UNIVERSITE LIBRE DE BRUXELLES

ADVANCED DATABASES

WINTER SEMESTER 2017-2018

Object-relational mapping tools
and Hibernate

Authors:

Bruno BALDEZ CORREA
Matricule ULB: 000456738
Yue WANG

Matricule ULB: 00000000

Supervisor:
Prof. Esteban ZIMANYI

December 20, 2017

Contents

1

Object-relational database

1.1 Necessity of object relational database

1.2 Evaluation of object relational database
1.2.1 Extensibility o000
1.2.2 Reusability
1.2.3 Productivity
1.2.4 Performance L.

1.3 Comparison with object database and relational database

Object-relational mapping

2.1 ORM Paradigm Mismatch Problems

2.2 Entity Mapping

2.3 Java Persistence API (JPA)
2.3.1 JPA advantages.

Object-relational mapping tools

3.1 Open JPA
3.1.1 Data remote transmission / offline processing
3.1.2 Database / object view unified tool
3.1.3 Use cache to improve efficiency

3.2 EclipseLink

3.3 Hibernate
3.3.1 Hibernate Mappings

Use Case
4.1 Scenario Diagrams Lo
4.2 Tmplementation

Conclusion

R W W ww NN

o~ O ot

1 Object-relational database

The idea of object-relational database was raised in early 1990s. A research team
add object-oriented concepts to relational database. Early commercial products
appeared in mid-1990s. IBM, Oracle and some other companies developed early
products like Illustra and UniSQL and so on. [§]

The object-relational database (ORD) is a combination of object database
and relational database (RDB). It inherits advantages from both database mod-
els like a middle man. It supports the basic components of any object-oriented
database model in its schemas and the query language used, such as objects,
classes and inheritance. It is like a relational database but with an object-
oriented database model. In ORD, the basic approach is based on RDB, since
the data is stored in a traditional database and manipulated and accessed using
queries written in a query language like SQL. [12]

The aim of this technology is to act as a bridge to link conceptual data
modeling techniques for relational and object-oriented databases like the entity-
relationship diagram (ERD) and object-relational mapping (ORM).

Relational DB 1 Relational DB 2 Relational DB 3

Cached /O
Cached I/O ¢ Cached /O

‘ Object-oriented \

database / proxy

I

Applications

Figure 1: Object-oriented database. Source: [7]

1.1 Necessity of object relational database

When it comes to the necessity of ORG, first it is necessary to clarify the
disadvantages of mere relational database and object-oriented database.

The first drawback of relational database is because of its dominant relational
language SQL-92. It has limited support to different types of variables, mostly

only numbers and strings while the needs of object type were becoming more
important. Another problem is the structure. Relational database provides flat
table structure and few supports to complicated structures like nested structures
in order to do better query. Also, the trend of software engineering is to use
object oriented methods, which brings a need to adopt object oriented ideas
into database.

Using object-oriented database can be an option. However, other concerns
may raise as well. Object-oriented database comes along with object-oriented
languages. Though it can integrate better with OO languages, it may be a
problem in return to tie database too closely with application. Also, there is
not a certain standard of design model for this way of database development.

1.2 Evaluation of object relational database

Object relational database which tries to integrate advantages of above two
databases but exclude the disadvantages can be a good choice. It adopts SQL
language but adds many new variable types by using general object oriented
languages like C++ or Java, which means it allows users to introduce new class
as types. ORD also has object-oriented features like inheritance and polymor-
phism. In all, ORDs extend the functionality of DBMS products significantly,
and an information system using an ORDBMS can be deployed over multiple
machines.[3]

To evaluate, some criteria are considered. We evaluate the advantages and
disadvantages in terms below.

1.2.1 Extensibility

Object Relational Database has a good extensibility to adding new variable
types by using features of object-oriented methods. For example, complex data
types with characteristic data types, data specification by texting, new data
type creation and user-defined types are all allowed and possible. [11]

1.2.2 Reusability

Another advantage of object relational database is the reusability. It is very
easy for users to reuse their codes to some other applications, such as data
types, objects, class libraries, even without data access code. This is because
instead of coding in each application, users can define the types in the database
itself.[13]

1.2.3 Productivity

In the development of application using object relational database, you could
save the time for data access code. Although the whole amount of the code may
go up, but the data access codes are automatically generated according to the
model your defined. [1]

1.2.4 Performance

The performance of object relational database may be the main issue because
of this kind of database. Because it generates data access code directly and
those codes are sometimes even more complicated than your hand-write codes.
Also it may take more time for the data interaction between application layer
and database. Though it is a small portion of the whole, a test whether it is
acceptable for your application is still necessary.

