
INFO-H-415 : Advanced Databases
Logs collection and analysis with

Elasticsearch

Rémy Detobel – 000 408 013

December 2017 Alexis Reynouard – 000 410 614

page 1

Contents

1 Case study 4
1.1 Context . 4
1.2 Current system . 4

2 Desired system properties 5
2.1 Robustness . 5
2.2 Solution lifetime . 5
2.3 Responsiveness . 5

3 Comparison of different solution 5

4 Elasticsearch and the Elastic Stack 6
4.1 Elasticsearch overview . 6
4.2 The Elastic Stack . 7
4.3 Key concepts . 8

4.3.1 Document . 8
4.3.2 Index . 8
4.3.3 Near Real-time . 9
4.3.4 Cluster and nodes . 9
4.3.5 Shards . 9

4.4 Main properties . 10
4.5 Kibana . 10
4.6 Logstash & Beats . 11

4.6.1 Logstash plugin . 13
4.6.2 Beats . 13

4.7 X-Pack . 13

5 Concrete example: EZCast 14
5.1 Situation . 14
5.2 Problem . 15
5.3 Configuration of Elasticsearch for EZCast 15

5.3.1 Filebeat . 16
5.3.2 Logstash . 16

5.3.2.1 Grok . 16
5.3.2.2 Date . 17
5.3.2.3 Mutate . 17

page 2

5.3.2.4 Enhance configuration 17
5.4 Data visualisation . 18

5.4.1 Data visualisation Example: User’s OS and browser 19
5.4.2 Data visualisation Example: help page views 20
5.4.3 Data visualisation Example: Most watched video 21
5.4.4 Dashboard . 21

5.5 Queries . 21
5.5.1 Simple filter . 22
5.5.2 Aggregation . 23

5.6 Machine Learning . 24

6 Conclusion 25

A Annex 29

page 3

In this work we aim to show a practical approach to log collection and analysis. We
would like the solution presented to meet the usual needs of today’s businesses and
companies, both in terms of quality requirements and implementation costs.

1 Case study

1.1 Context

Every day students and professors of the ULB use the IT services as part of studies,
teaching and research. This is done through various services like ULBPodcast,
MonULB, mobile app, etc.

The ULB IT service wish to gather as much data as possible from these various
sources for the usual purpose of logging (like security, debugging and profiling ap-
plications) but also in order to extract and visualise statistical informations
for use by teachers and authorities of the ULB.

All of these services record lot of data, several hundred log lines per minute. Thus
it is several tens of mega recorded and may be couple of giga every day. So the
system must be highly scalable .

The action required by the system maintainers in response to an update of these
data sources should be as minimal as possible in order to keep extracting consistent
statistical informations without requiring a lot of work from maintainers.

Some data should also be visible in near real time, for example the status of a
service or the detection of an error. Therefore these data have to be present in
search results quickly and it should be possible to automatically trigger events
from them.

Replication must also be possible in order to not loose informations.

1.2 Current system

Today lot of these data are recorded in files. Thus it is easy to make some basic
backups, however it is difficult to access and analyse these data.

Some test were done on a MySQL database with 1 000 000 entries (number of
logs after 10 day’s) but some query takes more than 5 minutes. It is too long to

page 4

create some graph or to display some information on the website. Currently the
statistic are pre-process (one process per day).

With the solution we propose here, the same query runs in less than 5 seconds,
more than 60 times faster.

2 Desired system properties

2.1 Robustness

The solution provided must ensure data persistence. Therefore the solution must
be scalable and have the ability to realise data replication, fast or instant crash
recovery, etc.

2.2 Solution lifetime

To avoid having to rebuild the system or part of it frequently, the solution should
provide not only a robust must also an adaptive system. Otherwise, each update
of a service whose logs are collected may require an update of this log collection
and analysis service. One should also be able to (re)configure only part of the
system to adapt it to his needs. For example, the set up of a new way to visualise
data should not interfere with the collection of these data. Thus we will prefer a
modular system.

2.3 Responsiveness

It seems obvious that data have to be accessible through the database very quickly
after their generation by services. When we say "quickly", its means that we must
not wait 10 minutes to have a result or a chart. Some information also need to
be “ near real time”, to see if there is a crash or any other problem.

3 Comparison of different solution

The most famous database to store logs are: MongoDB, Cassandra and Elastic-
search. MongoDB is one of the most popular document stores and offer a com-

page 5

plete flexibility on the data stored. Cassandra is a Wide column store database
optimised to write access and to hold huge amount of data. Elasticsearch is an
analytic and search engine.
All three are open source, works on lot of OS and support lot of programming
languages. They all provide a more flexible way to store data than usual relational
database (by the way they manage the schema). However, the datastructure on
MongoDB is completely flexible while on Elasticsearch a minimal structure is re-
quired on the document indexed. Cassandra on his side is said “schema-optional”.
Thus, MongoDB is great to deal with unstructured data. However Elasticsearch
provide much better performances to search and analyse high volume of data and
Cassandra is far better to write data.

For the database manager, Cassandra handle queries written in a SQL like syntax
in opposite with MongoDB or Elasticsearch which use more JSON format. How-
ever MongoDB use its own protocol and Elasticsearch provide a REST API. The
two have their pro and cons.

Note that all data stored in these databases are persistent and may be replicated
and distributed, but Elasticsearch handle these configuration almost automati-
cally. This way Elasticsearch is able to respond to local failure without maintainer
actions nor any prior configuration. However, it worth to note that Elasticsearch
works on top of Lucene which does not store checksum of all data. So data
integrity is mostly ensured by the replication itself or the underlying OS.

