
INFO-H415 ADVANCED DATABASES

DOCUMENT STORES AND COUCHDB

December 18, 2017

Ziad Beyens - Hamza Nougba

Université Libre de Bruxelles

Contents

1 Introduction 2

1.1 JSON documents . 3

1.2 REST/HTTP . 4

2 CouchDB 6

2.1 Basic operations . 6

2.1.1 Creating a database . 6

2.1.2 Deleting a database . 7

2.1.3 Creating a document . 7

2.1.4 Updating a document . 7

2.1.5 Deleting a document . 7

2.2 Views . 7

2.2.1 Concept . 7

2.2.2 Map function . 8

2.2.3 Reduce function . 9

2.3 Replication . 9

3 Chat Application 11

3.1 Description . 11

3.2 Implementation . 11

1

Chapter 1

Introduction

The volume of data has significantly increased with the emergence of social networks, cloud,

web and smartphone application, etc. NoSQL (Not Only SQL) was an alternative to this

amount of data ensuring good performance and scalability without the need of relational

schema.

Unlike SQL and its inherent tabular structure, NoSQL databases are generally schema-less

and has more flexible data models, which is more useful for unstructured data and these

are growing more quickly than structured data. There are four common types of NoSQL

databases:

• Key-Value stores:

These are clearly the simplest and the most flexible type because each key is associated

with one and only one value in a collection of data.

• Wide-column stores:

Wide-column stores look very similar to relational databases because they also consist

in columns, rows and tables but they are much more dynamic because format of the

columns are not predefined but created and possibly different for each row.

• Graph stores:

Data are represented and stored using graph structures with nodes representing data

themselves and edges representing relationships. Unlike relational databases a graph

model can change over time and use.

• Document stores:

The database stores semi-structured data into documents. There exist many document

2

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

formats and the most well-known remains xml. Document-oriented databases such as

mongoDB and couchDB use other formats, respectively BSON and JSON.

Figure 1.1: 4 types of NoSQL databases at https://s3.amazonaws.com/dev.assets.neo4j.com/
wp-content/uploads/nosql-quadrant.jpg

1.1 JSON DOCUMENTS

JSON stands for JavaScript object Notation and is a lightweight data-interchange format

where data are stored in an organized, easy-to-access way. It provides a human-readable set

of data that can be accessed in a logical manner. It is based on a subset of JavaScript language

(the way objects are built in JavaScript). However JSON remains language independent and

can be use by other programming languages (JAVA, python, Ruby, ...).

As said above and compared to another well-known text format named XML, JSON is

lightweight and consists technically in two possible structures:

• An object defined by an unordered collection of key-value pairs between two curly

braces. Keys can and must be strings but values can be a strings, a number, an object,

an array, a boolean or null.

• An array defined by an ordered collection of values between two brackets

A JSON document could be defined as an object with nested arrays an objects. CouchDB uses

JSON format to store the data. Each document owns a distinct _id value and a _rev (revision)

value. When a document is updated, the_rev value changes.

3

https://s3.amazonaws.com/dev.assets.neo4j.com/wp-content/uploads/nosql-quadrant.jpg
https://s3.amazonaws.com/dev.assets.neo4j.com/wp-content/uploads/nosql-quadrant.jpg

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

Figure 1.2: Example of JSON document in CouchDB

1.2 REST/HTTP

RESTful services (REpresentational State Transfer) are used to communicate with CouchDB. It

features an architectural client-server style, distributed systems and communication between

the application and CouchDB.

Figure 1.3: Client - Server - CouchDB representation at https://smartdogservices.com/
wp-content/uploads/2014/09/11.png

It is stateless. It means that the servers manages the resource states and the client man-

ages the session states. Thus, each request needs all the data to process the request.

REST is described by the Nouns, Verbs and Data formats.

4

https://smartdogservices.com/wp-content/uploads/2014/09/11.png
https://smartdogservices.com/wp-content/uploads/2014/09/11.png

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

Figure 1.4: REST triangle at https://wso2.com/files/2_triangle_0.png

The data formats may be HTML, XML, JSON,...

The verbs are HTTP methods to create (PUT, POST), read (GET), update (PUT), delete

(DELETE) with CouchDB.

Figure 1.5: CRUD verbs at http://www.kennethlange.com/img/restful_2/rest_http_methods.
png

The nouns are used for identification of resources. It is addressable through URIs.