1.3 Comparison with object database and relational database

To sum up the advantages and disadvantages between object database, rela-
tional database and object-relational database, here is a table of the analysis in
different dimensions.

Object Database | Relational Object-
Database Relational
Database
Extensibility | Complex Data | Simple data types Complex Data
types; User self- types; User self-
defined types defined types
Reusability Data types can be | None Data types can be
reused reused
Query Lan- | Good integration | SQL, a powerful | Good integration
guages with programming | query language with programming
languages languages and SQL
User Expe- | No standard mod- | Well developed | Well developed
rience eling style, hard to | model system, easy | model
measure to follow
Performance | Data access codes, | Direct query which | Using mapping
taking more time is more efficient tools
Security No security support | Strong security | Strong security
support support based on
relational database

Table 1: Databases comparison table

2 Object-relational mapping

In between the concepts of object-relational database, which were explained in
the previous section, we can visualize the need for technologies, techniques and
tools to support the interpretation of objects created within the program code
and their relationship with the relational database. Object-relational mapping,
also known as its acronym ORM, is the name given to the layer that uses these
tools, technologies and techniques to map data objects in the programming
language/application to relations and tables of the database.

Accordingly to King and Bauer [3], ORM, works by transforming data from
one representation to another what implies in some performance lose. However,
with ORM implemented as middleware, developers would have many opportuni-
ties to optimize it what therefore hand-coded SQL layers would not offer. With
management and provision of the metadata responsible for the transformation,
there gain in development time, but it became uncountable once there is less
costs involved than maintaining a hand-coded solution. In this way, an ORM
solution consist of four pieces, figure 2.

API for performing basic CRUD operations on objects of
persistentclasses

Language/API for mapping

Facility for specifying mapping metadata

Optimization functions such as dirty checking and lazy
association fetching.

Figure 2: ORM solution pieces. Source: Based on [3]

2.1 ORM Paradigm Mismatch Problems

In front of talking about examples of mapping tools and entity mapping in the
application, is necessary to understand some of the known problems about the
ORM that were common before the development of tools that nowadays are
capable to handle it.

Problem Description

Granularity Granularity in relational databases is limited and can

Associations In application, associations are represented by objects

Data navigation | In SQL this requires joins and selects while in the ap-

only be implemented at two levels.

Subtypes As inheritance is widely used in object oriented lan-
guages is necessary to understand that generally rela-
tional databases do not completely support it and when
they do they do not adopt a standard syntax.

Identity Even that in the database tables each tuples represent
a unique record in application level is possible that two
of those are considered equal by comparing methods of
the programming language.

references while in relational databases there is need to
do it by using foreign keys.

plication it can be done by gettes and setters methods.

2.2

Table 2: Paradigm mismatch problems. Source: Based on [15]

Entity Mapping

Entity, which is identified by an identity, is a persistent domain object. The
relationship between entity and table is that an entity class maps to a table in
database. Correspondingly, each instance of the entity is a tuple of the table.
From Thomas Stoltmann [10], an Entity refers to a logical collection of data
that can be stored or retrieved as a whole, and it follows the these requirements:

Annotated with the javax.persistence.Entity annotation

Have a public or protected, no-argument constructor

Not be declared final, including methods or persistence instance variables
May extends both entity and non-entity classes

Persistence instance variables (fields) must be declared private, protected
or package-private, and can be accessed directly by the entity class meth-
ods

There are four different kinds of mappings: @OneToOne; @ManyToOne;
@OneToMany; @ManyToMany. The @JoinyColumn and @JoinTable mappings
can be used to join columns and tables

persist

commit
rollback® new
persist/roliback™

roliback

refresh

commitiroliback/close

Figure 3: Entity’s lifecycle. Source: [10]

2.3 Java Persistence API (JPA)

As object-oriented data models are widely used, the mapping of object-oriented
entities to relational database tables (ORs) has been increasingly seen in the
design and development of various types of applications [6]. The JPA (Java
Persistence API) is a standard developed by Sun Microssystems for mapping
Java data objects to relational database objects. JPA makes up for JDBC,
ORM, EJB2 and other Java object persistence deficiencies, and is very easy to
use. JPA requires extensive support for new features in Java languages such as
annotations and generics, and requires J2SE 1.5 (also known as Java 5) or later
support.