For our purposes we have chosen to use Elasticsearch because it offers modularity,
adaptivity, ease of use and a lot of analytical aspects. However we see that
Elasticsearch need lot of resources and requires several servers to work well.

4 Elasticsearch and the Elastic Stack

4.1 Elasticsearch overview

Among many other solutions, Elasticsearch seems to fit our needs best.

Elasticsearch is a highly scalable open-source full-text search and analytic
engine.

Elasticsearch is a database used to store, search and analyse big volumes of

page 6

data.

First of all, Elasticsearch is a document oriented database, as opposed to a re-
lational database. In a few words, this means that the data structure is more
flexible. We will describe in more detail what this means when presenting the
key concepts of Elasticsearch below (see 4.3). Let us already notice that, as logs
are poorly structured data, this seems really appropriate for logs storage. For
example, if a software update add a new datum in its log lines, it is not required
to update the datastructure itself. Sometimes one will have to (re)configure some
modules or other programs Elasticsearch work with. But in general this is less
heavy and more maintainable because the updates to performs are well encapsu-
lated.

This allows to manage a lot of logs from various services with the minimum effort,
as well as to adapt to update of any of these in the shortest possible time.

4.2 The Elastic Stack

Actually, Elasticsearch is the core of a groups of softwares called the “Elastic
Stack”.

While Elasticsearch handle the data themselves, the other main components per-
form tasks to allow to include Elasticsearch in any realistic environments. Most
of these components are highly modular and configurable. Modules are here to
provide specifics functionalities.

Let us very quickly present these components and their respective role, from the
official documentation:

Kibana Kibana is an analytic and visualization platform designed to work with
Elasticsearch. You use Kibana to search, view, and interact with data stored
in Elasticsearch. You can easily perform advanced data analysis and visualize
your data in a variety of charts, tables, and maps. More details are given in
4.5.

Beats Platform The Beats are data shippers that one can install as agents on
his servers to send data from different sources to Elasticsearch. Beats can
send data directly to Elasticsearch or send it to Elasticsearch via Logstash,
which can be used to parse and transform the data (see figure 1). More
details are given in 4.6.

page 7

Logstash Logstash is a data collection engine with real-time pipelining capa-
bilities. Logstash can dynamically unify data from disparate sources and
normalize the data into arbitrary destinations. More details are given in 4.6.

Logstash is able to collect data not only from log or other usual data sources,
but from a wide variety of events like HTTP events, messages queue services
(e.g. Amazon SQS)

X-Pack X-Pack is an Elastic Stack extension that bundles security, alerting,
monitoring, reporting, and graph capabilities. It provide functionalities that
span over the other components. X-Pack come also with machine learning
capabilities useful to detect (and eventually fix) anomalies in the data.

4.3 Key concepts

Like any system, Elasticsearch has its own specific properties and its own vocab-
ulary. These specific terms will be explained as they occur through the docu-
ment. However lets already introduce the main terms and concepts of the Elastic
Stack.

4.3.1 Document

A document may be view as a record of traditional relational database systems.
In Elasticsearch, document are viewed as JSON object 1, although it is often
automatically created from another type of text, like a line from a log file.

4.3.2 Index

An index corresponds roughly to a table in an usual relational database, in the
sense that it groups together documents with similar characteristics.

Note however that an index do not define any attributes for its documents. In
other words, there is no “columns”. An index is more like a collection of data
that have somewhat similar characteristics. This is a key concept as it allows
a great flexibility needed to adapt quickly to new configurations. However, the
structure is kept by the mean of the common attributes of the documents inside
the index.

1To describe briefly, a JSON object is a set of 〈key, value〉 tuples. Each key is a string, each value may be
a string, a number, a boolean, a null, an array of these types or another JSON object

page 8

Thus, Elasticsearch does not restrict you about the number or the name of column.
You could send different document with different format and Elasticsearch will
automatically try to recognise and interpret them. However, datatype values with
the same key have to be coherent. This is required by Elasticsearch in opposite
to other NoSQL database, to allows better search and analyse performances.

Each documents must be indexed. The indexation is done only once: when the
document first arrive in the database.

4.3.3 Near Real-time

Near real-time is a core feature of Elasticsearch. This means that it take about
one second (on a realistic database) between the time a document is indexed and
the moment it become searchable.

4.3.4 Cluster and nodes

Elasticsearch is a distributed database organised in clusters . Thus a single
database is a group of (one or more) servers connected together and identified
by a unique name. A cluster is useful to have load balancing and more CPU
power.

Each server in the cluster is called a node . Usually, each node runs an Elastic-
search instance. It participate in the cluster’s indexing and search capabilities.
The configuration is transparent to the user. Internally, each node may be re-
sponsible for some data and keeping a backup of other data. There is also a
(automatically or user-defined) master which receive and redirect queries.

4.3.5 Shards

Even if it is out of the scope of this presentation, it worth noting that an index
does not have to fit on a single node (main or/and secondary) memory. Indeed,
Elasticsearch is able to subdivide the indexes into small pieces called shards .
Shards are fully-functional and independent by itself. Thus sharding not only
allows you to split your indexes into several nodes, but also to distribute operations
across shards (potentially on multiple nodes) thus increasing performance.

page 9

4.4 Main properties

Elasticsearch and the Elastic Stack are highly configurable.

It is well integrated with a great number of systems. For example installation
may be done with Homebrew on macOS, MSI installer on Windows, rpm or deb
packages on linux and on docker. Large deployment may be done with tools like
Ansible.