Example: https://search/query?term=foo

5

https://wso2.com/files/2_triangle_0.png
http://www.kennethlange.com/img/restful_2/rest_http_methods.png
http://www.kennethlange.com/img/restful_2/rest_http_methods.png

Chapter 2

CouchDB

CouchDB is a document-oriented database that stores data in JSON format using HTTP as

access protocol. JavaScript allows to query, combine and transform data in the documents.

CouchDB is an open-source project created in 2005 by a developer at IBM, Damien Katz.

2.1 BASIC OPERATIONS

Communicating with couchDB can be done using command line with cURL utility or access-

ing a web interface named Fauxton (or Futon).

2.1.1 Creating a database

A database is created using the PUT method with cURL:

curl -X PUT http://127.0.0.1:5984/database_name

It will then reply:

{"ok": true}

The creation of the database can be verified using GET method:

curl -X GET http://127.0.0.1:5984/_all_dbs

the response will be the list of all databases:

["database_name"]

6

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

2.1.2 Deleting a database

Logically the DELETE method is used to delete a database:

curl -X DELETE http://127.0.0.1:5984/database_name

The verification can be done similarly to the creation of databases using GET method.

2.1.3 Creating a document

The creation of a document uses PUT method:

curl -X PUT http://127.0.0.1:5984/database_name/"id" -d "content of the document"

_id value of the document is directly defined in the command line and -d option specifies

that a document is following.

2.1.4 Updating a document

curl -X PUT http://127.0.0.1:5984/database_name/document_id/ -d \

"{ "key" : "value", "_rev" : "revision id" }"

To update a document the last _rev must be known and this number can be easily retrieve

using GET method:

curl -X GET http://127.0.0.1:5984/my_database/document_id

2.1.5 Deleting a document

The last _rev value must be specified. :

curl -X DELETE http://127.0.0.1:5984/database_name/document_id?_rev

2.2 VIEWS

2.2.1 Concept

Views can be seen as dynamic representations of document content. They are very useful

and have many purposes such as:

• querying and searching documents stored in the database.

7

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

• getting data from documents presented in a specific manner.

• creating b-tree indexes such that data in documents can be found easily. These indexes

allows to represent some relationships between documents.

• performing some calculations on the data from documents.

In CouchDB, views are defined using JavaScript functions that take as single parameter a

document and are representing as a map function in a map-reduce system.

2.2.2 Map function

As said above a map function takes only one parameter, a document. It results as an emission

of key-value pairs using the function emit(key, value). When a map function is called, the

view adds rows (the number of rows depends on the number of emit inside the function).

The views stored these data using a B-tree such that it is sorted according to the key value of

each row. Let’s see this example to illustrate the concept of view:

function(doc) {

emit(doc.course_name, doc.number_of_student);

}

The map function returns a key-value with name of the course as name and the number of

students as value.When this function is called, a row is added to the view. Therefore the b-tree

is created with indexes representing the name of the course.

{

"total_rows" : 2,

"offset": 0,

"rows": [

{"id": "INFO-H415"

"key": "INFO-H415 Advanced databases",

"value": 2},

{"id": "INFO-H502",

"key": "INFO-H502 Virtual reality",

"value": 5}

]

}

This is the view when the map function is called two times.

8

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

2.2.3 Reduce function

As the name said , the principle goal of this function is to reduce the result of the map function.

The reduce function then takes as input three parameters:

• keys: it represents an array of [key, doc_id]’s present in the view. According to the

previous example, the keys should equal to [["INFO-H415 Advanced databases","id1"],

["INFO-H502 Virtual reality","id2]].

• values: an array of corresponding values present in the view. According to the previous

example, it should equal to [2,5].

• rereduce: one particularity of the reduce function is that it can be applied recursively.

CouchDB applies the reduce function to the calculated values, and will repeat the

process on these resulting values. The rereduce parameter is boolean value and when

it equals to true, the ’keys’ parameter is null and the ’values’ parameter is an array of

intermediate values return by the reduce function itself. Rereduce property may be

necessary in some cases when the number of rows in a view is very large. For example

if we have 1000 elements [key, value] in the view, the reduce function is applied to

n ≤ 1000 values d1000
n e times. The function is again applied to resulting values until it

remains one element.