JPA defines a set of classes and interfaces for implementing persistence man-
agement and object / relational mapping. The diagram below shows the main
components of JPA and their interrelationships [2].

java.persistence
| EntityManager Factory () Entity Transaction OI

*
E « Query |
I Ol 1 O
I Persistence I

ki

Entity I

Figure 4: Main components and their relationship. Source: [6]

The figure above can be interpreted as the following:

e EntityManagerFactory is the factory class of EntityManager, respon-
sible for creating EntityManager object.

e EntityManager is the basic object used in JPA applications, which pro-
vides the corresponding method that can manage persistent objects. You
can also create or delete persistent objects. EntityManager is also respon-
sible for creating Query instances. When it is used outside of a container,
there is a one-to-one relationship between the EntityManagerFactory and
the EntityManager.

o EntityTransaction Entity operation provides the necessary transaction
management, and EntityManager is a one-on-one relationship. You do not
need to use EntityTransaction in the query operation, but in the case of
object persistence, status updates, object deletion, etc., you must manage
the transaction using explicit methods that use EntityTransaction.

e Query is the interface of the query entity. Query object can be obtained
from the EntityManager. According to the EJB 3.0 specification, Query
interface needs to support both JPQL and native SQL syntax.

e Persistence is a utility class that creates EntityManagerFactory objects
based on parameters provided by the configuration file.

2.3.1 JPA advantages

JPA standard development process has fully absorbed all the advantages of
all the persistence technologies that have emerged so far, leaving aside their
limitations and making JPA stand out for its ease of use and query capabilities

[2].

e Standardization: JPA is one of the Java EE standards promulgated by
the JCP organization. So any framework that claims to conform to the
JPA standard follows the same architecture and provides the same access
API, which ensures enterprise applications based on JPA development can
be changed with minor changes JPA framework to run.

e Support for container-level features: JPA framework support for
big data sets, transactions, concurrency and other container-level trans-
actions, which makes JPA beyond the limitations of simple persistence
framework, play a greater role in enterprise applications.

e Easy to use, easy to integrate: One of JPA’s main goals is to provide
a simpler programming model: creating entities in the JPA framework is
as easy as creating Java classes without any restrictions or restrictions, re-
quiring only annotations using javax.persistence.Entity; JPA’s framework
and interfaces are also very simple, without too many special rules and de-
sign patterns, developers can easily grasp. JPA is based on non-intrusive
design and can be easily integrated with other frameworks or containers.

e Great capabilities of query: JPA defines a unique JPQL (Java Per-
sistence Query Language), JPQL is an extension of EJB QL, it is a query
language for the entity, the operation object is an entity, rather than a
relational database table, and can support batch updates and Modify,
JOIN, GROUP BY, HAVING usually only SQL can provide advanced
query features, and even can support subquery.

e Advanced features of object-oriented support: JPA can support
advanced object-oriented features, such as inheritance between classes,
polymorphism and complex relationships between classes, this support al-
lows developers to maximize the use of object-oriented model of enterprise
applications design, and do not need their own The persistence of these
features in the relational database is handled.

3 Object-relational mapping tools

The transparency concept in ORM tools, according to Bodden [9], is still very
vague. Most tools are not truly transparent but provide a separation of objects
persistency behind very simple object-oriented constructs. Object-relational
Mapping tools remove mapping classes to databases complexity. This tools pro-
vide interfaces which can automatically do selects, updates, inserts and deletes
on tables in the database system reflecting changes made to the object model.
Below are some examples of the mapping tools using Java. We select three
examples out of a long list. Especially we will adopt one of them, Hibernate, to
implement our use case.

3.1 Open JPA

Apache’s OpenJPA is one of the most popular implementations of Java per-
sistence today. Apache OpenJPA is a Java persistence technology under the
Apache Software Foundation that can be used as a standalone POJO (Plain
Old Java Object) or integrated into any Java EE-compliant container or other
lightweight framework (Such as Tomcat, Spring) and so on together [2].

3.1.1 Data remote transmission / offline processing

The JPA standard provides operating environments that are "local” and ”on-
line.” Local means that the EntityManager in the JPA application must be
directly connected to the specified database, and must be in the same JVM as
the code that uses it. Online means that all entity-specific operations must be
run within an EntityManager scope. These two features, combined with the fact
that EntityManager is nonserialized and can not be transported over the net-
work, which causes JPA applications fail to adapt to the C / S implementation
pattern in enterprise applications. OpenJPA extends this part of the interface
to support remote data transfer and offline processing.

