FAA Lerc

X
.....
.........
.......
.......

FONDATION ke
WIENER-ANSPACH European Research Council

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Incremental Techniques for
Large-Scale Dynamic Query Processing

Tutorial
Part 2

1 2 2 . 1
Iman Elghandour Ahmet Kara Dan Olteanu Stijn Vansummeren

1 2

UNIVERSITE
LIBRE
DE BRUXELLES

UNIVERSITY OF

OXFORD

Iman Elghandour
Part 2

Outline

e Partl: Introduction

e Part Il: Main Algorithmic Ideas in Dynamic Query Processing:
Traditional IVM and Recent Advances

3) « Part lll: Generalizations to Arbitrary Ring Structures
e Part IV: Dynamic Query Processing in Big Data Frameworks
e Part V: Outlook

117

Generalisation to Arbitrary Ring Structures

e The IVM machinery presented so far uses the ring over Z
—> Tuples are mapped to integers.
= Query operators use addition and multiplication.

e This ring suffices to compute and maintain the count aggregate.
e However, more complex analytical tasks might require other rings.

e Now, we present Factorized IVM (F-IVM) that allows for task-specific rings.
= The machinery for maintenance remains the same.
= Different applications are captured by different rings.

Incremental View Maintenance with Triple Lock Factorization Benefits.
Milos Nikolic and Dan Olteanu. SIGMOD 2018

118

Example: COUNT Aggregate

Compute COUNT over the natural join:
R(a,b), S(a,c,e), T(c,d)

Q = SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T

Example: COUNT Aggregate

Naive: compute the join Q = SELECT SUM(1)

and then SUM(1) FROM R NATURAL JOIN §
NATURAL JOIN T

SUM(1)
|
XA
/7 \
R(A,B) [><]C
/7 \

Example: COUNT Aggregate

Naive: compute the join
and then SUM(1)

SUM(1)
|
XA
/ N\
R(A, B) D¢
/ N\
T(C,D) S(A,C,E)

SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T

Let all relations be of size N

Computing Q takes O(N3) time!

120

Example: COUNT Aggregate

Push SUM past joins Q = SELECT SUM(1)

to eliminate variables FROM R NATURAL JOIN S
NATURAL JOIN T

SUM(...)
I
>Xa
e N
SUM(...) SUM(...)
| |
R(A,B) Xl

e N

SuM(...) SuM(...)

Example: COUNT Aggregate

Push SUM past joins Q = SELECT SUM(1)

to eliminate variables FROM R NATURAL JOIN S
NATURAL JOIN T

Q = SUM(Cg * Cc)

>A
7~ N
VR = A,SUM(I) as CB VST = A,SUM(CD * CE) as CC
GROUP BY A GROUP BY A
[[
R(A, B) X
7~ N
Vr = C,SUM(1)as Cp Vs = A, C,SUM(1) as Cg
GROUP BY C GROUP BY A, C

I I
T(C,D) S(A,C,E)

122

Example: COUNT Aggregate

Push SUM past joins
to eliminate variables

Q = SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T

Q = SUM(Cg * Cc)
I Factorized evaluation
Distributivity of * over SUM

DA enables this query rewriting
/ \ . . .
Vk = A,SUM(1) as Cg Vs = A, SUM(Cp + Cg)as Cc Q is computed in O(N) time
GROUP BY A GROUP BY A using a hierarchy of views!
| |
R(A,B) MXc
7~ N
Vr = C,SUM(1)as Cp Vs = A, C,SUM(1) as Cg
GROUP BY C GROUP BY A, C

I I
T(C,D) S(A,C,E)

122

Example: SUM Aggregate

SUM over products of B and C

Q

= SELECT SUM(B xC)
FROM R NATURAL JOIN §
NATURAL JOIN T

123

Example: SUM Aggregate

SUM over products of B and C Q = SELECT SUM(B=C)

FROM R NATURAL JOIN S
NATURAL JOIN T

Q = SUM(Sg * S¢)

DA
-~ N
VRZA,SUM(B) as 53 VST =A,SUM(5D*SE*C) as SC
GROUP BY A GROUP BY A
| |
R(A,B) Xl
7~ N
Vr =C,SUM(1)asSp Vs = A, C,SUM(1) as S
GROUP BY C GROUP BY A, C

I I
T(C,D) S(A,C,E)

Reuse counts of D and E

when joining on C

Multiply by C only
after joining on C

123

More General Example: SUM Aggregate

Q = SELECT SUM(ga(A)+ge(B)*gc(C)*gp(D)*ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(SB * SC * gA(A))

>Xla

s T

Vg = A, SUM(gg(B)) as Sg Vst = A, SUM(Sp * Sg * gc(C)) as S¢
GROUP BY A GROUP BY A

I I
R(A,B) Xc
/ N
VT = C,SUM(gD(D)) as SD Vs = A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

| |
T(C,D) S(A,C,E)

124

More General Example: SUM Aggregate

Q = SELECT SUM(ga(A)+ge(B)*gc(C)*gp(D)*ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(Sp * Sc * ga(A)) Join on & eliminate

I one variable at a time
XA
e \

Vi = A, SUM(gg(B)) as Sg Vst = A, SUM(Sp Sg * gc(C)) as S¢
GROUP BY A GROUP BY A
I I
R(A,B) X
/ N
VT = C,SUM(gD(D)) as SD Vs :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