To communicate, Elasticsearch provide a REST API. Thus you could simply make
a HTTP request (with curl for example) or use Elasticsearch API (Java, C#,
Python, JavaScript, PHP, Perl, Ruby). For instance, to see the cluster health,
you could make the following command:

curl -XGET ’localhost:9200/_cat/health?v&pretty’

And the response will be something like that:

epoch timestamp cluster status node.total node.data
1512122482 11:01:22 elasticsearch yellow 1 1

shards pri relo init unassign pending_tasks max_task_wait_time
31 31 0 0 31 0 -

active_shards_percent
50.0%

Here we could see that the status of the server is yellow. It is because there are
only one node on this network/cluster. Thus they have not replication of the data
and then no security.

4.5 Kibana

Kibana is an interface to view data contained into Elasticsearch database. It may
be compared to phpMyAdmin / phpPgAdmin for mySQL/PostgreSQL but offer
more graphical tools and other capabilities due to the document based architecture
of Elasticsearch.

Kibana is used to manage the databases easily, and quickly analyse its content.

page 10

Figure 1: Communication between beats, Logstash and Elasticsearch (from the official documenta-
tion)

You can create indexes, query for specific data, update them, delete, realise ar-
bitrary queries, visualize and analyse through graphs, create graph and compose
them to create boards, automatically create reports (thanks to an X-Pack add-on)
etc.

In practice Kibana is very user friendly. You create first an index in the Manage-
ment part and then you can Discover the data, Visualize them with different
charts, group this charts on a Dashboard . Finally you have the Dev Tools
where you can directly execute arbitrary queries.

4.6 Logstash & Beats

To fill the database one can use the REST API or type commands in the Kibana
interface. But Elasticsearch was designed with ease of use in mind. So, to send
data to the database, you should use beats to collect them and Logstash to struc-
ture them and send them to Elasticsearch.

In practical there is no interface with Logstash. You can just edit the configura-
tion. The configuration depend a lot of the beats that you use and of the plugin

page 11

that you use.

Let us present on figure 2 a basic configuration of logstash.

1 input {
2 beats {
3 port => "5043"
4 }
5 }
6 # f i l t e r {
7 #
8 # }
9 output {

10 e l a s t i c s e a r c h {
11 host s => " l o c a l h o s t :9200"
12 manage_template => f a l s e
13 index => " te s t−%{+YYYY.MM. dd}"
14 document_type => "%{[@metadata] [type]}"
15 }
16 stdout { codec => rubydebug }
17 }

Figure 2: Logstash configuration

It is quite intuitive: the configuration is composed of two parts: input and
output . There is also an optional section filter, here commented out. This
configuration will listen on the port 5043 for beats connections. They are here
two outputs: Elasticsearch and stdout. The first connect to Elasticsearch and
send data to the "test-YYYY.MM.dd" index, the second is only here to debug
purposes: it displays on the screen the data sent. One can use the filter part to
filter out some data or performs transformations on data, for example in order
normalise it. The filter part allow you to select data which must be send or change
the format of these data.

Beats could send data directly to Elasticsearch or send it to Logstash which will
parse, filter and structure them to transfer them to Elasticsearch. There are lot of
Beats ready to use in the Elastic Stack: Filebeat (send file content), Winlogbeat
(send Windows event logs), Metricbeat (send data about your operating systems
and services running on your servers), apachebeat (send stats from Apache), ama-
zonbeat (send data about a specific product), mysqlbeat (run SQL command and
send result)...

page 12

4.6.1 Logstash plugin

Logstash get data from beats (see point 4.6.2) and send them (usually) to Elas-
ticsearch. But it could filter the data and also parse them. To make this second
point, Logstash need some plugin. For instance there exist a plugin to parse
csv data or to check duplicates event, to perform DNS reverse or to parse any
unstructured data.

4.6.2 Beats

Beats are designed to be lightweight, easy to develop and to not require a lot of
resources. Usually the configuration of beats is not complex. Indeed, the beat
send the data to further processing and persistent storage. The computing part
is not on the beat.

Here you have for instance the Filebeat2 configuration used to send the file
testfile.log (located in a home) to Logstash

1 f i l e b e a t . p ro spe c to r s :
2 − type : l og
3 enabled : t rue
4 paths :
5 − /home/ user / t e s t f i l e . l og
6

7 output . l o g s t a sh :
8 # The Logstash hos t s
9 host s : [" l o c a l h o s t : 5 043"]

Figure 3: Example of configuration of Filebeat

4.7 X-Pack

X-Pack is an extension that can be installed on each module of Elastic Stack. This
add-on contains security, machine learning, graph drawing, alert, monitoring, ...
All the functionalities added by X-pack are accessible through Kibana.

2https://www.elastic.co/products/beats/filebeat

page 13

https://www.elastic.co/products/beats/filebeat

5 Concrete example: EZCast

5.1 Situation

To spread video, ULBPodcast uses the open source solution EZCast3. This appli-
cation store videos to serve and data about user interactions. By default ezcast
does not record user interaction, to enable this user interaction recording, you just
need to change one line in the file config.inc in the commons folder (figure 4).

1 // −− Traces −− //
2 $trace_on = true ; // determines whether we want to enable t r a c e s on ac t i on s or

not

Figure 4: EZCast configuration: trace enabled

These data are called “traces”. Currently, each user interaction is translated into
a trace and each trace is store in a file. There are one file per day. The figure 5

1 2017−11−16−00:01:23 | b25v5ik93cnrc4mr2jh0emmoi5 | 109 . 131 . 47 . 227 | no log in | 4
| video_play | PHYS−H−100−pub | 2013_01_17_12h52 | 1827 | 416 | cam | high |
from_shortcut

Figure 5: Example of trace

shows you the structure of a trace. Data fields are delimited by the "|" symbol.
The six first elements are fixed: time, PHP session, ip address, netid (or nologin
if not know), level and action. The other elements depend on the action. The
“level” information let us know where was the user when he makes this action
(more info in the table 1).