3.1.2 Database / object view unified tool

When using OpenJPA to develop enterprise applications, keeping database and
object view consistency is a very important task. OpenJPA supports three
modes to handle database and object view consistency: forward mapping, re-
verse mapping, Meet-in-the-Middle Mapping, and provides them with the ap-
propriate tools to support them.

e Forward mapping refers to using the org.apache.openjpa.jdbc.meta.MappingTool
tool provided in the OpenJPA framework to generate the corresponding
database tables from the developer-provided entities and the object / re-
lational mapping annotations provided in the entity.

e Reverse mapping refers to the org.apache.openjpa.jdbc.meta.ReverseMappingTool
tool provided in the OpenJPA framework that generates JPA-compliant

10

entities and corresponding object / relational mapping annotations from
database tables.

e The middle match is the developer responsible for creating the database
table, JPA-compliant entities, and the corresponding object / relational
mapping annotations, using the org.apache.openjpa.jdbc.meta.MappingTool
tool provided in the OpenJPA framework to verify that both are consis-
tent.

3.1.3 Use cache to improve efficiency

Performance is one of the focuses of enterprise applications, and caching is
one of the important means to improve the performance of enterprise systems.
OpenJPA provides a variety of levels and aspects of the cache support for data
persistence, including data, queries, assembler query cache. These caching appli-
cations can greatly improve the operational efficiency of enterprise applications.

3.2 EclipseLink

Based on TopLink, contributed by Oracle, EclipseLink is an open source Eclipse
persistence service that aims to provide a complete and pervasive persistence
solution. It provides an extensible framework that allows Java developers to
interact with various data services including databases, web services, OXM, en-
terprise information systems (EIS). EclipseLink supports some standards of the
persistance API, including [4] [U+FF1A] (1) Object-Relational (JPA);(2) NoSQL
(NoSQL Databases, and EIS); (3) Java Connector Architecture (JCA); (4)
MOXy: Object-XML (JAXB) Object-JSON; (5) DBWS: Database Web Ser-
vices; (6) Service Data Objects (SDO);

EclipseLink persistence platform consists of several components, such as
EclipseLink-ORM, EclipseLink-OXM, EclipseLink-SDO, EclipseLink-DAS, EclipseLink
DBWS, EclipseLink-XR, EclipseLink-EIS. Also, EclipseLink provides a com-
plete JPA EJB3.0 compatible implementation. It offers full compatibility for
all mandatory features, many optional features, and some extra features. Ad-
ditional non-mandatory features include: object-level cache, distributed cache
coordination, extensive performance tuning options, enhanced Oracle Database
support, advanced mappings, optimistic and pessimistic locking options, ex-
tended annotations and query hints. EclipseLink provides support for EJB 3.0
container-based deployments, including web containers and other non-EJB 3.0
Java EE containers.

We can perform EclipseLink JPA’s object-relational mapping using meta-
data annotations, using XML, overwriting and merging XML, Defaulting Prop-
erties, configuring entities, declaring basic attribute mappings, mappings, map-
ping inheritance, and using embedded objects.

e Use meta annotations: You can use annotations to configure the
persistent behavior of the entity. For example, to specify a Java class as
a JPA entity

11

e Use XML: We can use XML mapping metadata, metadata annotation,
or you can overwrite metadata annotations.

e Overwrite and merge XML: You can use EclipseLink’s native meta-
data xml file, EclipseLink-ORM.XML, to override the mapping of the
orm.xml configuration file defined in JPA and provide the ORM feature for
the EclipseLink extension. The EclipseLink-ORM.xml file defines object-
relational mapping metadata, which is built from an existing orm.xml file,
which makes it more intuitive, low-profile, and easy to overwrite.

e Property default value: Each annotation has a default value (refer
to the JPA specification). The default for a persistence tool definition is
for most applications. You only need to provide the value to override the
default value. Therefore, it is not necessary to provide a configuration
value, but an exception. This is called a configuration exception.

e Configure the entity: You can configure the identity of your entity,
as well as the entity’s phase-locked technology and sequence generation.
Each entity must have a persistent identity, which is equivalent to the
primary key of a database table to store the state of the entity.