T(C,D) S(A,C,E)

124

More General Example: SUM Aggregate

Q = SELECT sUM(ga(A)*gs(B)*gc(C)*gn(D) +ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Join on & eliminate
I one variable at a time
XA
s T

Vi = A, SUM(gg(B)) as Sg Vst = A, SUM(Sp Sg * gc(C)) as S¢
GROUP BY A GROUP BY A
I I
R(A,B) X
/ N
VT = C,SUM(gD(D)) as SD Vs :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

T(C,D) S(A,C,E)

124

More General Example: SUM Aggregate

Q = SELECT sUM(ga(A)*gs(B)*gc(C)*gn(D) +ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Join on & eliminate
I one variable at a time
>A
s T
Vk = A,SUM(gg(B)) as Sg Vst = A, SUM(Sp * Sg + gc(C)) as Sc
GROUP BY A GROUP BY A

| | eliminate C
R(A,B) Xc
/ N
VT = C,SUM(gD(D)) as SD V5 :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

T(C,D) S(A,C,E)

124

More General Example: SUM Aggregate

Q = SELECT sUM(ga(A)*gs(B)*gc(C)*gn(D) +ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Join on & eliminate
I one variable at a time
>A
s T
Vg = A,SUM(gg(B)) as Sg Vst = A,SUM(Sp * Sg x gc(C)) as Sc
GROUP BY A GROUP BY A

| eliminate B | eliminate C
R(A,B) Xc
/ N
VT = C,SUM(gD(D)) as SD V5 :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

T(C,D) S(A,C,E)

124

More General Example: SUM Aggregate

Q = SELECT sUM(ga(A)*gs(B)*gc(C)*gn(D) +ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Join on & eliminate

I “eliminate A one variable at a time
DA
7~ \
Vg = A,SUM(gg(B)) as Sg Vst = A,SUM(Sp * Sg x gc(C)) as Sc
GROUP BY A GROUP BY A
| eliminate B | eliminate C
R(A, B) DX
/ N
VT = C,SUM(gD(D)) as SD V5 :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A,C
| eliminate D | eliminate E

T(C,D) S(A,C,E)

124

More General Example: SUM Aggregate

Q = SELECT SUM(ga(A)*gge(B)*gc(C)*gp(D)x*ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Imagine aggregate values are of type R
gx : Dom(X) - R

Can we evaluate @ using the query plan from before?

Yes(!), but we need to:

e Define the binary operators * and + in R
e Define zero in R (for initial values)
e Defineonein R (e.g., if X is not used, gx(x) = 1)

e Ensure distributivity of * over +

125

Rings

e Aring (R,+,%,0,1) is a set R with two binary operators:

Additive commutativity
Additive associativity
Additive identity
Additive inverse

Multiplicative associativity
Multiplicative identity

Left and right distributivity

at+b=b+a
(a+b)+c=a+(b+c)
0+a=a+0=a
d-—aeR:a+(-a)=(-a)+a=0
(asb)xc=ax(bxc)
axl=1xa=a
ax(b+c)=axb+axcand
(a+b)xc=axc+bxc

Examples: Z,Q,R,C,R", matrix ring, polynomial ring

126

Factorized Ring Computation

e Relations are functions
- mapping keys (tuples) to payloads (ring elements)

A B — RI[AB]

Finitely many tuples with
ai b1 — n y y P
» b — r non-zero payloads

ri and r> are elements from a ring

e Query language
- Operations: union, join, and variable marginalization

- More expressiveness via application-specific rings

e Query evaluation
- using view trees as shown before

More General SUM Aggregate

Q = SELECT SUM(ga(A)+gge(B)*gc(C)*gp(D)*ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Expressed in our framework:

Q= @A@B @C @D @E (R[A7 B] ®S[A7 C? E] ®T[C7 D])

g

Ve
variable marginalization natural joins

Intuition: Relation payloads carry out the summation!
Marginalization of X applies gx, sums payloads, projects away X

Join multiplies payloads of matching tuples

128

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — RIAB] A B — S[A B] B C — T[B(]

ai b — rn a b — S1 by a — t1
a b — rn a3 by — S b o — to

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A

B

—

R[A, B]

A B — S[A B]

B C — T[B(]

ai
a2

by
by

1l

n
r2

az
as

by
by

—
-

S1
s2

b1 c1 — (51
b o — t2

(RWS)[A, B]

LIl

n
rn+ s
52

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[A B A B — S[AB] B C — T[B,C
I a b1 — S1 by a — 51
a b — r a3 b3 2 by @ — t
Union W
A B — (RwS)AB]
al b — n
[[@2 b — n+s |
d3 [27) — 52

129

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[A, B] A B — S[A, B] B C — T[B7 C]

ay b — n a b — S1 by a — t1

a b — rn a3 by — S b o — to

Union & Join ®

A B — (RWS)[A B] A B C — (RWS)®T)AB,C]
ai b — n aa by a — n*t

a b — rn+ s a by a — (I’2 + 51) * 1y

a3 b — S2 a3 b oo — Sy x to

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — RIAB]

A B — S[A B]