0 unknown
1 login page
2 course list
3 list of videos (for one course)
4 video player

Table 1: Description on each level of EZCast

3https://github.com/ulbpodcast/ezcast

page 14

Figure 6: Deployment of Elasticsearch with EZCast

5.2 Problem

To analyse and summarize all of these data, we must load each file and count,
sum, etc. all the information needed to make a report. This take lot of time and
required lot of memory. With a SQL database the problem is that there are too
much data of various forms and that the structure may change with new versions
of EZCast. There are more or less 100,000 lines per day. EZCast was launched
four years ago and this system exists since three years. Thus, there are now:
3× 365× 100, 000 = 109, 500, 000 lines. And each year it is 36500000 lines that
we must add (maybe more because we can collect more informations).

For these reasons and the observations made before we think that Elasticsearch
is a good alternative.

5.3 Configuration of Elasticsearch for EZCast

Elasticsearch can be distributed on different servers (see point 4.3.5). One possi-
bility is to separate all different components, like show on the figure 6. We have
four servers, one with EZCast (where the students watch the videos) and Filebeat
which send trace data to another server which runs Logstash for further process-
ing. On the Logstash server, various plugins are configured. Logstash send the
processed data to Elasticsearch (on another server). To view the data we use one
last server with Kibana.

This configuration does not overload the servers but we must have four of these.
Thus for this report we test another configuration: one server with Logstash,
Elasticsearch, Kibana and another with EZCast and Filebeat. Note that all these
product may require a lot of resources.

page 15

5.3.1 Filebeat

First of all we must configure Filebeat and indicate where are the EZCast traces
and how to send them to Logstash. See point 4.6.2 for more informations and
figure 3 for an example of how to specify this port in Filebeat.

5.3.2 Logstash

We will configure Logstash to listen to all the messages sent by Filebeat. Like
shown in figure 2, we just have to specify the port. We also have to tell Logstash
where to send the resulting data. In this case we want that he send it to Elastic-
search, the example configuration (on point 2) already do this.

In the figure 5 we can see that the EZCast traces contains multiple informations
separated by the symbol "|". Thus we must configure Logstash to parse these
data. All the traces in EZCast start with the same informations: timestamp,
session, ip, netid, level, action and then optional informations (maximum 10).

5.3.2.1 Grok
To parse these traces we will use the plugin Grok 4. This plugin allows to use
regex to parse the log. For example one can add the following configuration in
the filter part of the Logstash configuration file:

1 grok {
2 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rn s "]
3 match => {
4 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP : ip }

\ | %{WORD: net id } \ | %{NUMBER: l e v e l : i n t } \ | %{WORD: ac t i on }(\ | %{ANY: elem1}
?) ? (\ | %{ANY: elem2} ?) ? (\ | %{ANY: elem3} ?) ? (\ | %{ANY: elem4} ?) ? (\ | %{ANY:
elem5} ?) ? (\ | %{ANY: elem6} ?) ? (\ | %{ANY: elem7} ?) ? (\ | %{ANY: elem8} ?) ? (\ | %{
ANY: elem9} ?) ? (\ | %{ANY: elem10} ?) ?"

5 }
6 }

Grok use regex to parse the data. Here we use default patterns offered by grok,
like IP, WORD or NUMBER. But we have also defined custom patterns like ANY or
CUSTOM_TIMESTAMP in the file /etc/logstash/patterns.

4https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

page 16

https://www.elastic.co/guide/en/logstash/current/plugins-filters-grok.html

Thus, this will create 16 fields: timestamp, session, ip, netid, level, ...
Note that there is an option in Kibana to directly test regex (X-Pack need to be
enabled).

5.3.2.2 Date
In EZCast the timestamp is saved with the following encoding: YYYY-MM-DD-HH-mm-ss
but this encoding is not supported natively by Elasticsearch. To convert this
timestamp one can use the Date5 plugin. With the following configuration (still
in the "filter" section) we convert the “timestamp” string to a normal timestamp
for Elasticsearch:

1 date {
2 match => [" timestamp " , "yyyy−MM−dd−HH:mm: s s "]
3 }

5.3.2.3 Mutate
Now there is a problem with integer data. Indeed, Grok just split strings into
substrings. For example the level is a number and it may be interesting to perform
numerical comparisons on this field. It is not possible, as long as the file "level"
is a string. To change this, we will use the Mutate6 plugin:

1 mutate {
2 convert => {
3 " l e v e l " => " i n t e g e r "
4 }
5 }

5.3.2.4 Enhance configuration
This final configuration is given in the annexe A.1.

However in this configuration the optional fields are all stored as strings. Another
problem is that the field elem1 could contain an album name for a specific action
and an asset name for another action or the album name could be in the field
elem3.
To avoid this problem we must define more regex filter, one regex by action.

5https://www.elastic.co/guide/en/logstash/current/plugins-filters-date.html
6https://www.elastic.co/guide/en/logstash/current/plugins-filters-mutate.html

page 17

https://www.elastic.co/guide/en/logstash/current/plugins-filters-date.html
https://www.elastic.co/guide/en/logstash/current/plugins-filters-mutate.html

1 grok {
2 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rns "]
3 match => {
4 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP : ip }

\ | %{WORD: net id } \ | %{NUMBER: l e v e l } \ | video_seeked \ | %{ANY: album} \ | %{ANY:
a s s e t } \ | %{NUMBER: video_duration } \ | %{NUMBER: previous_video_time} \ | %{
NUMBER: video_time} \ | %{ANY: type} \ | %{ANY: qua l i t y } ?"

