
ULB Université Libre de Bruxelles

INFO-H415 Advanced Databases :

Group Project

by Prabhdeep Minhas,
and Mi Zhou

26th September 2017

Professor : Esteban Zimányi

Table of contents

1 Abstract 1

2 Introduction 2

3 Scenario 3
3.1 Scenario . 3
3.2 Data organization . 3

3.2.1 Constraints . 4

4 Database 5
4.1 What is a database ? . 5
4.2 What is XML ? . 5

4.2.1 Example . 6
4.3 Relational databases VS Non relational databases . 6

4.3.1 Relational databases . 6
4.3.2 Non-relational databases . 7
4.3.3 Final choice . 9

5 Selection of a native XML database 11
5.1 Comparison of native XML databases . 11
5.2 BaseX . 12

5.2.1 Graphical User Interface . 13
5.2.2 Starting with BaseX . 14
5.2.3 Reasons to choose BaseX . 15

6 Implementation 16
6.1 Search . 17
6.2 Insertion . 17
6.3 Update . 21
6.4 Deletion . 22

7 Results 23

8 Conclusion 25

Bibliography 25

i

1. Abstract

This report reviews the database technology, XML databases, and illustrates the implementation of

a chosen scenario in the database management system, BaseX. First, there is a detailed explanation of

the scenario, its data organization and the constraints. Then, it is followed by a research on the best

data technology and data management system to use for the scenario. On one hand, relational and non-

relational databases are compared to each other. On the other hand, various tools are as well compared.

For the non-relational databases, Native XML databases and enabled XML databases are set side by side.

While for the management platforms, exist-DB and BaseX were the predominant choices. The reasons

for choosing Native XML databases and BaseX are presented. Finally, the implementation is described

and the results obtained are displayed.

1

2. Introduction

For a publishing house that needs to store a huge amount of information, we are asked to determine

the optimal database technology and management tool for its storage. This publishing house also has to

insert, modify, search and eventually delete information into/from its database. In order to choose the ideal

tools, multiple comparisons are going to be made. Once the database technology and the management

platform are chosen, an implementation of the scenario will take place.

2

3. Scenario

3.1 Scenario

Working as data analyst, at a publishing house, we have been asked to help the IT department in

structuring, storing, and analyzing all the data available. These data involve countless information about

articles, books, parts or chapters that are in monograph, papers that are currently in proceeding and

those who are already proceeded, the collection of master and Ph.D. thesis, and web pages.

3.2 Data organization

All the data used in our scenario were obtained from an online database that has realistic XML

data.[27] In this publishing house, information is separated into different records which are all inde-

pendent from one another.

All the following records have some common attributes : mdate, key and eventually publtype. Mdate

and key correspond respectively to the date of the last modification and the unique dblp key of the

concerned record. Publtype is a permissive attribute used to specify the type of the concerned record.

• Article : It is an article from a journal or magazine. There are attributes for the author, the title,

the interval of pages (begin-end), the year, the month, the volume, the journal, the number, the ee

(which is a web page address) and the URL (which is the position of the record in the database).

• In proceedings : It is a paper in a conference or workshop proceedings. There are attributes for

the author, the title, the interval of pages (begin-end), the year, the book title, the ee, the cross-

reference and the URL.

• Proceedings : It is the proceedings volume of a conference or workshop. There are attributes for

the editor, the title, the book title, the publisher, the series, the year, the ee and the URL.

• In Collection : It is a part or chapter in a monograph. There are attributes for the author, the

title, the interval of pages (begin-end), the year, the book title, the ee, the cross-reference and the

URL.

• WWW : It is a web page. There are attributes for the author, the title, the year and the URL

which is here referring to a web page address

• Master thesis : It is a Master’s thesis. There are attributes for the author, the title, the year and

the school.

• Ph.D. thesis : It is a Ph.D.’s thesis. There are attributes for the author, the title, the year and the

3

3.2. Data organization Table of contents

school.

• Book : It is an authored monograph or an edited collection of articles. There are attributes for the

author, the title, the year, the publisher, the ISBN, International Standard Book Number, and the

URL which is a web page address.

3.2.1 Constraints

In order to have a program that is accurate and that works logically, the system has to set some

constraints. Here are the ones defined for our scenario :

— Each key has to be unique.

— Every mdate’s year of a record has to be greater or equal to the year in which it was written.

— The beginning page has to be smaller than the end page for an article, in proceeding papers, and

in collection papers.

— All the numbers included in the records have to be positive integers. For example, the interval of

pages and the year have to be positive integers.

— The ISBN, International Standard Book Number, has to be unique for each book.