B C — T[B(]

ay b — n a b — S1 by ¢ — t1

a b — rn a3 by — So v
Union & Join ®

A B — (RWS)[A B] A B C — (RWS)®T)AB,C]
a b — n ay_ b — r xt
|az [')1 — rn+ 51| |32 by a — (r2 4+ s1) * l’1|

d3 D2 — 52 a by C — FERS]

Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[A, B] A B — S[A, B] B C — T[B7 C]

ay b — n a b — S1 by a — t1

a b — rn a3 by — S b o — to

Union & Join ®

A B — (RWS)[A B] A B C — (RWS)®T)AB,C]
ai b — n aa by a — n*t

a b — rn+ s a by a — (I’2 + 51) * 1y

a3 b — S2 a3 b oo — Sy x to

for a given
ga : Dom(A) - R

Marginalization €D ,

B C — (BA(RWS)® T)[B, C]
by a — nxti *gA(31)+(r2+51)*t1 *gA(ag)
by o — Sy x tp * gA(a?,

General Query Form

Q = SELECT Xi,...,Xr, SUM(gri1(Xes1) * - % 8m(Xm))
FROM Ry NATURAL JOIN ... NATURAL JOIN R,
GROUP BY Xi,..., Xr

Expressed as Functional Aggregate Query:

Q[X1,..., X¢] = @xm s @xm ®i€[n] Ri[Si]

where:
e Relations Ry, ..., Ry are defined over variables Xi, ..., Xp,
e Xi,...,Xr are free variables

e R; maps keys over schema S; to payloads in a ring (R, +,*,0,1)

e Aggregations @Xf+1’ .., x,, use functions gsy1,...,gm

130

Applications

A host of problems are captured using task-specific rings

o Group-by aggregation over joins (we've seen this already)
e Gradient computation for learning regression models

e Representation of results of conjunctive queries

e Matrix chain multiplication

131

Learning Linear Regression Models

e Find model parameters © best satisfying:

Size (ft2) | #beds

Price (£) | Rating

X 0-| Y

Input Params Output

o lterative gradient computation:
©,1=0;—aXT(XO®;, -Y) (repeat until convergence)
e Matrices XT X and XTY computed once for all iterations
- Compute SUM(X; - X;), SUM(X;), and SUM(1) for

variables X; and X;
- We assume that all variables are continuous

132

Learning Linear Regression Models over Joins

Compute XT X where X is the join of the input relations

e Naive: compute the join, then O(m?) sums over the join result
(m = #query variables)

e Factorized: compute one optimized join-aggregate query

- Using our running query
Q= @A @B @C @D @E(R[A7 B] ® S[A? C’ E] ® T[Cv D])

but a different payload ring and different functions gx!

133

Linear Regression Ring

Set R = (Z,R™,R™*™) of triples a+R b= (Cs+ bS5+ 5p, Qs + Qb)
= (CaCp, Cbsa + ¢a8b, Qs + C2Qp + 528, + spS])
(B) e
o, 8, 1= (1,0mx1,0me)
J T T
SUM(1) SUM(X) SUM(X*X;)

gx;(x) for variable X; VAL paDﬁSZﬁs
; /
m - mu V@B[A] V@C[A]
i ifoRslo R[A‘,B] S
o' HE: il e
V4 V4 Sparse | |

payloads T[C,D] S[A, C,E]

134

Relational Data Ring

e Set of relations over R with W and @ forms a ring of relations

- Relation 0 maps every tuple to 0 € R
- Relation 1 maps the empty tuple to 1 € R, othersto 0 € R

e Payloads: Relations over R = Z with the same schema!

A B — RIAB]

C
aa b1 — c—1
C2~>1

C

a2 bl Cc3 — 1

Keep results of conjunctive
queries in payloads

135

Evaluating Conjunctive Queries using Relational Payloads

e Consider the conjunctive query:

Q(A,B,C,D)=R(A,B),S(A,C,E), T(C,D)

e Compute using relations with relational payloads
Q=P P DD, DP:(R[A B]®S[A C,E]@ T[C,D])

e Lifting (aggregate) functions:

X
% if X is a free variable
X —
gx(x) =
()—1 otherwise

136

Listing Representation of Conjunctive Query Results

Q(A,B,C,D)=R(A,B),S(A C,E), T(C,D)

A B — R[A,B]
a b= [()—=1
a b=)=1 V©A[]
a by —[()—1

as b4*)"ﬁ

A C E - S[ACE]

V@B [A] V@C[A]

ap ca e —|[()—1 R[A B]

a ca e—|)—-1

a @ e —|()—1

» o e;,aW V@D[C] V@E[A q]

C D — T[C.D]
mﬁ T[C D] S[A, C E]
o b= [)>1

@ d = [()—=1

o d44>w

Listing Representation of Conjunctive Query Results

Q(A,B,C,D)=R(A,B),S(A C,E), T(C,D)

A B — R[A,B]
a b= [()—=1

a b=)=1 V©A[]

B
@ b= 051 al_wm / \
a3 by = [()—1 by —1

A — VOB[A]

—_— B VOB[A] VOC[4]
A C E - S[ACE] = "Bﬁl ‘
ap ca e —|[()—1 B b1 R[A B]

a ca e—|)—-1

a @ e —|()—1

» o e — W V@D[C] V@E[A, q]