5 }
6 add_f ie ld => { " ac t i on " => "video_seeked" }
7 }

This part of the configuration parse log that have the action video_seeked. This
regex create 6 new fields: album, asset, video_duration, previous_video_time, video_time, type
and quality. To convert video_duration, previous_video_time and video_time
we use the plugin mutate (see point 5.3.2.3).
We could make it for all the possible actions but in this case we just consider the
useful ones. Thus we keep the general regex explained above for the others and
we use the following syntax to aplly it only when needed. Otherwise some data
may pass through many filter and be sent many times to Elasticsearch. This is
useful in some cases but not what we want to do here.

1 i f ! [a c t i on] {
2 grok {
3 . . .
4 }
5 }

5.4 Data visualisation

Kibana is the friendly user interface of the Elastic stack. Among other it allow to
see the stored data (see point 4.5). The figure 7 shows us theses data.

We can also view a specific document as shown by the figure 8. It is also possible
to view this information in JSON format. There are also four buttons: zoom,
dezoom, window and stars. Each of them allows us to filter the result. The zoom
add a filter such as resulting documents have the selected key and value. The
dezoom icon make the invert of the zoom (resulting documents could not have
this key with this value). The window button allow us to filter the column view
and finally the stars select only documents where the clicked field exists.

But we can make more things with Kibana. For example one can create charts in
the “visualise” tab to view evolution or repartition.

page 18

Figure 7: List of data in Kibana

Figure 8: One document in Kibana

5.4.1 Data visualisation Example: User’s OS and browser

In the login trace, EZCast store the OS and the Browser of the user. We can
make a pie graph to see which are the more used. As show on figure 9 we have
to select the type of aggregation: “count” in this case. Then we may adapt the
split parameters. In this case we have specified that the aggregation concern the
term user_os and that the order depend on the count. We also need to limit the
number of results, here to 10. Then we split the charts between the different OS.
It is the reason why there are six pie charts.

page 19

Figure 9: Pie charts in Kibana

5.4.2 Data visualisation Example: help page views

The view frequency of the help page is a relevant piece of information about the
user experience with the system.

To view its evolution one may create a simple graph as shown on figure 10.

Figure 10: Access on the help page

On this graph we must keep only view_help action (as you can see on the left
top) and just count the number of actions during this time.

page 20

5.4.3 Data visualisation Example: Most watched video

We can also make a sum of viewed minute per video. The figure 11 show us the
"most viewed video".

Figure 11: Cumulative time on video

5.4.4 Dashboard

Note that we can merge all of these charts on one page. The figure 12 group
the charts previously described. It is an interactive dashboard. If one selects a
browser, the number of connection (charts on the top) will be updated to show
data only for this browser. You can also select the range of the date with a scroll
on the top charts.

5.5 Queries

Kibana does not only offer to visualise and analyse the data stored in Elastic-
search. We can directly send arbitrary requests to the database. For example
with the following command:

curl -XGET ’localhost:9200/_search?pretty’ -H
’Content-Type: application/json’ -d’<JsonQuery>’

where <JsonQuery> is the request.
It is also possible to execute the query in the "Dev Tools" tab of Kibana.

page 21

Figure 12: Dashboard of Kibana

5.5.1 Simple filter

A simple query is to select all document with a specific action. In the query 13
we select any document that concern the action video_play_time.

1 POST / ezcast −∗/_search
2 {
3 "query " : {
4 " bool " : {
5 "must " : [
6 {
7 "term " : { " ac t i on " : "video_play_time" }
8 }
9]

10 }
11 }
12 }

Figure 13: Simple query with a filter

To limit the number of results, we can add "size" : x and we can also have an
offset with "from" : 0. Sorting may be realised with "sort" : [{"start" : "desc"}].
Thus with the following query we have the 10 first documents after 20, ordered
according to the "start" field:

Note that it is also possible to make far more complex sorting, for example with
location or average on a field with multiple values (array). See the documentation

page 22

1 POST / ezcast −∗/_search
2 {
3 " from" : 20 ,
4 " s i z e " : 10 ,
5 s o r t " : [
6 {
7 " s t a r t " : " desc "
8 }
9] ,

10 "query " : {
11 " bool " : {
12 "must " : [
13 {
14 "term " : { " ac t i on " : "video_play_time" }
15 }
16]
17 }
18 }
19 }

Figure 14: Simple query with a limit

of Elasticsearch7.

The previous query request any elements of the selected documents. Most of the
time however, getting all the fields is not required. To limit the results to some
specific fields we must add "_source": [<field>].
We can also compute some “not stored” fields. To make it, we must use script_fields.
The followed query instance will filter all documents and keep only 3 which
have action video_play_time. The result will contains only the field start,
play_time and a new field end_time which is just the sum of start and play_time.
The result of this query is shown in annex A.3.

Note that we could have more filter and more complex, for example the following
query (16) make the same thing that the previous but check that the play_time
is between 4 and 20. You can find a possible result in annexe A.4

5.5.2 Aggregation

Sometimes we will have to group selected data. For example if we want to know
the most used browser to connect to EZCast we can make the query 17. In this
query we select action login or login_as_anonymous and we group the results
on browser_name. It could be interesting to see if this usage grow or not. We can

7https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search.html

page 23

https://www.elastic.co/guide/en/elasticsearch/reference/5.6/search.html

1 POST / ezcast −∗/_search
2 {
3 " s i z e " : 3 ,
4 "query " : {
5 " bool " : {
6 "must " : [
7 {
8 "term " : {
9 " ac t i on " : "video_play_time"

10 }
11 }
12]
13 }
14 } ,
15 "_source " : [" s t a r t " , "play_time "] ,
16 " s c r i p t_ f i e l d s " : {
17 "end_time" : {
18 " s c r i p t " : {
19 " source " : "doc [’ s t a r t ’] . va lue + doc [’ play_time ’] . va lue "
20 }
21 }
22 }
23 }

Figure 15: Simple query which select return field

for instance check this evolution week by week like show in the query 18.