— If the month is specified, it has to be an existing one.

Project INFO-H415 4 Prabhdeep Minhas and Mi Zhou

4. Database

4.1 What is a database ?

A database is a systematic collection of information that is meant to be stored and organized in such

a way that it can be easily retrieved, accessed, managed and updated. [14]

It is considered as a structured set of data, organized into rows, columns, and tables, where we can

access the relevant information in various ways. As said before, the information stored in a database can

be modified, we can update the data, expend it or even delete it. [15]

4.2 What is XML?

XML or eXtensible Markup Language is a text-based generic markup computing language.

A markup language is written with an easy and simple syntax, using a generic text editor. The lan-

guage leads to a document that is uncomplicated to read in its raw form, as well as defining a document

which is distinguishable syntactically from the text. [1] The markup language creates the XML document

through the medium of tags. These tags make it possible to structure the data of a document in a hie-

rarchical and organized manner.

When XML was invented the creating team had a big upper hand because the content of it was very

similar to HTML, specifically with the traditional markup process. They didn’t have to put a lot of effort

for the transition or the shifting. Moreover, contrary to HTML, the advantage that XML offers are to

be able to use our own tags. XML is not replacing HTML, it just suggests new possibilities by adopting

many successful features of HTML. XML was first seen as a data interchange standard, but after some

time the purpose got bigger and the language has come to be used as for example serving as the core for

development and deployment platforms such as Microsoft’s.NET.

However, the main aim of XML is to structure the data manipulated or exchanged by the programs

and to transfer information between machines. The XML language is known to be self-describing, allo-

wing to model information systems in a natural and intuitive way. Indeed, even before being used each

data field is declared. Also, it has the capacity to store any kind of data. Thus, we have an information-

modeling mechanism in which we can characterize what we want to do, instead of mentioning how we

5

4.3. Relational databases VS Non relational databases Table of contents

have to do it. [2]

Here are some characteristics XML gives to model information [2]

• Heterogeneity : where we have the possibility to put different data fields to each ”record”. Consi-

dering the fact that in the real world, everything is not properly organized into tables, rows, and

columns. XML gives us a great benefit by letting us communicate information without any kind

of restrictions.

• Extensibility : where we can add a new type of data, without the need of determining it in advance,

and in no particular order.

• Flexibility : where each data fields may differ in size and configuration from instance to instance.

Therefore, XML puts no restrictions on data.

In order to symbolize information, XML uses four basic components : tags, attributes, data elements,

and hierarchy. Each one of these items serves a special role in representing the ”dimension” of information.

Once we have the data which is the data elements, we can identify what they are, thus their tags.

After that, it is easy to interpret what attributes they are. Finally, we can use the hierarchy to combine

them all together, it helps in understanding how data elements are related to each other.

4.2.1 Example

Figure 4.1 – XML - Example [5]

One of the major questions which is being asked about XML is to know whether an XML document

is a database or not. The answer to this question is yes, but in the strictest sense of the term, owing to

the fact that it is a collection of data. Indeed, just like any kind of file, it contains some sort of data. [3]

4.3 Relational databases VS Non relational databases

4.3.1 Relational databases

Relation databases are also known as relational database management systems (RDBMS) or SQL

databases, in these databases, the information is defined so that it can be reorganized and accessed in a

number of different ways. They are composed of a set of tables, that contain columns and rows to store

the information. The rows of a relational database are constructed with a collection of an object of the

same type. Thus, a relation is defined by the table that collects this information. Data in a table can be

Project INFO-H415 6 Prabhdeep Minhas and Mi Zhou

4.3. Relational databases VS Non relational databases Table of contents

related according to common keys or concepts, and the ability to retrieve related data from a table is the

basis for the term relational database. [14]

In order to make sure that the data is constantly available and stay without any kind of error, rela-

tional tables adopt some integrity rules such as select statements, where-from clauses, joins, etc. [14] The

language used for querying and maintaining the database by almost every relational database system is

SQL (Structured Query Language).

Few examples of the most popular relational databases are Microsoft SQL Server, Oracle Database,

MySQL. They are known as robust, simple, compatible and have a great performance in managing the

data.[16]

4.3.2 Non-relational databases

Non-relational databases, or most commonly called NoSQL, which stands for ”Not only SQL”, give a

system to store and retrieve information that is modeled in another way than the tabular relations used

in relational databases. They are mostly used for real-time web application, large sets of unstructured

information, and big data performances issues which are difficult to deal with rational databases. [15]

There are many different motivations behind the use of a non-relational database over a relational

database : [15]

• Simplicity of design : we don’t have to bother about the “ impedance mismatch ” between the

data, as well as about the tables and rows of a relational database. This leads to control less code

to write, debug or maintain.