3.3 Hibernate

“Hibernate ORM enables developers to more easily write applications whose
data outlives the application process. As an Object/Relational Mapping (ORM)
framework, Hibernate is concerned with data persistence as it applies to rela-
tional databases (via JDBC)”. [14]

Application Lightweight Architectu
| Transient POJOs @ onuelgHt Arehecture
@ Fully Integrated Architecture
|
Persi: P0JOs X
Hibernate o~
g
j < t
Session Factory | Creates Session Factory
I Transaction H Connection ﬂ
ﬁ 8 ? ﬁ 8 ?
< -
8 8
Transaction Connection
Factory Provider
J2EE
JDBC JCA JNDI JMX JTA

Figure 5: Hibernate Architecture. Source:[9]

12

As we can observe from Figure X, Hibernate Session Factory is one of the
most important concepts of this ORM tool. The Section Factory is the respon-
sible to receive the database information and manage it’s connection retrieving
the Hibernate Section. With the Hibernate Session is possible to perform SQL
operations such as insert, update or deletes in a easy way, just like dealing
with objects from Java classes. This classes should be mapped in a way that
the Hibernate can understand and then translate to the appropriated query
operations. When accessed inside the application the Hibernate Session object
represent the bridge between application and database.

3.3.1 Hibernate Mappings

Hibernate also adopts Java Persistence API mappings syntax, the concepts of
Hibernate and JPA mapping actually mix themselves in it’s implementation
once that some sources says that Java persistence API (JPA) was heavily influ-
enced by Hibernate [5].

Hibernate offers to the developer two options of mapping: (1) mapping with
annotations inside the classes, figure 6; (2) mapping using XML files and Hi-
bernate Syntax, figure 7.

@Entity

Example {

@Id
Integer id;
String name;

Figure 6: Hibernate Annotation mapping example.

""-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate. sourceforge.net/hibernate-mapping-3.0.dtd"

default-access="field">

name="Example">
<id type="int" column="id">
< class="native"/>
</ >
< name="name" type="string"/>
</ >
</ >

Figure 7: Hibernate .hbm.xml mapping example

For the development of this study we will adopt only the .hbm.xml mapping
as the default mapping for Hibernate use. Hibernate uses the mapping metadata
to find out how to load and store objects of the persistent class.

13

The mapping file should be readable and hand-editable and the .hbm.xml file
is Java-centric what in another words means that the XML mapping are build
around the Java class persistence. The XML specifies each class to it’s referee
table as well as properties and columns its types and restrictions. Operations
performed through HIbernate are simple and transparent to the developer. As
said before this operations are made using Hibernate Session, the bridge between
application and database, figure Z.

Example ex Example();
ex.setName("Advanced Database Project");

Session session = HibernateUtil.openSession();

Transaction tx = session.beginTransaction();
session.save(ex);

tx.commit();

session. close();|

Figure 8: Hibernate Operation Example

14

4 Use Case

In this chapter, a real example using object-relational database with Hibernate
mapping tool will be presented. We will using a web application to show a
scenario. The implementation will be in Java. The entity relationship model,
database schema, as well as initial data and samples will be given in the case.
And we will give some tests in order to see the performance of object relational
database and hibernate mapping tool.

Scenario description As many students of BDMA are looking for accomoda-
tion in Barcelona, we are using the scenario of a house renting website to show
the installation, application and performance of object-relational database.

The system has three different kinds of users:landlord, tenant, admin. For
different users, it provides different functions.

For the landlord, he/she can register his/her basic information into the
database, as well as the property information. All the information will be stored
and shown to the tenants. When the landlord is logged in, he/she can check
whether there is request of rent to his/her property. Once there is, the land-
lord could check the information of tenants then decide to approve or decline.
He/she can upload information of more than one property. Also, one property
could get more than one request. All the requests will be sent to the landlord
and decided by him/her.

For the tenants, they can register their own personal information into the
database and browse all the related property resource. The tenants could check
the information of the property and the landlord to decide whether he/she wants
to rent the property. Once they find some properties interesting, they could
apply directly to the landlord. A tenant could send one or more applications to
one or more landlords.

The admin has access to all the database. He/she could browse all the infor-
mation of the landlords and their properties, as well as the tenants’ information.
Also, the admin has the access to every transaction to see whether there is any-
thing abnormal. He/she also has to check the information of both sides to make
sure that they are true and effective information.

At first, the process of direct contact between landlord and tenant is expected
to happen outside of the web application. Only when submitting a lease request
the tenant will get to see the landlord contact information, telephone and email.
Same occurs for landlord, only when he/she receive the request the contact
information of tenant will be available. Is expected that the landlord approve
or decline tenant request after they have contacted each other. Once the request
is approved, the property will be removed from the available properties period,
until the lease finishes or landlord cancel it in the system.