5.6 Machine Learning

X-Pack come with ready-to-use machine learning systems, for example predictions
and anomaly detections. We will not explain how it works in this document.
Instead we will focus on how to configure the anomaly detection for a simple
usage and how to interpret the results for EZCast.
The figure 19 show us the number of action with a unique netid. In other words,
it is a good indication on the number of user that are connected to EZCast.
Anomaly detection algorithm run to find some anomalies. When it finds one, it
evaluates the severity. Red is a critical anomaly while blue is just a warning. In
this case we can see that the 10th of December at 2 pm they have been a big drop
in activity. May be a maintenance or a problem with another service of the ULB.
The blue point on the 15th of December can also be the reflection of a problem
but here may be just limited to a special video or course. We can have more
information about the anomalies with the table just under the charts. This table
contains the precise date, the severity but also some various numerical data.
These results can be linked to an alert add-on.

page 24

1 POST / ezcast −∗/_search
2 {
3 " s i z e " : 4 ,
4 "query " : {
5 " bool " : {
6 "must " : [
7 {
8 "term " : {
9 " ac t i on " : "video_play_time"

10 }
11 } ,
12 {
13 " range " : {
14 "play_time " : {
15 " gte " : 4 ,
16 " l t e " : 20
17 }
18 }
19 }
20]
21 }
22 } ,
23 "_source " : [
24 " s t a r t " ,
25 "play_time"
26] ,
27 " s c r i p t_ f i e l d s " : {
28 "end_time " : {
29 " s c r i p t " : {
30 " source " : "doc [’ s t a r t ’] . va lue + doc [’ play_time ’] . va lue "
31 }
32 }
33 }
34 }

Figure 16: Request which limit the result data set

Note that, for now, the machine learning algorithms work on new data and do not
take into account any value inserted before they were enabled or values referring
to anteriors events: the training is continuous.

6 Conclusion

Elasticsearch provide a good solution for EZCast and other services of ULB but
need a lot of resources and multiple servers to works well. Kibana offer a very
convenient interface that allows quickly visualise and analyse the data. There is a
lot of modules and documentation to create our own. Works with module help to
spread the workload, to install only what we need and to keep the development

page 25

1 POST / ezcast −∗/_search
2 {
3 " s i z e " : 4 ,
4 "query " : {
5 " bool " : {
6 " should " : [
7 {
8 "term " : {
9 " ac t i on " : " l o g i n "

10 }
11 } ,
12 {
13 "term " : {
14 " ac t i on " : " login_as_anonymous"
15 }
16 }
17]
18 }
19 } ,
20 "_source " : f a l s e ,
21 " aggs " : {
22 " browsers " : {
23 " terms " : {
24 " f i e l d " : "browser_name . keyword"
25 }
26 }
27 }
28 }

Figure 17: Aggregation request with simple condition

and the maintenance easy. Unfortunately there are to much modules to present
all of them in this document.
Note that the error message are not always very easy to understand. However
there is a great active community.

page 26

1 POST / ezcast −∗/_search
2 {
3 " s i z e " : 4 ,
4 "query " : {
5 . . .
6 } ,
7 "_source " : f a l s e ,
8 " aggs " : {
9 " browsers " : {

10 " terms " : {
11 " f i e l d " : "user_os . keyword"
12 } ,
13 " aggs " : {
14 " incidents_per_week " : {
15 "date_histogram " : {
16 " f i e l d " : "@timestamp" ,
17 " i n t e r v a l " : "week"
18 }
19 }
20 }
21 }
22 }
23 }

Figure 18: Aggregation request with timestamp

Figure 19: Machine learning

page 27

References

[DB-Engines, 2017] DB-Engines (2017). Db-engines; detailed side-by-side view of cassandra and elasticsearch
and mongodb.

[Elasticsearch, 2013] Elasticsearch (2013). Blog elasticsearch: Elasticsearch from the bottom up.

[Elasticsearch, 2017] Elasticsearch (2017). Elasticsearch: official web site.

[ULBPodcast, 2017a] ULBPodcast (2017a). Github: Ezcast.

[ULBPodcast, 2017b] ULBPodcast (2017b). Website of ulbpodcast.

page 28

A Annex

A.1 Simple Logstash configuration

1 input {
2 beats {
3 port => "5043"
4 }
5 }
6 f i l t e r {
7

8 grok {
9 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rn s "]

10 match => {
11 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP : ip }

\ | %{WORD: net id } \ | %{NUMBER: l e v e l : i n t } \ | %{WORD: ac t i on }(\ | %{ANY: elem1}
?) ? (\ | %{ANY: elem2} ?) ? (\ | %{ANY: elem3} ?) ? (\ | %{ANY: elem4} ?) ? (\ | %{ANY:
elem5} ?) ? (\ | %{ANY: elem6} ?) ? (\ | %{ANY: elem7} ?) ? (\ | %{ANY: elem8} ?) ? (\ | %{
ANY: elem9} ?) ? (\ | %{ANY: elem10} ?) ?"