• Using documents : the data is at one place, and not contained in various tables.

• All kinds of data : this allows to have a flexible database with unstructured and semi-structured

data, due to the fact that NoSQL has not any schema.

• Speed : As we don’t have tables here, we don’t have to join them, thus operations are faster.

• Cost : Non-relational databases don’t rely on expensive servers and storage systems. Moreover,

most of these databases are openSource.

MongoDB, DocumentDB, Neo4j and XML database are the most popular NoSQL databases.[16]

XML databases

An XML database is a system that leads to specify data and store a huge amount of them in an XML

format. We can do multiple operations on these, for example, it can be queried, transformed, exported

to the desired format, and so on.

Here are some advantages that XML offers us when we consider it as a database format [4] :

• Self-describing

Project INFO-H415 7 Prabhdeep Minhas and Mi Zhou

4.3. Relational databases VS Non relational databases Table of contents

• Unicode

• Describe data in a tree or graph structure

• Store any well-formed XML

• Support XQuery, XSLT, XUpdate, XInclude

• For multiple interfaces

But on the other hand, it also has a disadvantage ; because of the parsing and text conversion, the access

to the XML data is slowed down.

Example

Figure 4.2 – XML Database - Example [6]

A. Enabled XML Database The first major type of XML database is the enabled XML database.

An enabled XML database is a relational database. This database is constituted of tables in which

the data is stored, consisting of rows and columns. Thus, an XML enabled database usually refers

to the extension provided for the conversion of an XML document. [6]

Typically, these kinds of databases will map all the XML to a traditional database, accepting XML

as input and rendering XML as output. They use a mapping layer which is given by the database

itself or by a third party. The role played by this mapping layer is to manage the storage and

retrieval of XML data. [7]

B. Native XML Database The second major type of XML database is the native XML database,

or commonly called the NXD.

A native XML database is a database that relies on the data model provided by XML, by using

query languages such as XPath or XQuery. The NXD is not based on a table format, but on the

container. It has the capability of storing a huge amount of XML document and data. An XML

database is usually referred as a native XML database if it provides direct XML storage. [9] In

Project INFO-H415 8 Prabhdeep Minhas and Mi Zhou

4.3. Relational databases VS Non relational databases Table of contents

comparison to the enabled XML database, the NXD has more advantages, indeed, they are more

likely ideal for storing, retrieving, querying denormalized data and maintaining the XML docu-

ment. [6]

There are different reasons why we should store the data in XML documents in a native XML

database. First of all, if the data is semi-structured, it means that the data has a regular structure.

If mapping its structure leads to having either a large number of columns with null values (which

wastes space) or a large number of tables (which is inefficient), it would signify that the structure

of the data varies a lot and so it is better to store it in an NDX in the form of an XML document.

The second argument is the retrieval speed. In point of fact, a native XML database is able to

retrieve data much faster than a relational database. The strategies used by this database is to

store entire documents together physically or use physical (rather than logical) pointers between

the parts of the document. As it doesn’t have logical joins, it is faster to obtain information than

a relational database.

Another argument to use a native XML database is that it allows us to actually adopt XML-specific

capabilities. [8]

4.3.3 Final choice

XML Database Relational Database
Hierarchical Represented in a model of logical relationships

Self-describing Not self-describing
Has inherent ordering Does not have inherent ordering
Contains collections Contains tables

Table 4.1 – Differences between an XML database and a relational database [7]

Relational databases are in a way limited because each item can only contain one attribute. Different

rows link that information through the use of several keys. But in non-relational databases, we don’t have

to deal with this kind of issue.

In our scenario, we have a lot of information stored in the database, so it is way easier to collect that

information in one place rather than having several tables to do that job. Moreover, if we choose to use

a relational database, the system can get slow in terms of response time owing to the fact that we have

a very large amount of data to store. [17]

The most important argument of choosing the native XML database which is non-relational is that

all the documents containing the data are in an XML format, so it is obviously better to use an XML

database, over any other NoSQL database. The merge of XML and a relational database would have lost

Project INFO-H415 9 Prabhdeep Minhas and Mi Zhou

4.3. Relational databases VS Non relational databases Table of contents

the flexibility XML gives us.

Thus, for the scenario explained before, we have decided to use a non-relational database, the native

XML database.

Project INFO-H415 10 Prabhdeep Minhas and Mi Zhou

5. Selection of a native XML

database

For the many reasons disclosed in the previous chapter, we decided to use a native XML database.

