ svladykin # , akuznetsov-gridgain #
7 811 commits 219,967 ++ 178,266 -- 749 commits 241,968 ++ 209,685 --
200 200
100 100
PPN S A aa B [P ¥ - B
Apil October April October April October April October Apil October April October April October April October

Figure 34 Most active contributors [16]

8.3 Developer support
Over the course of the development of our POC we had many questions that is not directly addressed
in the documentation. In times like these it is crucial to have a network of other developers who can

36

respond to your questions, especially when working with a library that one has no prior experience in.
For this we turn to the popular Q&A site StackOverflow. Depending on the question we usually receive
a response within a few days. (Fun fact: the most frequent responder to our questions is a Lead
Architect from GridGain systems)

There are 6,001 questions relating to “ignite” in StackOverflow, which is less than a similar search for
other in-memory libraries such as Redis (47,128) or Memcached (24,073).

Questions Developer Jobs Tags Users ignite
results found containing ignite
Search
6,001 results relevance newest votes active
0 Q: How to set text in center in react native
votes ready to ship. For everyone else, this is where you'll see a live preview of your fully functioning app using
Ignite. </Text> </View=), 1} .
android react-native asked 13 hours ago by Williams
-1 Q: Storing uploaded file on server and the link to it on DB [on hold]

| am working with Code Igniter 3 framework. | need the frontend users to be able to upload files (images, pdf,
mp3s, audios, vidoes etc.). The file must be stored in the server and the link to it shou ..

asked 18 hours ago by Rik Namchoom

0 php mysgl database file-upload codeigniter-3
answers
0 Q: Apache Ignite - difference of affinityRun vs affinityCall

What is the difference between the affinityCall and affinityRun methods? The doc doesn't say:
https://apacheignite.readme.io/docs/affinity-collocation And the javadoc is nearly identical: /** * Ex ..

asked yesterday by aol

Q9 e % =

Ask Question

Advanced Search Tips

Hot Network Questions
& Idiom meaning to talk about something everyone
already knows

@ Is there an official way to effectively carry a holy
symbol without breaking Vow of Poverty?

& Single word request for exercise book

Why is writing down mathematical proofs more
fault-proof than writing computer code?

\ Difficult student would dispute every grade in
the course and now wanis letter of
recommendation

° Solve a limit without I'Hopital
S Variable scope usage in C++

How to avoid damaging waterlogged lawn in
winter?

Airport security check: who are agents who
performs the check?

I

ignite Can the UK realistically back out of Brexit?
answers
=§ Why does AWS recommend against public $3
buckets?
0 A: Ignite @AffinityKeyMapped for cache keys that are integers [S] Did a boy die after masturbating 42 times?
tes field name via CacheKeyConfiguration [1]. However note that this still requires a composite object to be used Q Why do two colons in bash result n three?
as a key. [1] https://ignite.apache.orgreleases/latest/javadoc/org/apache/ignite/cache
ICacheKeyConfiguration_html E Does a conditional statement depending on a
answered yesterday by Valentin Kulichenko round number introduce timing attack problems?
M What s the root word of "Refactoring"?
0 Q: Can we create Ignite In memory Table with purging \ A student forgot to answer an exam question

Figure 35 Searching for "ignite" in StackOverflow

GridGain Systems also hosts frequent webinars on Apache Ignite that are both technical and non-
technical on a range of topics, such as Ignite essentials, architecture, and specific use cases of in-
memory computing platforms. We found these webinars to be very useful and provide a chance to
ask Ignite questions to senior architects from GridGain. [18]

8.4 Documentation

The Apache Ignite documentation [1] is comprehensive and easy-to-read once you understand the
basic concepts behind distributed data storage. Any configuration is explained with an accompanying
code snippet in both Java and Spring XML. Additionally, the GitHub repository provides an ignite-
examples subproject which one can use as reference for complete code examples.

8.5 Tooling
As shown in section 5.3, the Web Console is a very useful tool in understanding the configuration
options behind an Ignite cluster and its caches. The live preview of form changes is particularly useful

37

if one already has an existing project but would like to configure a specific feature without
regenerating the configuration files.

Additionally, the Queries section also works very well for ad-hoc querying of cache data. It provides
the ability to query the entire cluster, or specific nodes, and supports both collocated and non-
collocated joins.