12 }
13 }
14

15 mutate {
16 convert => {
17 " l e v e l " => " i n t e g e r "
18 }
19 }
20

21 date {
22 match => [" timestamp " , "yyyy−MM−dd−HH:mm: s s "] # 2017−11−16−00:13:32
23 }
24 }
25 output {
26 e l a s t i c s e a r c h {
27 host s => " l o c a l h o s t :9200"
28 manage_template => f a l s e
29 index => " ezcast −%{[@metadata] [beat]}−%{[@metadata] [v e r s i on]}−%{+YYYY.MM. dd

}"
30 document_type => "%{[@metadata] [type]}"
31 }
32 }

page 29

A.2 Simple Logstash configuration

1 input {
2 beats {
3 port => "5043"
4 }
5 }
6 f i l t e r {
7

8 # video_play_time
9 grok {

10 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rn s "]
11 match => {
12 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP :

ip } \ | %{WORD: net id } \ | %{NUMBER: l e v e l } \ | video_play_time \ | %{ANY: album} \ |
%{ANY: a s s e t } \ | %{ANY: asset_name} \ | %{ANY: type} \ | %{NUMBER: s t a r t } \ | %{

NUMBER: play_time} ?"
13 }
14 add_f ie ld => { " ac t i on " => "video_play_time" }
15 }
16

17 # video_play | video_pause
18 grok {
19 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rn s "]
20 match => {
21 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP :

ip } \ | %{WORD: net id } \ | %{NUMBER: l e v e l } \ | video_(?<part_action>play | pause)
\ | %{ANY: album} \ | %{ANY: a s s e t } \ | %{NUMBER: video_duration } \ | %{NUMBER:
video_time} \ | %{ANY: type} \ | %{ANY: qua l i t y } \ | %{ANY: o r i g i n } ?"

22 }
23 add_f ie ld => { " ac t i on " => "video_%{part_act ion }" }
24 remove_fie ld => [" part_act ion "]
25 }
26

27 # video_seeked
28 grok {
29 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rn s "]
30 match => {
31 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP :

ip } \ | %{WORD: net id } \ | %{NUMBER: l e v e l } \ | video_seeked \ | %{ANY: album} \ | %{
ANY: a s s e t } \ | %{NUMBER: video_duration } \ | %{NUMBER: previous_video_time} \ | %{
NUMBER: video_time} \ | %{ANY: type} \ | %{ANY: qua l i t y } ?"

32 }
33 add_f ie ld => { " ac t i on " => "video_seeked" }
34 }
35

36 # log i n | login_as_anonymous | login_from_anonymous
37 grok {
38 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rn s "]
39 match => {
40 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP :

ip } \ | %{WORD: net id } \ | %{NUMBER: l e v e l } \ | l o g i n (?<other >|_as_anonymous |
_from_anonymous) \ | %{ANY: browser_name} \ | %{ANY: browser_vers ion } \ | %{ANY:
user_os} \ | %{ANY: user_agent } ?"

41 }
42 add_f ie ld => { " ac t i on " => " l o g i n%{other }" }

page 30

43 remove_fie ld => [" other "]
44 }
45

46 # video_fu l l s c r e en_ente r | v id eo_fu l l s c r e en_ex i t
47 grok {
48 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rn s "]
49 match => {
50 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP :

ip } \ | %{WORD: net id } \ | %{NUMBER: l e v e l } \ | v ideo_fu l l s c reen_ (?<other>ente r |
e x i t) \ | %{ANY: album} \ | %{ANY: a s s e t } \ | %{NUMBER: video_duration } \ | %{NUMBER
: video_time} \ | %{ANY: type} \ | %{ANY: qua l i t y } \ | %{ANY: o r i g i n } ?"

51 }
52 add_f ie ld => { " ac t i on " => " video_fu l l s c reen_%{other }" }
53 remove_fie ld => [" other "]
54 }
55

56 # video_forward | video_rewind
57 grok {
58 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rn s "]
59 match => {
60 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP :

ip } \ | %{WORD: net id } \ | %{NUMBER: l e v e l } \ | video_(?<other>forward | rewind) \ |
%{ANY: album} \ | %{ANY: a s s e t } \ | %{NUMBER: video_duration } \ | %{NUMBER:
video_time} \ | %{ANY: type} \ | %{ANY: qua l i t y } \ | %{ANY: o r i g i n } ?"

61 }
62 add_f ie ld => { " ac t i on " => "video_%{other }" }
63 remove_fie ld => [" other "]
64 }
65

66 # Al l other th ink
67 i f ! [a c t i on] {
68 grok {
69 patterns_dir => ["/ e tc / l o g s t a sh / pat t e rns "]
70 match => {
71 "message" => "%{CUSTOM_TIMESTAMP: timestamp} \ | %{WORD: s e s s i o n } \ | %{IP

: ip } \ | %{WORD: net id } \ | %{NUMBER: l e v e l : i n t } \ | %{WORD: ac t i on }(\ | %{ANY:
elem1} ?) ? (\ | %{ANY: elem2} ?) ? (\ | %{ANY: elem3} ?) ? (\ | %{ANY: elem4} ?) ? (\ | %{
ANY: elem5} ?) ? (\ | %{ANY: elem6} ?) ? (\ | %{ANY: elem7} ?) ? (\ | %{ANY: elem8} ?) ? (\ |
%{ANY: elem9} ?) ? (\ | %{ANY: elem10} ?) ?"