We must now determine which database management system is the most suitable for our scenario.

5.1 Comparison of native XML databases

Diverse native XML databases can be taken into consideration for the implementation of our scenario.

Here are the native XML databases considered from the DB-Engines Ranking of Native XML DBMS[18] :

Name License Description Primary database
model

MarkLogic Server[21] Commercial Enterprise NoSQL Multi-Model
DBMS for JSON, XML, Document store,

and RDF Native XML DBMS
RDF store, Search engine

Oracle Berkeley DB[22] Open Source Widely used in-process Multi-Model
key-value store Key-value store

Native XML DBMS
Virtuoso[23] Open Source Multi-model hybrid-RDBMS Multi-Model

Support management of data Graph DBMS,
represented as relational Native XML DBMS,

tables and/or property graphs Relational DBMS,
RDF store

BaseX[20] Open Source Light-weight Native XML Native XML DBMS
DBMS with support for

XQuery 3.0 and interactive GUI
webMethods Tamino[24] Commercial Server integrated in Native XML DBMS

Software AG’s webMethods platform
Sedna[19] Open Source Full range of core Native XML DBMS

database services - persistent storage,
ACID transactions, security,

indices, hot backup.
eXist-db[25] Open Source NoSQL databases built Native XML DBMS

on XML technology
searchxml[26] Commercial DBMS for structured and Multi-Model

unstructured content wrapped Native XML DBMS,
with an application server Search engine

Table 5.1 – Comparison of Native XML Databases

11

5.2. BaseX Table of contents

First, all the native XML databases with a commercial license were eliminated from the selection

of database management systems. Some of them offer a free version. Unfortunately, it usually comes

with restricted storage and processing capabilities for personal and non-commercial use. The multi-model

databases were also ruled out since our data are exclusively in XML formats. Choosing a database mana-

gement system that is organized around a sole data model helps us to focus on handling a single format

of documents and avoid futile confusions about how to organize, store and manipulate our data.

Thus, a precise comparison of the remaining native XML databases was conducted.

Name Database Type Supported APIs XML Querying
BaseX[20] Proprietary XQJ, XML :DB, RESTful, RESTXQ, WebDAV XQuery 3.0

eXist-db[25] Proprietary XQJ, XML :DB, RESTful, RESTXQ, WebDAV XQuery 1.0
Sedna[19] Proprietary XQ, XML :DB XQuery 1.0

Table 5.2 – Comparison of open source single data model native XML databases

The features of the remaining database management systems are quite similar. Sedna seems to be

lacking in terms of APIs’ support. On the other hand, eXit-DB and BaseX provide a wide and identical

range of supported APIs. It is quite arduous to determine which one is more fitting for our implementation.

However, BaseX allows XML Querying in the latest XQuery version. As a result, BaseX was chosen as

the best choice for our scenario’s implementation. There is a complete description of the chosen Native

XML Database, BaseX, in the following section.

5.2 BaseX

BaseX is a native, light-weight and scalable XML Database engine with high performance. It is also

known as a platform-independent and distributed XML Database management system under the Berkeley

Software Distribution (BSD) License, which is a permissive free software license. It primarily started as

a community project on Github[10] in 2007 to become the useful XML Database tool that we know today.

BaseX is written in Java and is NoSQL, which means that it is part of ”a class of database manage-

ment systems (DBMS) that do not follow all of the rules of a relational DBMS and cannot use traditional

SQL to query data”[11]. Unlike the alternative document-oriented databases, it uses standardized query

languages such as XPath and XQuery that are accordant to World Wide Web Consortium (W3C) spe-

cifications and the official Update and Full-Text extensions. XML Path Language, known as XPath, is a

Project INFO-H415 12 Prabhdeep Minhas and Mi Zhou

5.2. BaseX Table of contents

query language using path expressions to choose nodes or a set of nodes in XML documents. XQuery is

the language for querying XML. XQuery does in XML, which stands for Extensible Markup Language,

what SQL, which stands for Structured Query Language, does typically in databases. Its purpose is to

find and to extract components and attributes from XML documents. BaseX supports the new features

of the XQuery 3.1 and the XQuery 3.1 Functions and Operators specification.

Visualizing, querying and storing large XML documents and JSON documents and collections are the

main uses of BaseX. Furthermore, this management system is an in-memory database. Therefore, the

data is stored in compressed form in Random-access memory (RAM) and not in the disk storage. The

performance is improved since the data access is faster. In contrast, it makes it difficult to modify the

data. Memory databases like BaseX are mostly used to store and analyze data for this main reason.