C D - T[C.D] \ \
P T[C, D] S[A, C.E]
o b= [)>1

@ d = [()—=1

o d4aw

137

Listing Representation of Conjunctive Query Results

Q(A,B,C,D)=R(A,B),S(A C,E), T(C,D)

A B — R[A,B]
a b= [()—=1
a b= [()=1

a by —[()—1

as b4*)"ﬁ

A C E - S[ACE]

ap ca e —|[()—1

a ca e—|)—-1

a @ e —|()—1

a @ e —|()>1

C D - T[C.D]
a d —[)—>1
o b= [)>1

@ d = [()—=1

o d4aw

A — VOB[A]

B
ay— |bp—1
by —1
a— B
2 b3 —1

as —

by —1

C —VveP[C]
L)
AT =1
D
o—|d—1
d3—1

3 —

dg—1

V@A[]

/N

V@B [A] V@C[A]

R[A, B]

V@D[c]

T[C, D]

VEE[A, (]

S[A7 C7 E]

137

Listing Representation of Conjunctive Query Results

Q(A,B,C,D)=R(A,B),S(A C,E), T(C,D)

A B — R[A,B]
a b= [()—=1

a b= [()=1 5
a b3 = [()—1 a1—>1ﬁ
a3 by = [()—1 by —1
— o2 V@B[A] VQC[A]
A C E - S[ACE] by —1

- = A B
ap ca e —|[()—1 B b1 R[A B]

a ca e —|()—1

a @ e —|()—1

2 o ea—>|()=1 C - VveP[c] V@D[C] V@E[A q

D
C D — T[C,D] Cl*ﬁ
T b T[C Dl S[A C E]l acoveeaq
—|dr—1 -
. dgal

o b= [)>1 aa— [)=2

@ d = [()—=1 N aa— [)=1
= *7
a d—=[()—1 di—1 o~ |1

A — VOB[A]

V@A[]

Listing Representation of Conjunctive Query Results

Q(A,B,C,D) =

A B — R[A,B]
a b= [()—=1
a b= [()=1
a by —[()—1
a3 b4~)w
A C E — S[ACE]

ap ca e —|[()—1

a ca e —|()—1

a @ e —|()—1
a o e4~>w

C D - T[C.D]
a d —[)—>1
o b= [)>1

@ d = [()—=1

a d)51

R(A, B),S(A, C, E),

A — VOB[A]

B
ay— |bp—1
by —1

B
b3~>
aﬁ%

C —VveP[C]
L)

A7 Td 1
D
o—|d—1
d3—1
L)

ST dy =1

T(C,D)

V@A[]
/N
veB [A] V@C[A]

R[A, B]

VeP[C] VCOE[A (]

T[C, D] S[A, C, E]

A — VOC[A]

CcD

Teidi =2
cdr—1
cd3—1
CcD

m—o|od—1
cd3—1

A C - VOE[AC)

aca— [()—2

ac— [()—1

o= [()—1

137

Listing Representation of Conjunctive Query Results

0= Vel

Q(A,B,C,D) =

A B — R[A,B]
a b= [()—=1
a b= [()=1

a by —[()—1

as b4*)"ﬁ

A C E - S[ACE]

ap ca e —|[()—1

a ca e —|()—1

a @ e —|()—1

a @ e —|()>1

C D - T[C.D]
a d —[)—>1
o b= [)>1

@ d = [()—=1

a d)51

R(A, B),S(A, C, E),

A — VOB[A]

B
ay— b —1

by —1
o B

b3~>
i

C —VveP[C]
L)

A7 Td 1
D
o—|d—1
d3—1
L)

ST dy =1

T(C,D)

V@A[]

/N

V@B [A] V@C[A]
‘ A — VOC[A]

€b
R[A, B] adi—2
cdr—1
cd3—1

CcD
V@D[C] V@E[Av C] an—lad 1

‘ ‘ od3—1

T[C7 D] S[A7 C, E] A C - VOE[AC)

aca— [()—2
ac— [()—1

o= [()—1
_— 137

Factorized Representation of Conjunctive Query Results

Q(A7 87 C7 D) =

A B — R[AB]
b~ 051
b= 0=1

by = ()—1

ai
ai
a

as

A
ap
ai
a

az

€1
<1
2

@

by > 0=1

C E — S[ACE]

a—10=1
e —=|()—1

ea—=|()—1

S

C D — T[C,D]

a d = [)—=1

o &= [)—=1

o d—=[()—1

e di = 0=1

R(A, B), 5(A, C, E),

A — VOB[A]

B
a—|bh—1
b —1

a—

B
b3 —1

/B
a3 by —1

C —VveP[C]

a—r d—1

D
o—|dh—1
d3—1

N D
a dy—1

T(C,D)

V@A[]

V@B [A] V@C [A]

R[A B

v@D V@E[A ql

T[C D] SIA, c E]

A C—VOE[AC]

aa— [()—2

ac— |()—1

o= [()—1

138

Factorized Representation of Conjunctive Query Results
Q(A, B, C,D) = R(A, B), S(A, C, E), T(C, D)