2.3 REPLICATION

In Biology, replication is a process when the DNA is synthesized producing two replicas of

itself. It follows the same logic for databases in Computer Science. Database replication is the

process of copying data from a database in a computer or a server to one or more databases at

the same location or everywhere else. This resulting system constitutes a distributed database

system.

In CouchDB, two arguments is needed for the replication: a source database and a target

database. Each data in the source will be copied into the target such that it results two

databases with the same content. A replication can be continuous and at each update of a

document or at each deletion or creation of document the process is triggered.

Replication has many advantages:

• Horizontal scalability: increasing the number of instances of the database. Therefore,

less users read the data from one database (parallel access) and as the network is less

congested, the access time decreases.

9

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

• The availability is higher and there are less data movements over a network.

• It is practical for offline use. For example, a replication in a smartphone allows the user

to remain offline and then synchronizes the data when it is back online.

• Optimal for reading but not for writing.

There are also some inconvenient such as having more disk space to store all these replicas

and having a good concurrency control to avoid many conflicts. Hopefully, CouchDB uses a

Multiversion Concurrency control.

10

Chapter 3

Chat Application

3.1 DESCRIPTION

An web implementation of a chat application using CouchDB and NodeJS has been done. It

consists of anonymous users being able to register their name and chatting in real-time.

The user names and the messages are saved in the database. Thus, refreshing the page recover

the the user names and the history of the conversation. Also, the user can choose any name

available in the list.

3.2 IMPLEMENTATION

The server is set up on Node.js and a Websocket library (socket.io) is used to chat in real-time.

Furthermore, a high-level CouchDB client for Node.js (cradle) is used. More precisely, Cradle

is an asynchronous javascript client for CouchDB. Cradle also has an extra level of speed, and

it is easier to update and delete document.

First, the database ’adb’ is created in Fauxton, then configured and setup on the server:

db = new(cradle.Connection)(couch_config).database(’adb’);

Then, the users views and the chats views are added to be able to query them, using the

map function.

On client connection, the user list is retrieved from CouchDB and sent to the connected

user. Then, the chat history is fetched from CouchDB and sent to the user.

When a client posts a message, it is saved into CouchDB and broadcasted to all the

connected clients. The type (’chat’), the message content, the author name and the timestamp

are saved.

11

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

Figure 3.1: Chat application

Finally, when a client adds an user, the type (’user’), the name and the status (’online’) are

saved.

12

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

Figure 3.2: Adding views

13

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

Figure 3.3: Fetching all the users and messages on client connection

Figure 3.4: Posting a message

14

Beyens Ziad - Nougba Hamza Université Libre de Bruxelles

Figure 3.5: Posting a user

15

Bibliography

[1] Apache couchdb 2.1 documentation. http://docs.couchdb.org/en/2.1.1/. Ac-

cessed: 2017-12-17.

[2] Couchdb tutorial. https://www.tutorialspoint.com/couchdb/. Accessed: 2017-12-

17.

[3] Http view api. https://wiki.apache.org/couchdb/HTTP_view_API. Accessed: 2017-

12-17.

[4] Introducing json. https://www.json.org/index.html. Accessed: 2017-12-17.

[5] Introduction to rest and couchdb. https://www.slideshare.net/partlycloudy/

introduction-to-rest-couchdb. Accessed: 2017-12-17.

[6] Nosql databases explained. https://www.mongodb.com/nosql-explained. Accessed:

2017-12-17.

[7] Nosql (not only sql database). http://searchdatamanagement.techtarget.com/

definition/NoSQL-Not-Only-SQL. Accessed: 2017-12-15.

16

http://docs.couchdb.org/en/2.1.1/
https://www.tutorialspoint.com/couchdb/
https://wiki.apache.org/couchdb/HTTP_view_API
https://www.json.org/index.html
https://www.slideshare.net/partlycloudy/introduction-to-rest-couchdb
https://www.slideshare.net/partlycloudy/introduction-to-rest-couchdb
https://www.mongodb.com/nosql-explained
http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL
http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL

	Introduction
	JSON documents
	REST/HTTP

	CouchDB
	Basic operations
	Creating a database
	Deleting a database
	Creating a document
	Updating a document
	Deleting a document

	Views
	Concept
	Map function
	Reduce function

	Replication

	Chat Application
	Description
	Implementation