5.2.1 Graphical User Interface

The Graphical User Interface allows interactive searches, explorations, and studies of the data. The

XPath/XQuery expressions are constantly evaluated in real-time.

BaseX can be downloaded from its official website : http ://basex.org/.

Once BaseX is acquired on your device, the GUI instance can be launched by a double-click on the Ba-

seX GUI start icon on your device or by running the BaseX GUI script according to the operating system.

Figure 5.1 – BaseX - Graphical User Interface

The graphical user interface is composed of :

— A menu bar

Project INFO-H415 13 Prabhdeep Minhas and Mi Zhou

5.2. BaseX Table of contents

Figure 5.2 – BaseX - Menu Bar

— A toolbar. It used to control the windows shown, to provide the possibility to add or delete a

window or a view in the interface. Each view shows a specific perspective of the manipulated data.

Figure 5.3 – BaseX - Tool Bar

— A small drop-down menu for command execution (Command Option), query execution (XQuery

Option) and searches in the database (Find Option)

Figure 5.4 – BaseX - Drop-down Menu

— Windows showing different aspects of the system. (Editor, Project View, and Visualizations)

5.2.2 Starting with BaseX

To create a database, you can either use the command line CREATE DATABASE name or select

Database -> New in the menu bar and browse to an XML document of your choice.

Next to the input bar, there is a drop-down menu. This menu provides three modes : Find, XQuery

and Command.

In the Find mode, the user can type single symbols or texts in the input bar to find them in the

ongoing database.

Here are some examples of find queries :

Query Description
city Find elements named city, and texts containing this token.

=India Find texts matching the exact string India.
Cing Find texts equal or similar to the token Cingdom.
id Find attributes named id and attribute values containing this token.

@=f0 119 Find attribute values matching the exact string f0 119.
”European Chinese” Find texts containing the phrase ”European Chinese”.

//city Leading slash : Interpret the input as XPath expression.

Table 5.3 – Find queries’ examples - Graphical User Interface[12]

The user can enter XPath and XQuery expressions in the input bar in the XQuery mode.

Here are some examples of XPath and XQuery expressions :

Project INFO-H415 14 Prabhdeep Minhas and Mi Zhou

5.2. BaseX Table of contents

Query Description
//country Return all country elements.

//country[name = ”Switzerland”] Return the country element of ”Switzerland”.
for $city in //city Return the names of all cities with a

where $city/population > 1000000 population larger than one million
order by $city ascending and order the results by the

return $city/name name of the city.

Table 5.4 – XPath and XQuery expressions’ examples - Graphical User Interface[12]

In the Command mode, the user can enter BaseX Commands[13]. The commands will be executed.

More details about BaseX GUI can be found here : http ://docs.basex.org/wiki/Graphical User Interface

5.2.3 Reasons to choose BaseX

Nowadays, large amounts of data on Open Data Platforms are accessible in XML format as this format

eases the storing process. Therefore, using the data in their XML format in the database management

system DBMS is very compelling. BaseX is the perfect candidate for handling distributed XML data.

Indeed, it applies XML querying concepts such as XPath and XQuery. They are both well developed, well-

known query languages. Moreover, a collection of files can be feed to Basex and it will admit visualizing,

querying and storing these files as a single root document.

Project INFO-H415 15 Prabhdeep Minhas and Mi Zhou

6. Implementation

As mentioned before, the database is organized in different tables such as articles, books, inproceedings,

proceedings, incollection, www, master thesis and Ph.D. thesis. Each table has its respective attributes.

The data organization of our scenario can be represented by the following scheme.

Figure 6.1 – Database Main Tree View

For each table, there exists a detailed tree view. Only the attributes key and ISBN are unique. All

the others attributes can be duplicated.

16

6.1. Search Table of contents

Figure 6.2 – Tree View of each table

Several actions such as search, insert, update and delete are allowed on the data. The administrators

of the database use these actions to keep it up-to-date. In case of an insertion and an update, the

constraints specified in our scenario must be respected. Their implementation will be explained in details

for an insertion and an update.

6.1 Search

To search some information in the database, the user can utilize the Find mode in BaseX to select

the requested information. For further information, consult the ” Starting with BaseX ” section.

Another way to perform searches in the database would be by creating a file .xq that would contain

the XQuery for the requested search. For instance, in order to find all the titles of the articles that have

the value of the attribute volume bigger than 2, we can run the following code by importing the file

search.xq in the BaseX editor :

for $article in //article

where $article/volume > 2

return $article/title

6.2 Insertion

An insertion in the database is needed when a new element or attribute is registered. It can be seen as

adding a new table or a new attribute to an existing table in the database. An insertion can be executed

in the XQuery mode in BaseX or by importing a corresponding .xq file. In both cases, the code executed

has to respect the constraints. The use of a file .xq allows the implementation of functions that constantly

check if the insertions respect the constraints.