® Contract # x

O InvoiceCache

O InvoiceltemCache
O ItemCache

O ItemInstanceCache

w P Execute on selected node J54dEN: Refreshrate: @ Page size: 100~ Max pages: Unlimited~ Allow non-collocated joins

[Enforce join order

1 jselect count(*) FROM ({ Caches: =
2 SELECT c.contract id, ci.contract item id, ci.price per day, ci.discount rate

3 FROM Contract c, ContractItemCache".ContractItem ci - - OAccessoryCache

4 WHERE c.contract_id = ci.contract_id @® ContractCache

5 AND c.billing interval = 'MONTHLY' O ContractltemCache

& BND c.start date <= '2006-01-31" O CustomerCache

7 BAND (c.end date = "9999-12-31' OR '2006-01-31' < dateadd (DAY, 1, c.end date))

8

)

Figure 36 Web Console Queries page

Apache Ignite also comes with a simple command-line tool called Ignite Visor which lets you do simple
monitoring on the cluster, such as printing the cluster topology, node statistics, CPU and memory
allocation, size of the caches; it also provides the ability to start or kill remote nodes.

We also tested using Ignite’s JDBC driver for querying cache contents. DBeaver is a universal SQL client
that connects to the caches through Ignite’s JDBC Driver. Results were spotty... sometimes it does not
work (we get a parsing error on the SQL statement). Moreover, browsing the database from the
Database Navigator is currently not yet supported.

¥
Eile Edit Navigate Search SQL Editor Database Window Help
| @00 EL3&: vi &1 Auto |® v g Apache Ignite - GOLL v |12 <None>
'@ Database Navigator 2 . = Projects L] g | B ~ = 0O | El Apache Ignite - New Connection =l Connections
Type table/view name to filter select * from Accessory
~ ¢ Apache Ignite - GOLDIE
I Tables
| Views
Indexes
Procedures

Data Types

. 'y Error executing query [m] X
Apache Ignite - Sergio

'0 Query execution failed
4

Reason:
Failed to query Ignite.

o [CEEE

Failed to query Ignite.
Error server response: [req=JdbcQueryExecuteReguest [schemaName=null, pageSize=1024, maxRow|
Error server response: [req=)dbcQueryExecuteRequest [schemaName=null, pageSize=1024, maxRow|

Figure 37 Querying the Ignite cache from DBeaver

38

As for the coding experience, writing lambda expressions for iterating over ScanQuery results has

been challenging because errors only show up during runtime, not in compile time. However, this may

be attributed to the developers’ relative inexperience with Java 8 lambda expressions in general.

9 Apache Ignite vs. other in-memory distributed databases

How does Apache Ignite stack up against other similar in-memory distributed databases? GridGain

Systems has a few studies on this topic, as well as benchmark results, which are summarized in the

sections below.

9.1 Feature comparisons

From GridGain’s product comparison page [19] we selected a few key features which are summarized

in the table below.

Apache
Ignite
(GridGain)

Hazelcast

Oracle
Coherence

Pivotal
GemFire

GigaSpaces

SQL Queries

Continuous Queries

Distributed SQL Joins

Query Consistency

Query Fault Tolerance

JDBC Driver

ODBC Driver

Data Streamer

00000000

00000000

00000000

00000000

Table 8 Product Comparison - Apache Ignite vs other in-memory distributed databases

As we can see from the above table, some core Ignite features is not even implemented in other in-

memory databases. We believe this makes Apache Ignite a strong candidate to be used as a general

purpose in-memory database.

9.2 Performance comparisons

The only available benchmark results on the GridGain website is against Hazelcast.

GridGain vs. Hazelcast Performance Summary

Deadlock Free Transactions: 53% - 65% higher operations/sec throughput

Transactional Operations: 30% - 57% higher operations/sec throughput

Atomic Operations:

Put Benchmark: Up to 21% higher operations/sec throughput

Put and Get Benchmark: Depending on configuration, either GridGain or Hazelcast

performed slightly better

SQL Query: 13% - 40% higher operations/sec throughput

Figure 38 GridGain vs Hazelcast Performance Summary

39

As can be seen in the figure above, GridGain asserts better performance over Hazelcast. For more
information please refer to the GridGain vs Hazelcast benchmark page [20].

10 Conclusion

Based on this study we have the following conclusions.

First, the benchmark results for Query 1 showed that SQL stored procedures still have an edge over
in-memory databases for this specific use case. However, we need to evaluate those results with a
grain of salt, because the implementation in this study does not use affinity collocation (see section
7.1). Other observations stem from the benchmark results in adding local nodes and remote nodes.
We can see that execution times are slower when more nodes are added, and significantly slower
when remote nodes are added. Local-only clusters perform faster than clusters with remote nodes.
This is due to several factors, as laid out in section 7. Given the hype around distributed processing in
recent years, we should not always assume that it is a one-size-fits-all solution that works well in any
use case. We think it is important to conduct a POC like this study to prototype key operations and
check actual results before making a decision to adopt a technology.