4.1 Scenario Diagrams

As mentioned before the procedure is like the following:

1. First landlords register their personal information and post their proper-

15

ties online;

2. Tenants could see all suitable property resources after signing up and
logging in, accessing all the details of the property in the database;

3. Once the tenants find suitable housing, he/she click the button to apply,
system will send the request to the landlord, then the landlord could have
access to the information of the tenant in the database;

4. The landlord will decide whether to approve or not;

5. Once the landlord approves the request, the property is removed from the
available properties list until the end of the lease or lease cancellation by
the landlord.

Based on the procedure above, the Entity Relationship Model was developed
as following:

UserType
id: PK
name
oo TenantDetails
id: PK |d; P
firstName mg;%ﬂge;t
lastName 9
gender
username
email
phone
userType: FK
tenantDetails: FK
Property
Lease

id: PK
bedroomN id: PK
bathroomN months
livingroomN tenant: FK
kitchenN propertyld: FK
description status
price
status
owner: FK

Figure 9: User Case ER Diagram

Also the Classes Diagram was elaborated to support the use case develop-
ment using Java, Hibernate and Spring Framework.

16

TenantDetails

+tenantDetails: TenantDetails

+properties: perti

Property
+bedroomN: Integer
+bathroomN: Integer
+livingroomN: Integer
+kitchenN: Integer
+furished: boolean

+description: String

Lease

—— + property: Property

+tenant: User

+stanDate: Date

+ endDate: Date

+minBudget: float
Entity User
- + float
+id: Integer +firstName: String
—>{ + user: User
+LastName: String
T +gender: String
EntityName +usemame: String
+name: String +password: String
+emall: String
+phone: String

+ price: float + status: Enum<LeaseStatus>

+owner: User

+images: ListeString>

+status: Enum<PropertyStatus>

Figure 10: User Case Class Diagram

4.2 Implementation

To implement the described scenario, technologies such as Eclipse IDE, MySQL,
Hibernate and Spring Framework were used. In this section, we want to focus
on the use of the Hibernate ORM tool, showing its functionalities and power.
As mentioned on section 4.1.4 Hibernate supports different types of mapping
for Java classes (notations mapping and XML mapping). For this example, we
make use of XML mapping, creating .hbm.xml files that correspond to the .java
classes in the models package, figure 11.

17

L2 Navigator 2% 5] v =8
» B5 settings
B main
v src
v = main
v s java
¥ s com
¥ B advdb
¥ IS controller
J UserController.java
v s dao
J GenericDao.java
J GenericDaolmpl.java
¥ = model
Entity.java
EntityName.java
Gender.java
Lease.java
Property.java
TenantDetails.java
User.java
¥ s service
v s impl
J UserServicelmpl.java
J UserService java

e e e e e

¥ = resources
¥ s com
v I advdb
¥ = mapping
X| lease.hbm.xml
|X] property.hbm.xml|
X| tenantDetails.hbm.xml
X| user.hbm.xml|
X] hibernate.cfg.xml
v 5 webapp

Figure 11: Project backend structure.

What we want with this scenario implementation is to show the usability of
Hibernate and how much it can make the relationship developer / application /
database different by means of simplicity. The project created was a Java Maven
Web Project, what generates the structure showed on the previous picture. After
the creation, the dependencies for Spring and Hibernate (figure x) were added
on the pom.xml file. This make all the functionalities of theses 2 tools available
in the whole scope of the project.

28 <l-- https://mvnrepository.con/artifact/org. hibernate/hibernate-core -->
29@ <dependency>

30 <groupld>org. hibernate</groupld>

31 <artifactId>hibernate-core</artifactld>

32 <version>5.2.6.Final</version>
3 </dependency>

Figure 12: Hibernate dependency

The following images show the mapping of the classes created for the use case
and its mappings in .hbm.xml. On these examples we are going to see different
types of mapping and how they are handled by the Hibernate framework.

Also the Hibernate Operations where used in a generic class that has been
reused for the necessary methods of the application.