A B — R[A,B]

a b =051

L Lo VOA[]
a b3 = [()=1 B
2 b2 051 Tt /N
@C @c

A C E - S[ACE] N Eﬁl VEE[A] VeC[A] AHVC [A]
aaea—[0o1 a3ﬁ% ‘ N
g ~ B RAH T
R E

- 1
2oe0-t [0-1 C - ver[C] VeP[C] VEeE[A (]
C D — T[C,D] oo 31%1 ‘ ‘

a d =)ol b TIC, D] S[ACE] ac_veeac
o &= [)—=1 o—|dh—1
o d—=[()—1 %1 I

17 D ac— |()—1
c3 dy — ()_>1 63‘%’@

o= [()—1

Factorized Representation of Conjunctive Query Results
Q(A, B, C,D) = R(A, B), S(A, C, E), T(C, D)

A B — R[A,B]

_— 0

a b =051 A

a b= [()—=1 A = VB[A] V@A[] 00— 21:2
a b3 = [()—1 B 2
AR S SV

©B QC eC
A C E 5 S[ACE] nofp—y VO VA AZVTIAl

C

a ca e —|)—1 23— Eﬁfl al—wm
aia e—|)=1 PR e R[A, B] Q=2
a o ea—|)o1 2= fzﬁ»2
zeazl0ot ! VeP[C] VOE[A, (]
C D — T[C,D] oo 31%1 ‘ ‘

a d =)ol b TIC, D] S[ACE] ac_veeac
o &= [)—=1 o—|dh—1
o d—=[()—1 %1 I

17 D ac— |()—1
M TS no—)1

Factorized Representation of Conjunctive Query Results

Q(A7 87 C7 D) =

Constant Delay
Enumeration

foreach a in VA
foreach b in V8
foreach ¢ in V®°
foreach d in VP
output (a,b,c,d)

R(A, B), 5(A, C, E),

A — VOB[A]

B
ay— |bp—1
by —1

a—

aﬁ%

C —VveP[C]

a= dy—1

D
o—|d—1
dz3—1

L)
a3 dy—1

T(C,D)

0= Ve[l
A
8
VOA[] 0=
V@B [A] V@C [A] A — v@C[A]

a;— | ~>2
R[A, B] cﬁz

VeD[C] VCE[A, (]

TIC, D] S[A, C E] a ¢ veepaq

aa— |[()—2
ac— |[()—1

ano— |[()—1

139

Factorized Representation of Conjunctive Query Results
Q(A, B, C,D) = R(A, B), S(A, C, E), T(C, D)

0—Verr]
Factorized Join A VO[] 0> 1255
5 V@A[] ap—2
/ U \ ap— | —1 / \
by —1
a a B ecC oc
! ! aolB o VERIAL VA v
B
/ \ / \ as — ai—|cg—2
U U U u — 2 RIA, B 2
NN] ke
by by <@ (] (&) bs o—2
\ \ \
X x x i VeP[C] VOE[A,]
V' o | |
| /\ b TIC,D] S[AC.E] acveeaq
di dr d3 o—|db—1 —
dy—1 aa— [()-2

D ace— |()—1
c;;a%
dy—1 o= [)—=1

Matrix Chain Multiplication

Input: Matrices A; of size of p; x pj11 over some ring R (i € [n])
Compute: Product matrix A[x1, Xp+1] = sze[m] e Zx,,&pn n;e[n]A;[Xi,Xi+1]

Modeled in F-IVM:

o Represent matrix A;[x;, x;+1] by relation Ai[X;, Xit1]
with Ai[a;, ait+1] = Ajla;, ai+1] (payloads are matrix entries)

e Express matrix multiplication by the query
AlX1, Xnt1] = Dx, - Dx, ®,-€[n] AilXi, Xiy1]

where each lifting function ng(Xj) maps any key to payload 1 € R

141

Example: Product of Four Matrices
AlX1, X5] = Dx, Dx, Dx, Qicpa AilXi: Xit1] (each A; encodes a p x p matrix)

V©X3[X1,X5] V©X2 = ®X2 A]_ & A2

/ \ V©X4 — @X4 A3 ® Aq

Ve[X;, X;] VX [X3, X5]

/ \ / \ V@X3 — @Xa V@X2 ® V@X4

A[X1, Xo] Ao[Xo, X3l AslX3, Xyl Au[Xy, Xs] View computation time: O(P3)

142

Example: Product of Four Matrices

AlX1, X5] = Dx, Dx, Dx, Qicpa AilXi: Xit1] (each A; encodes a p x p matrix)

VOS[X, X5] Ve =@y, A ® Ay
/ \ VeXs — Dx, Az ® Aq
A[X1, Xa] AalX2, X3] As[X3, Xa] Ag[Xg, X5] View computation time: O(p’)

Propagation of dAx[X2, X3]:
SV X, X3] = Dx, 0A2[X2, X3] ® Az[X2, X3] (time O(p))
SV [X1, X5] = Dy, SVO2[X1, X3] @ V[X3, X5] (time O(p?))
Further propagation of delta requires O(p3) time.

142

Example: Product of Four Matrices

AlX1, X5] = Dx, Dx, Dx, @icpa AilXi; Xit1] (each A; encodes a p x p matrix)

VQX3[X17X5] V@X2 — @Xz Al ® A2
/ \ V©X4:@X4A3®A4
\ﬁ% fl V@/X%f] VO = Py, VO @ VX
AiX1, Xzl AolXz, X3 As[X3 Xa] AalXs, Xs] View computation time: O(p®)

Propagation of a factorizable update 6Az[X2, X3] = u[X2] ® v[X3]:
SVO2[X1, X3] = (B, A1lX1, X2] ® u[X2]) @v[X3] (time O(p?))

uz[X1]
SVOS[X1, Xs5] = ua[X1] © (B, vIX3] ® VE4[X3, X5]) (time O(p?))