Project INFO-H415 17 Prabhdeep Minhas and Mi Zhou

6.2. Insertion Table of contents

The file queries.xqy contains the functions that verify the date, the interval of pages, the ISBN of the

books and the month that are eventually inserted. For each constraint, a function was created to verify

if it is respected during insertions.

• Each key has to be unique : for a key given in parameter, we have to check in each table in dblp,

if it already exists or not.

declare function queries:checkKey($key)

as xs:boolean

{

not((doc("newDB.xml")/dblp/article[@key =$key])

or(doc("newDB.xml")/dblp/inproceedings[@key =$key])

or(doc("newDB.xml")/dblp/proceedings[@key =$key])

or(doc("newDB.xml")/dblp/www[@key =$key])

or(doc("newDB.xml")/dblp/masterthesis[@key =$key])

or(doc("newDB.xml")/dblp/phdthesis[@key =$key])

or(doc("newDB.xml")/dblp/incollection[@key =$key])

or(doc("newDB.xml")/dblp/book[@key =$key]))

};

• Every mdate’s year of a record has to be greater or equal to the year in which it was written.

declare function queries:checkDates($mdate, $year)

as xs:boolean

{

let $date := substring($mdate, 1, 4)

return($date >= xs:string($year))

};

• The beginning page has to be smaller than the end page for an article, in proceeding papers, and

in collection papers.

declare function queries:checkPages($page)

as xs:boolean

{

if(empty($page)) then (

true()

)

else(

xs:integer(tokenize(xs:string($page),"-")[1])

<= xs:integer(tokenize(xs:string($page),"-")[2])

Project INFO-H415 18 Prabhdeep Minhas and Mi Zhou

6.2. Insertion Table of contents

)

};

• All the numbers included in the records have to be positive integers. For example, the interval

of pages and the year have to be positive integers : for this constraint, there is no need to do a

separate function. Indeed, we can directly specify that the attributes year or volume, for instance,

have to be integers, otherwise, BaseX shows an error and the operation can’t happen.

• The ISBN, International Standard Book Number, has to be unique for each book : because the

ISBN is present in only two tables proceedings and books, the program has to check the existence

of ISBN in these ones.

declare function queries:checkISBN($isbn)

as xs:boolean

{

if(empty($isbn)) then (

true()

)

else(

not((doc("newDB.xml")/dblp/proceedings[isbn =$isbn])

or (doc("newDB.xml")/dblp/books[isbn =$isbn]))

)

};

• If the month is specified, it has to be an existing one : we have decided to declare all the possible

ways of writing months. Thus, we can note that January and january will both be accepted, but

JANUARY, for instance, won’t.

declare function queries:checkMonth($month)

as xs:boolean

{

if(empty($month)) then (

true()

)

else (

let $months := (’January’, ’February’, ’March’, ’April’, ’May’,

’June’, ’July’, ’August’, ’September’, ’October’, ’November’,

’December’,’january’, ’february’, ’march’, ’april’, ’may’

, ’june’, ’july’, ’august’, ’september’, ’october’, ’november’,

’december’)

return($months = $month)

Project INFO-H415 19 Prabhdeep Minhas and Mi Zhou

6.2. Insertion Table of contents

)

};

A function returns True if the constraint is respected and allows the insertion. Otherwise, the function

returns False and no data is inserted.

For instance, a simple insertion of an attribute in an existing table can be performed as followed :

import module namespace articles="queries" at "./queries.xqy";

declare variable $key := "journals/acta/ChungES85";

declare variable $author := "Moon-Jung Chung";

if (articles:updateDB($key)) then(

insert node <author> {$author} </author>

into /dblp//article[@key=$key])

else()

The code above represents the insertion of a new author in an article using the unique key. For every

insertion, the unique key has to be known. It allows us to confirm the existence of the table concerned

since a new attribute can’t be inserted into a table that doesn’t exist.