Additionally, in-memory distributed storage requires configuration that may add complexity to an
application. Each decision in the cluster and cache configuration needs to be assessed, because the
optimal configuration or topology may vary depending on the size and read/write frequency of the
data, as well as on compute job to be executed. Some jobs may require fast reads, and so a
REPLICATED cache mode may be best; on the other hand, other jobs may require fast updates, where
the PARTITIONED cache mode performs well. This needs to be balanced with the actual hardware
resources available on the cluster. Apache Ignite provides sophisticated configuration options to fine-
tune these settings but the design of the clusters and the caches need to be analyzed carefully to
arrive at the optimal configuration that balances performance and cost.

We like that Apache Ignite is an open source library that is also backed by a company who can provide
enterprise-grade features and support. In developing the prototype we appreciate the resources and
documentation found online. However, this information is mostly concentrated in one or two sites or
message boards, unlike more popular libraries where there are numerous blogs discussing the
technology. Some GridGain engineers are actively responding to StackOverflow questions, however
we wish that Apache Ignite would gain a larger following to increase the pool of developer support.

40

11 Bibliography

[1]

(2]

3]

[4]

(5]

(6]

(7]

(8]

[9]

"What is Ignite? In-Memory Computing Platform," [Online]. Available:
https://apacheignite.readme.io/docs/.

"Addons and Related Solutions for Apache Ignite," [Online]. Available:
https://ignite.apache.org/addons.html.

"Apache Ignite Web Console - Getting Started," [Online]. Available: https://apacheignite-
tools.readme.io/docs/getting-started.

"Apache Ignite difference between ignite.getOrCreateCache() vs ignite.cache()," [Online].
Available: https://stackoverflow.com/questions/47740611/apache-ignite-difference-between-
ignite-getorcreatecache-vs-ignite-cache.

"Apache Ignite Code Examples," [Online]. Available:
https://github.com/apache/ignite/tree/master/examples.

"Does SQL server optimize or pre-parse stored procedures?," [Online]. Available:
https://dba.stackexchange.com/questions/6534/does-sql-server-optimize-or-pre-parse-
stored-procedures.

“Improving query performance with OPTION (RECOMPILE), Constant Folding and avoiding
Parameter Sniffing issues," [Online]. Available:
https://blogs.msdn.microsoft.com/robinlester/2016/08/10/improving-query-performance-
with-option-recompile-constant-folding-and-avoiding-parameter-sniffing-issues/.

"Ignite @AffinityKeyMapped for cache keys that are integers," [Online]. Available:
https://stackoverflow.com/questions/47839555/ignite-affinitykeymapped-for-cache-keys-
that-are-integers.

"Wi-Fi vs Ethernet: Which Internet Connection Is Better And Why?," [Online]. Available:
https://fossbytes.com/wi-fi-vs-ethernet-comparison-features/.

[10] "Apache Ignite Releases," [Online]. Available: https://github.com/apache/ignite/releases.

[11] "Memcached releases," [Online]. Available:

https://github.com/memcached/memcached/releases.

[12] "Redis releases," [Online]. Available: https://github.com/antirez/redis/releases.

[13] "The GridGain Enterprise Edition," [Online]. Available:

https://www.gridgain.com/products/software/enterprise-edition.

41

[14] "Top 5 open source community metrics to track," [Online]. Available:
https://opensource.com/business/15/12/top-5-open-source-community-metrics-track.

[15] "Apache Ignite Pulse Report," [Online]. Available:
https://github.com/apache/ignite/pulse/monthly.

[16] "Apache Ignite - Contributions to master, excluding merge commits," [Online]. Available:

https://github.com/apache/ignite/graphs/contributors.

[17] "Apache Ignite Commit Activity," [Online]. Available:
https://github.com/apache/ignite/graphs/commit-activity.

[18] "Learn About In-Memory Computing," [Online]. Available:
https://www.gridgain.com/resources/webinars.

[19] "Compare GridGain and Apache® Ignite™ to Other In-Memory Computing Solutions," [Online].

Available: https://www.gridgain.com/resources/product-comparisons.

[20] "GridGain vs. Hazelcast® Benchmarks," [Online]. Available:
https://www.gridgain.com/resources/benchmarks/gridgain-vs-hazelcast-benchmarks.

42