142

Summary: Factorized IVM

e Framework for unified IVM of in-database analytics
- Captures many application scenarios via tasks-specific rings
e Based on 3 shades of factorization

- Factorized query evaluation
- Factorized representation of query results
- Factorized updates

e Performance: Up to 2 OOM faster and 4 OOM less memory
than state-of-the-art IVM techniques

143

Outline

e Partl: Introduction

e Part Il: Main Algorithmic Ideas in Dynamic Query Processing:
Traditional IVM and Recent Advances

* Part lll: Generalizations to Arbitrary Ring Structures
3 PartIV: Dynamic Query Processing in Big Data Frameworks
e Part V: Outlook

144

Are Centralized Algorithms Scalable ?

Distributed Dynamic Yannakakis (TPA-D) vs Centralized Dynamic Yannakakis (CDYN)

Time (s)

2000.0

1500.0

1000.0

500.0

0.0

Update Time (s)

500.0
400.0
= 300.0
£
= 2000
100.0
14.6 26.5
— 0.0
05 3 5

TPC-H Instance Scale

EmTPA-D mCDYN

Enumeration Time (s)

0.7 16 22.9

0.5

3 5
TPC-H Instance Scale

B TPA-D mCDYN

Setup: 5 machines, 24GB RAM, 8 Cores / 16 Threads
0.5 =2 million tuples; 3 = 20.5 million tuples; 5 =34 million tuples

145

Why Distributed Streaming Frameworks?

* Efficiently process streams of big data

* Data too big to fit into the memory of one machine

* Centralized approaches are not efficient enough to process large data
* Add recovery to faults

e Why ? Distributed Computations + Messages
 Failure = Too expensive to start recomputing from the beginning

146

Distributed Streaming Frameworks

5 sToRM éFlink

@ HERON
S

Millwheel ’
Google Dataflow Trill

PULSAR

Spoﬁ’(\z
Streaming

Q)

147

Main Objectives

e Supporting complex continuous queries ?

* Low latency

* Scalability — Distributed streaming frameworks

 Fault tolerance

148

Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

Batch Processing
Frameworks

Hadoop (e.g. Incoop,
Nova, ..)

Distributed
Frameworks

Spark

Continuous Operators /
Streaming Frameworks

Also gllow batch iy
processing (e.g. Flink)

For each system, we focus on: computation model,
scalability, fault tolerance, and support for joins

Only Stream Processing
(e.g. Storm / Heron)

149

Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

atch Processin
Frameworks

doop (e.g. Incoa
Nova,..)

Distributed

Spark

Also allow batch

Continuous Operators /

Streaming Frameworks

Only Stream Processing

(e.g. Storm / Heron) .

Nova [SIGMOD’11]
* Goals: semcec.ien;sﬁ?ﬁ?%?

Layer on top
of
Pig/Hadoop

* Dynamic query processing | e |
° SChedUI|ng Nova server instance) :
* Optimizations watchdog | Sehipieace
——— Va $
S trigger process . process
—— NADARBE manager optimizer

‘metadata“" \ J -

database N
data process
— manager executor
— ’ —ﬁ
v / \
data & large-scale ¥ Y _
metadata 1 storage & Hadoop ** Pig H Oozie
replicator processing s
other clusters

[SIGMOD’11] Christopher Olston et al. 2011. Nova: continuous pig/hadoop workflows. In Proc. ACM SIGMOD Int. Conf. on Management of Data.
1081-1090.
151

Example Nova Workflow

Tasks

Channels / Data Containers

il

e Data annotated with
All Read complete snapshot
New Read NEW data
B Emit full snapshot

A Emit new data that augment existing

[SIGMOD’11] Christopher Olston et al. 2011. Nova: continuous pig/hadoop workflows. In Proc. ACM SIGMOD Int. Conf. on Management of Data.

1081-1090.

template
detection

news site

templates |

7 ALL
shingle de-
seen A

*\, - B IA N

RSS feed

~~.. template

tagging

T
—

shingling

unique

_articles

152

Example Nova Workflow 5

news
articles

ALL

Non-incremental - L

detection

e

— Stateless
news site | . .
templates |} “TOR - incremental with
i 7N lookup table
NEW

Stateless incremental shingling

i

— NEW

—s]winglzeg - de- StatEfUI
hashes duping .
seen fAL 1= incremental
\'.u'niqu'e-/
articles

[SIGMOD’11] Christopher Olston et al. 2011. Nova: continuous pig/hadoop workflows. In Proc. ACM SIGMOD Int. Conf. on Management of Data.
1081-1090. 153

Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

Hadoop (e'g' Incoop, IR

Nova, ..)
atch Processin
Frameworks
l il
Distributed '
Also allow batch

Continuous Operators /
Streaming Frameworks

Only Stream Processing
(e.g. Storm / Heron)

154

Spcwr‘lgZ

Spark Streaming [SOSP’13, SIGMOD’18] streaming

Design objectives
* Process streams of large scale data
* Automatically handle faults and stragglers (parallel recovery)
* Integrate streaming with batch and interactive analysis
Kafka
Flume S "\Z HDFS
HDFS/S3 p Qr K Databases
Kinesis Stfeamlng Dashboards

Twitter

Credit: https://spark.apache.org/

[SOSP’13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and lon Stoica. 2013. Discretized Streams: Fault-tolerant

Streaming Computation at Scale. In Proc. ACM Symp. on Operating Systems Principles (SOSP). 423—-438.
[SIGMOD’18] Michael Armbrust et al. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proc. ACM 155

SIGMOD Int. Conf. on Management of Data. 601-613.