18

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE hibernate-mapping PUBLIC

-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

Awn e

5
6@ <hibernate-mapping>
e <class name="com. advdb.model.User" table="users">

e <id nome="id" type="int" column="id">

9 <generator class="increment" />

10 </id>

1le <property name="firstName">

12 <column name="firstName" not-null="true"/>

13 </property>

l4@ <property name="lastName">

15 <column name="LastName" not-null="true"/>

16 </property>

17

130 <property name="gender">

19 <column name="gender" not-null="true"/>

200 <type name="org. hibernate. type.EnumType">

21 <param name="enumClass ">com.advdb.model . Gender</param>
22 <param name="type">12</param>

23 <param name="useNamed">true</param>

24 </type>

25 </property>

60 <property name="username">

27 <column name="username” unique="true” not-null="true"/>
28 </property>

29@ <property name="password">

30 <column name="password" not-null="true"/>

31 </property>

20 <property name="email">

33 <column names="email" unique="true"/>

34 </property>

350 <property name="phone">

36 <column name="phone"/>

37 </property>

e <property name="userType">

39 <column name="userType" not-null="true"/>

40 </property>

4le <one-to-one name="tenantDetails" class="com.advdb.model.TenantDeta:
12 cascade="save-update"></one-to-

Be <set name="properties" table=

44 inverse="true" lazy="true" fetch="select"
459 <key>

46 <column name="id" not-null="true" />

47 </key>

48 <one-to-many class="com.advdb.model.Property" />
49 <Ssets

50 </class>

51 </hibernate-mapping>

Figure 13: Hibernate User class mapping

1 package com.advdb.dao;
2
30 import java.util.List[]
18

19 @Repository
20 public class GenericDaoImpl implements GenericDao{
21

220 @Autowired

23 private SessionFactory sessionFactory;

2

250 @SuppressWarnings("unchecked")

26 public <T> T save(final T o){

27 return (T) sessionFactory.getCurrentSession().save(0);

28 1

29

1308 public void delete(final Object object)ff

31 sessionFactory.getCurrentSession().delete(object);

32

3

34 Vasadd

356 public <T> T findById(final Class<T> type, final int id){

36 return (T) sessionFactory.getCurrentSession().get(type, id);
37 3

38

396 public <T> List<T> findALl(final Class<T> type, Criterion... criterions) {
140 Criteria crit = i 'y .getC ionQ). iteria(type);
41 for(int x=0; x<criterions.length; x++){

42 crit.add(criterions[01);

43

44 return crit.listQ;

45 3

46

47 3}

Figure 14: Hibernate Operations

19

1 Package com.advdb.service.impl;

3oimport java.util.list;[]

15

16 @Service("UserService")

17 public class UserServiceImpl implements UserService {
18

19e @Autowired

20 private GenericDao dao;

21

22e@ @Transactional

23 public User findById(int id) {

24 return (User) dao.findById(User.class, id);
25 }

26

27@ @Transactional

28 public List<User> findAl11(Q) {

29 return dao.findAll(User.class);

30 }

31

32e@ @Transactional

33 public List<User> findAllAdmins() {

34 Criterion crit = Restrictions.like("userType", 1);
35 return dao.findAll(User.class, crit);

36 }

37

38@ @Transactional

B9 public List<User> findAllTenants(Q) {

40 Criterion crit = Restrictions.like("userType", 2);
41 return dao.findAll(User.class, crit);

42 }

43

Figure 15: Hibernate Operations Use

20

5 Conclusion

Hibernate makes the development of applications much more practical. Its easy
syntax and the pre-defined handle operations makes it easier for the developer
to code.

Hibernate mainly solves the object-relational impedance mismatch, the his-
tory of hibernate and ORM tools are very bounded together. Hibernate has
huge influence over the paradigm as well as the JPA convection.

Also, for being there for many years Hibernate is the best bet for an ORM
tool to be used with Java, once that it has been here in the market for several
years now. In this way, Hibernate has a a big community out there as well a
long source of resources trough all its versions.

The methods provided by Hibernate makes the CRUD operations less repeti-
tive and all other Hibernates practices can make the difference in the application
development time.

However, points made, Hibernate sometimes is understood as a villain when
performing the operations over the database, once that its generated code can
implies in performance lost over huge databases.

21

References

[1] 4 Benefits of Object-Relational Mapping (ORM) — Official Blog. http:
//blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-
relational-mapping-orm/. (Accessed on 11/24/2017).

[2] Apache OpenJPA EJB 3.0 [U+FF0C]1 OpenJPA EJB 5.0. https://wuw.
ibm . com/ developerworks/cn/ java/j-1lo-openjpal/index . html.

(Accessed on 11/24/2017).

[3] Christian Bauer and Gavin King. Java persistence with Hibernate: revised
edition of Hibernate in action. Manning, 2008.