72 }
73 }
74 }
75

76 mutate {
77 convert => {
78 " l e v e l " => " i n t e g e r "
79 "play_time" => " i n t e g e r "
80 " s t a r t " => " in t e g e r "
81 " video_duration " => " i n t e g e r "
82 "video_time" => " in t e g e r "
83 "previous_video_time" => " in t e g e r "
84 }
85 }
86 }
87

88 output {

page 31

89 e l a s t i c s e a r c h {
90 host s => " l o c a l h o s t :9200"
91 manage_template => f a l s e
92 index => " ezcast −%{[@metadata] [beat]}−%{[@metadata] [v e r s i on]}−%{+YYYY.MM. dd

}"
93 document_type => "%{[@metadata] [type]}"
94 user => " logstash_user "
95 password => "password"
96 }
97 stdout { codec => rubydebug }
98 }

A.3 Result of a simple request

1 {
2 " took " : 10 ,
3 "timed_out " : f a l s e ,
4 "_shards " : {
5 " t o t a l " : 35 ,
6 " s u c c e s s f u l " : 35 ,
7 " skipped " : 0 ,
8 " f a i l e d " : 0
9 } ,

10 " h i t s " : {
11 " t o t a l " : 162368 ,
12 "max_score " : 1 .1393828 ,
13 " h i t s " : [
14 {
15 "_index " : " ezcast−f i l e b e a t −6.0 .0−2017.12.09" ,
16 "_type " : "doc " ,
17 "_id " : "AWBRiGhd3Hy1K0oppS1X" ,
18 "_score " : 1 .1393828 ,
19 "_source " : {
20 " s t a r t " : 120 ,
21 "play_time " : 30
22 } ,
23 " f i e l d s " : {
24 "end_time " : [
25 150
26]
27 }
28 } ,
29 {
30 "_index " : " ezcast−f i l e b e a t −6.0 .0−2017.12.09" ,
31 "_type " : "doc " ,
32 "_id " : "AWBRiGhd3Hy1K0oppS1e" ,
33 "_score " : 1 .1393828 ,
34 "_source " : {
35 " s t a r t " : 2395 ,
36 "play_time " : 30
37 } ,
38 " f i e l d s " : {
39 "end_time " : [
40 2425
41]

page 32

42 }
43 } ,
44 {
45 "_index " : " ezcast−f i l e b e a t −6.0 .0−2017.12.09" ,
46 "_type " : "doc " ,
47 "_id " : "AWBRiGhd3Hy1K0oppS10" ,
48 "_score " : 1 .1393828 ,
49 "_source " : {
50 " s t a r t " : 2306 ,
51 "play_time " : 30
52 } ,
53 " f i e l d s " : {
54 "end_time " : [
55 2336
56]
57 }
58 }
59]
60 }
61 }

A.4 Result of a simple request 2

1 {
2 " took " : 15 ,
3 "timed_out " : f a l s e ,
4 "_shards " : {
5 " t o t a l " : 35 ,
6 " s u c c e s s f u l " : 35 ,
7 " skipped " : 0 ,
8 " f a i l e d " : 0
9 } ,

10 " h i t s " : {
11 " t o t a l " : 31987 ,
12 "max_score " : 2 .1393828 ,
13 " h i t s " : [
14 {
15 "_index " : " ezcast−f i l e b e a t −6.0 .0−2017.12.09" ,
16 "_type " : "doc " ,
17 "_id " : "AWBRiGhd3Hy1K0oppS16" ,
18 "_score " : 2 .1393828 ,
19 "_source " : {
20 " s t a r t " : 5710 ,
21 "play_time " : 7
22 } ,
23 " f i e l d s " : {
24 "end_time " : [
25 5717
26]
27 }
28 } ,
29 {
30 "_index " : " ezcast−f i l e b e a t −6.0 .0−2017.12.09" ,
31 "_type " : "doc " ,
32 "_id " : "AWBRiGhd3Hy1K0oppS2X" ,

page 33

33 "_score " : 2 .1393828 ,
34 "_source " : {
35 " s t a r t " : 2147 ,
36 "play_time " : 5
37 } ,
38 " f i e l d s " : {
39 "end_time " : [
40 2152
41]
42 }
43 } ,
44 {
45 "_index " : " ezcast−f i l e b e a t −6.0 .0−2017.12.09" ,
46 "_type " : "doc " ,
47 "_id " : "AWBRiGhd3Hy1K0oppS2u" ,
48 "_score " : 2 .1393828 ,
49 "_source " : {
50 " s t a r t " : 2225 ,
51 "play_time " : 8
52 } ,
53 " f i e l d s " : {
54 "end_time " : [
55 2233
56]
57 }
58 } ,
59 {
60 "_index " : " ezcast−f i l e b e a t −6.0 .0−2017.12.09" ,
61 "_type " : "doc " ,
62 "_id " : "AWBRiGhd3Hy1K0oppS3W" ,
63 "_score " : 2 .1393828 ,
64 "_source " : {
65 " s t a r t " : 943 ,
66 "play_time " : 6
67 } ,
68 " f i e l d s " : {
69 "end_time " : [
70 949
71]
72 }
73 }
74]
75 }
76 }

A.5 Result of a Aggregation

1 {
2 " took " : 56 ,
3 "timed_out " : f a l s e ,
4 "_shards " : { . . . } ,
5 " h i t s " : { . . . } ,
6 " agg r ega t i on s " : {
7 " browsers " : {
8 "doc_count_error_upper_bound " : 0 ,

page 34

9 "sum_other_doc_count " : 0 ,
10 " buckets " : [
11 {
12 "key " : "Chrome" ,
13 "doc_count " : 3071
14 } ,
15 {
16 "key " : " S a f a r i " ,
17 "doc_count " : 1700
18 } ,
19 {
20 "key " : " F i r e f ox " ,
21 "doc_count " : 826
22 } ,
23 {
24 "key " : "unknown" ,
25 "doc_count " : 410
26 } ,
27 {
28 "key " : "Opera " ,
29 "doc_count " : 85
30 } ,
31 {
32 "key " : " In t e rn e t Explorer " ,
33 "doc_count " : 79
34 } ,
35 {
36 "key " : "Moz i l l a " ,
37 "doc_count " : 73
38 }
39]
40 }
41 }
42 }

page 35

	Case study
	Desired system properties
	Comparison of different solution
	Elasticsearch and the Elastic Stack
	Concrete example: EZCast
	Conclusion
	Annex