SpaflgZ

Spark Streaming — Computation Model Streaming
D-streams:
* Computations => short, stateless, deterministic tasks
* Streamed data => fault-tolerant data structures (RDDs)
* Recomputed deterministically
* Spark engine for processing
input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

Credit: https://spark.apache.org/

156

Spark Streaming — Computation Model

Input

* Input should be re-playable
(e.g. Amazon Kenisis, Apache Kafka)

Spark Streaming
'g 1L Spark
“ | Batches

Live input data
stream

Results

Batches of
Results

Spor‘l'g

Streaming

Spark Streaming
Divide data Streaming computations
stream into expressed using
batches DStreams
C]
[3| Batches of Generate
< input data ROD
RDDs
" transformations
Spark
Task
Scheduler Spark batch jobs to
Memory execute RDD
Manager transformations

Credit: Michael Armbrust et al. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proc. ACM SIGMOD Int.

Conf. on Management of Data. 601-613.

157

ok’
Spark Streaming — Computation Model Sheoming

Processing

* Time interval completes =2 spark streaming generate a parallel
job (RDD transformation) to operate on the data

Spark Streaming

Divide data Streaming computations
b » streaminto expressed using
Live input data’ batches DStreams
Spark Streaming =
stream [J
] Batcrt\zs ff Generate
mpuRD;sa ROD
- N = u - % | transformations
Data Streams =~ > ’/ H Spark W
> T Spark
’ o
@ Task
“ | Batches Results '
Scheduler Spark batch jobs to
Memo execute RDD
Batches of ry t f t
Manager ransformations
Results

Credit: Michael Armbrust et al. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proc. ACM SIGMOD Int.
Conf. on Management of Data. 601-613. 158

ok’
Spark Streaming — Computation Model Sheoming

Output
* Pushed to another system or stored as an RDD

* Next jobs operate on: Streamed data + Intermediate
materialized data Spark Strearming

Divide data Streaming computations
» streaminto expressed using
Live input data batches DStreams
Spark Streamin ®
e 8 stream [? Batches of G
I input data e:;:)ate
. .~ as RDDs s
e =) - | transformations
Data Streams > Spark
7 g Spark
& Task
Batches Resiets Scheduler Spark batch jobs to
Memory execute RDD
Batches of Manager transformations
Results

Credit: Michael Armbrust et al. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proc. ACM SIGMOD Int.
Conf. on Management of Data. 601-613. 159

Spark Streaming — Fault Tolerance

* Parallel recovery
* Streams and intermediate data are stored as RDDs
* Frequent checkpointing
* Failure => only missing partitions are recomputed
 Straggler mitigation
* Run speculative copies of slow tasks

* Deterministic computations + Idempotent sinks

Spar‘;(\Z

Streaming

v

160

Spark Streaming — Incremental Processing of

Queries
* Stateless =@ fault tolerance

* Maintaining a State =» Arbitrary Stateful Operators

// Define an update function that simply tracks the
// number of events for each key as its state, returns

// that as its result, and times out keys after 30 min.
def updateFunc(key: UserId, newValues: Iterator[Event],

state: GroupStatel[Int]): Int = {
val totalEvents = state.get() + newValues.size()
state.update(totalEvents)
state.setTimeoutDuration("30 min")
return totalEvents

// Use this update function on a stream, returning a

// new table lens that contains the session lengths.

lens = events.groupByKey(event => event.userlId)
.mapGroupsWithState (updateFunc)

SpoflgZ
Streaming

161

Spofl’g

Spark Streaming — Support for Join Queries Streaming

 Allowed Joins:

* Join between two data streams

* Join between a data stream and a static dataset
* What about joining n datasets?

* n-1 pairjoins

* Materialize intermediate join results

 Dynamic query processing ?

162

Running Example

Query from TPC-H Benchmark:

SELECT *

FROM lineitem L, supplier S, partsupp PS

WHERE L.suppkey = S.suppkey
and L.suppkey = PS.suppkey
and L.partkey = PS.partkey

L(sk,pk)

S(sk)

163

o
. Spark
Example: Spark Implementation sticaming

val dsL = spark
.readStream
.format(source = "kafka")
.option("kafka.bootstrap.servers", "localhost:9093")
.option("subscribe", "li-topic")
. load
.select(col = "value", cols= "timestamp")
.as[(String,Timestamp)]
.map(data => L(data._1, data._2))

.withWgtermark{ geventTime = 'dTimestamp", delayThreshold = "10 seconds")
~w1iefine datasets