Adding a new table can be done by the following code :

import module namespace masterthesis="queries" at "./queries.xqy";

declare variable $mdate := "2017-05-28";

declare variable $key := "journals/acta/ZhouS85";

declare variable $author := "Zhou";

declare variable $title := "A new title";

declare variable $year := 2015;

declare variable $school := "ULB";

if (masterthesis:addInDB($mdate, $key, empty, $year, empty, empty)) then(

insert nodes

<masterthesis mdate="{$mdate}" key="{$key}">

<author>{$author}</author>

<title>{$title}</title>

<year>{$year}</year>

<school>{$school}</school>

</masterthesis>

into /dblp)

Project INFO-H415 20 Prabhdeep Minhas and Mi Zhou

6.3. Update Table of contents

else()

This code adds a new master thesis to the database. The mdate and key have to be known, and for the

remaining attributes we are free to add them or not, and we can multiply them as well. At first, the

attributes that are subject to the constraints are verified by the corresponding function with the function

addInDB and the functions that it calls.

declare function queries:addInDB($mdate, $key, $page, $year as xs:integer, $month,

$isbn, $volume as xs:integer)

as xs:boolean

{

(queries:checkDates($mdate, $year)

and (queries:checkPages($page)

and (queries:checkKey($key)))

and (queries:checkMonth($month))

and (queries:checkISBN($isbn)))

};

This function will check for every attributes if the constraints are respected. In the example just above,

we can observe that for certain parameters empty is sent to the function. This will just ignore those

parameters when the corresponding functions are called. And for the parameters $year and $volume, it is

specified that they have to be an integer, if they aren’t the query is not executed. If the addInDB returns

True, then the new table is inserted in the database.

6.3 Update

An update is really similar to an insertion. It differs in a few aspects. To update a table, only the key

and the value of the attribute that we want to update have to be known. Before the update, we solely

need to verify that the key exists with the function updateDB.

declare function queries:updateDB($key)

as xs:boolean

{

(queries:existKey($key))

};

declare function queries:existKey($key)

as xs:boolean

{

((doc("newDB.xml")/dblp/article[@key =$key])

or(doc("newDB.xml")/dblp/inproceedings[@key =$key])

Project INFO-H415 21 Prabhdeep Minhas and Mi Zhou

6.4. Deletion Table of contents

or(doc("newDB.xml")/dblp/proceedings[@key =$key])

or(doc("newDB.xml")/dblp/www[@key =$key])

or(doc("newDB.xml")/dblp/masterthesis[@key =$key])

or(doc("newDB.xml")/dblp/phdthesis[@key =$key])

or(doc("newDB.xml")/dblp/incollection[@key =$key])

or(doc("newDB.xml")/dblp/book[@key =$key]))

};

For instance, in order to update the value of the attribute volume of an article, the following code can

be executed :

import module namespace articles="queries" at "./queries.xqy";

declare variable $key := "journals/acta/Hehner78";

declare variable $volume := 40;

if(articles:updateDB($key)) then (

for $article in /dblp//article

where $article[@key=$key]

let $update := $article/volume

return (replace value of node $update with $volume)

)

else ()

6.4 Deletion

A table can be deleted from the database by using its unique key. At first, the key has to be verified

with the function existKey. If it is an existing key, then the table of the concerned data is deleted. For

example, the following code deletes the table of the concerned website by using its unique key :

import module namespace www="queries" at "./queries.xqy";

declare variable $key := "homepages/14/2161";

if(www:existKey($key)) then (

for $www in /dblp//www

where $www[@key=$key]

return (delete node //www/title)

)

else ()

Project INFO-H415 22 Prabhdeep Minhas and Mi Zhou

7. Results

As we have said before, the data used in our project was obtained from an online database [27]. This

realistic database has over 50 million lines, with a huge amount of information about books, articles, etc.

So, it took quite some time to open this database in BaseX. Once it was done, we could clearly see how

it was organized, via the tree structure or even the map structure. It was obviously difficult to work with

such a huge database, as the queries or the commands would take a lot of time.

Therefore, we decided to create a smaller database compared to the original one. With this smaller

version, it would be easier to observe if the queries are correctly made, or that the constraints are res-

pected. The XML file containing this smaller database is called smallDblp.xml.

At first, we tried to execute the obvious queries in BaseX, such as a search or an insert in the database

via the BaseX command line. This was quite straightforward to do, as we just had to implement what

the documentation of BaseX told us. This part was explained in the section 5.2.2 Starting with BaseX.

After that, we had to implement the different constraints of our scenario. To do so, we thought that

triggers were the only way to implement the contraints. Unfortunately, triggers are not yet completely

implemented in BaseX, the code is still under construction as we can see in GitHub. [28]

Thus, we decided to create our own functions that will do the same job. Before any update or add in

the database, we have to call a function that will check if all the constraints are respected. All of these

XQuery functions are located in the file called queries.xqy. For instance, before adding any kind of table

we have to call the function addInDB(), that will make sure the constraints are respected. If there are

other constraints that have to be added to the system, we will just create a new function, and insert it

in the addInDB() function. With this system of functions, we can say that it is not so different from

triggers, it does practically the same thing but in a slightly different way.