[4] EclipseLink [U+FF14]JPA [U+3001]JAXB [U+3001]JCA SDO ORM. http:
//hao. jobbole.com/eclipselink/. (Accessed on 12/20/2017).

[5] Hibernate: save,persist, update, merge — Baeldung. http://www.baeldung.
com/hibernate - save - persist - update - merge - saveorupdate. (Ac-
cessed on 12/20/2017).

[6] JPA Annotation OR Mapping. https://www.ibm.com/developerworks/
cn/java/j-lo-jpa-anntation/index.html. (Accessed on 11/24/2017).

[7] Multi-database object-oriented proxy - Database Administrators Stack Ex-
change. https://dba. stackexchange . com/questions /728 /multi-
database-object-oriented-proxy. (Accessed on 11/24/2017).

[8] Object-relational database. Dec. 2017. URL: https://en.wikipedia.org/
wiki/Object-relational_database.

[9] Brian Sam-Bodden. Beginning POJOs: from novice to professional. Apress,
2006.

[10] Thomas Stoltmann. Object-relational Mapping. URL: https://www.informatik.
hu-berlin . de/de/forschung/gebiete /wbi/teaching/archive /
ws1314/sp_semtext/07_ORM.pdf.

[11] The Advantages of Object Relational Database — Techwalla.com. https:
/ /www . techwalla . com/ articles / the - advantages - of - object -
relational-database. (Accessed on 11/24/2017).

[12] What is an Object-Relational Database (ORD)? - Definition from Techo-
pedia. URL: https://www.techopedia.com/definition/8714/object-
relational-database-ord.

[13] What is Object-Relational Database Systems? Advantages and Disadvan-
tages of ORDBMSS. http://ecomputernotes.com/database-system/
adv-database/object-relational-database-systems. (Accessed on

11/24/2017).

[14] Your relational data. Objectively. - Hibernate ORM. http://hibernate.
org/orm/. (Accessed on 12/20/2017).

[15] Haseeb Yousaf. “Performance evaluation of Java Object-Relational Map-
ping tools”. PhD thesis. 2012.

22

http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
https://www.ibm.com/developerworks/cn/java/j-lo-openjpa1/index.html
https://www.ibm.com/developerworks/cn/java/j-lo-openjpa1/index.html
http://hao.jobbole.com/eclipselink/
http://hao.jobbole.com/eclipselink/
http://www.baeldung.com/hibernate-save-persist-update-merge-saveorupdate
http://www.baeldung.com/hibernate-save-persist-update-merge-saveorupdate
https://www.ibm.com/developerworks/cn/java/j-lo-jpa-anntation/index.html
https://www.ibm.com/developerworks/cn/java/j-lo-jpa-anntation/index.html
https://dba.stackexchange.com/questions/728/multi-database-object-oriented-proxy
https://dba.stackexchange.com/questions/728/multi-database-object-oriented-proxy
https://en.wikipedia.org/wiki/Object-relational_database
https://en.wikipedia.org/wiki/Object-relational_database
https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/teaching/archive/ws1314/sp_semtext/07_ORM.pdf
https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/teaching/archive/ws1314/sp_semtext/07_ORM.pdf
https://www.informatik.hu-berlin.de/de/forschung/gebiete/wbi/teaching/archive/ws1314/sp_semtext/07_ORM.pdf
https://www.techwalla.com/articles/the-advantages-of-object-relational-database
https://www.techwalla.com/articles/the-advantages-of-object-relational-database
https://www.techwalla.com/articles/the-advantages-of-object-relational-database
https://www.techopedia.com/definition/8714/object-relational-database-ord
https://www.techopedia.com/definition/8714/object-relational-database-ord
http://ecomputernotes.com/database-system/adv-database/object-relational-database-systems
http://ecomputernotes.com/database-system/adv-database/object-relational-database-systems
http://hibernate.org/orm/
http://hibernate.org/orm/

	Object-relational database
	Necessity of object relational database
	Evaluation of object relational database
	Extensibility
	Reusability
	Productivity
	Performance

	Comparison with object database and relational database

	Object-relational mapping
	ORM Paradigm Mismatch Problems
	Entity Mapping
	Java Persistence API (JPA)
	JPA advantages

	Object-relational mapping tools
	Open JPA
	Data remote transmission / offline processing
	Database / object view unified tool
	Use cache to improve efficiency

	EclipseLink
	Hibernate
	Hibernate Mappings

	Use Case
	Scenario Diagrams
	Implementation

	Conclusion