Because our data were stored in a XML format, the BaseX platform really helped us in the storing

process, it was the ideal candidate to choose for handling distributed XML data. We were also able to

practice XQuery, which is a well-developed query language. Moreover, BaseX allowed us visualizing such

a massive database. This platform was really efficient for searching and adding information but it was a

bit slow for updating the various tables present in it (for the original database). It wasn’t a big problem

for our scenario because the main operations in the publishing house are adding or searching information.

23

7 Results Table of contents

Nonetheless, if we want to have an overview of this platform, it might not be the most optimal solution

for storing a very large database that modifies itself a lot. Finally, we can say that working with BaseX

was a nice experience, as it was uncomplicated to work with and it was visually a great tool to play with.

Moreover, it helped us realizing that if a platform does not accept the implementation of triggers, there

are other ways to complete the same task.

Project INFO-H415 24 Prabhdeep Minhas and Mi Zhou

8. Conclusion

A publishing house needing to store a huge amount of information, as well as modify, insert, delete or

search data was presented. After several comparisons, we selected the XML database with the management

tool BaseX as the ideal choice for the application of the scenario. The implementation was straightforward

to do. The only difficulty encountered was the use of triggers for the constraints. Sadly, they were not

available in BaseX. But fortunately, we overcame this problem by creating functions in XQuery acting as

triggers.

25

Bibliography

[1] Structure Data XML https ://openclassrooms.com/courses/structurez-vos-donnees-avec-xml

[2] XML data management http ://etutorials.org/XML/xml+data+management/

[3] XML databases http ://www.rpbourret.com/xml/XMLAndDatabases.htm

[4] Native XML databases http ://www.bcs.org/upload/pdf/cwallace-120608.pdf

[5] XML examples https ://www.w3schools.com/xml/xml display.asp

[6] XML databases tutorial https ://www.tutorialspoint.com/xml/xml databases.htm

[7] XML databases slides https ://www.slideshare.net/hawlery1989/xml-databases

[8] Storing XML databases https ://nativexmldatabase.com/2010/09/28/5-reasons-for-storing-xml-in-a-database/

[9] XML databases definitions https ://www.techopedia.com/definition/30558/xml-database

[10] BaseX Github https ://github.com/BaseXdb

[11] NoSQL https ://www.techopedia.com/definition/27689/nosql-database

[12] Graphical User Interface http ://docs.basex.org/wiki/Graphical User Interface

[13] BaseX Commands http ://docs.basex.org/wiki/Commands

[14] Database oracle https ://docs.oracle.com/javase/tutorial/jdbc/overview/database.html

[15] Database definition http ://searchsqlserver.techtarget.com/definition/database

[16] RD vs Non-RD http ://www.jamesserra.com/archive/2015/08/relational-databases-vs-non-relational-databases/

[17] Database volume https ://www.guru99.com/introduction-to-database-sql.html#7

[18] DB-Engines Ranking of Native XML DBMS https ://db-engines.com/en/ranking/native+xml+dbms

[19] Sedna http ://www.sedna.org/

[20] BaseX http ://basex.org/

[21] MarkLogic http ://www.marklogic.com/

[22] Oracle Berkeley DB http ://www.oracle.com/technetwork/database/database-technologies/berkeleydb/

overview/index.html

[23] Virtuoso https ://virtuoso.openlinksw.com/

26

Bibliography Bibliography

[24] webMethods Tamino http ://techcommunity.softwareag.com/ecosystem/communities/public/webmethods/

products/tamino/

[25] eXist-db http ://exist-db.org/exist/apps/homepage/index.html/

[26] Searchxml http ://www.searchxml.net/

[27] DBLP http ://dblp.uni-trier.de/

[28] Triggers in BaseX https ://github.com/BaseXdb/basex/

Project INFO-H415 27 Prabhdeep Minhas and Mi Zhou

	Abstract
	Introduction
	Scenario
	Scenario
	Data organization
	Constraints

	Database
	What is a database?
	What is XML?
	Example

	Relational databases VS Non relational databases
	Relational databases
	Non-relational databases
	Final choice

	Selection of a native XML database
	Comparison of native XML databases
	BaseX
	Graphical User Interface
	Starting with BaseX
	Reasons to choose BaseX

	Implementation
	Search
	Insertion
	Update
	Deletion

	Results
	Conclusion
	Bibliography