.format(source = "kafka")
.option{"kafka.bootstrap.servers", "localhost:9094")
.opti subscribe", "ps-topic")

dsL
.1 d 1 1 - mmn mmn Y] — i n
sgtcu col = "value", cols= "timestamp") .]01n(dsPS,expr(expr = LSK pSSK)' joinType = "inner)

= Definte schema .join(dsS, expr(expr= """1SK = sSK"""), joinType= "inner")

.withWatermark(eventTime = "psTimestamp", delayThreshold = "10 seconds"
val dsS = spark

.readStream

.format(source = "kafka")

.option("kafka.bootstrap.servers", "localhost:9095")

.option("subscribe", "s-topic")

. load

.select(col= "value", cols= "timestamp")

.as[(String, Timestamp)]

.map(data => S(data._1, data._2))

.withWatermark(eventTime = “sTimestamp", delayThreshold = "10 seconds")

Two step
join

val tripleJoin =

164
Acknowledgment: Thanks to Omar Shahbaz Khan for preparing this code.

Example: Spark Execution Plan

¥ DAG Visualization

Stage 0

Stage 1

in i

istingRDD

WholeS]

tageCodegen

EventTi

eWatermark

>

Exchange

E}FstingRDD

WholeS]

tageCodegen

EventTi

eWatermark

/

R

xchange

Stage 2

Spor‘l'g

Streaming

Exchange

map

Exchange

reamingSymm

cHashJoin Exchange

|

Tis’:in DD /

leSfageCodegen

StreamingSympaétricHashJoin

$

/

entTIueWatermark

Exchange

165

Example: Spark Execution Plan

Stage 3

166

Distributed Higher-Order Incremental View
Maintenance [SIGMOD’16]

TOASTER

* On top of Spark: synchronous execution model

Views =» local or distributed (partitioned)

Parallel updates of views =2 dependency among programs
(LOCAL IVM PROGRAM]

Batching updates (well in some of the cases !) ON UPDATE R

STATEMENT 1

STATEMENT 2

STATEMENT 3

ON UPDATE S
STATEMENT 4

STATEMENT 5

STATEMENT 6
STATEMENT 7

\.

[SIGMOD’16] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2015. How to Win a Hot Dog Eating Contest: Distributed Incremental View
Maintenance with Batch Updates. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 511-526.

167

Distributed HIVM Solution Qrmsren

* Annotate each node in the query plan with location tags
* LOCAL, PARTITIONED BY KEY, RANDOM

* |nsert communication operations into query plans:
location transformers

8 = » o

- o = o
<am = =
REPARTITION GATHER SCATTER

* Holistic optimization to minimize communication cost

[SIGMOD’16] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2015. How to Win a Hot Dog Eating Contest: Distributed Incremental View
Maintenance with Batch Updates. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 511-526. 168

Distributed HIVM — Fault Tolerance @ TOASTER

* Leverage Spark fault tolerance mechanism
* Periodic checkpointing in trigger program

169

Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

Hadoop (e.g. Incoop,
Nova, ..)

Batch Processing
Frameworks

Spark

Distributed

Also allow batch

Continuous Operators /

W Only Stream Processing

(e.g. Storm / Heron)

170

Flink [DE’15] (Based on Stratosphere[VLDBJ'14])

G

Apache Flink

* No distinction between stream processing and batch processing

* However, core is a distributed streaming datflow engine

= o
= g N
5 S §
& = D oo o
o = sl
s | = Fall 2§
£ £ o W
g | £33 |38 || 5% a3 38
@ = i
s | ES || 66 || €1 S8l €3
5
fu |
- DataSet API DataStre am API
§ Batch Processing Stream Processing
Runtime
= Distributed Streaming Dataflow
it
Local Cloud
g Single JVM Cluster Google Comp. Engine
a : £ Standalone, YARN - ENBING,
3 Embedded ’ EC2

[DE’15] Carbone, Paris, et al. 2015. "Apache flink: Stream and batch processing in a single engine." Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering 36.4.

[VLDBJ'14] Alexander Alexandrov et al. 2014. The Stratosphere Platform for Big Data Analytics. The VLDB Journal 23, 6 (Dec. 2014), 939-964.

171

Flink — Computation Model Apjf%mk

* Runtime program: DAG of stateful operators connected with
data streams

» Stateful operators: parallelized into one or more parallel instance
(subtask)

* Streams: partitioned into one or more stream partition (one per
subtask)

e Static program =»

e finite stream

e order of records is not important

172

G

Flink — Fault Tolerance Apacha Plink
* Consistency guarantee: exactly-once-processing
* |nput data: persistent + re-playable --_--
* Frequent checkpointing -“-
* Allow partial re-execution v
* Distributed consistent snapshots: R

state of the operators + current position of the input stream

* Failure occurs =»
e Revert to latest snapshot

 Redo the computation

173

Flink — Support for Join Queries Api%mk

* Join two streams

e Window

* |nterval

 Join in Batch API allows custom join functions

174

Running Example

Query from TPC-H Benchmark:

SELECT *

FROM lineitem L, supplier S, partsupp PS

WHERE L.suppkey = S.suppkey
and L.suppkey = PS.suppkey
and L.partkey = PS.partkey

(T)
{sk}

{sk,pk}

L(sk,pk)

PS(sk,pk)

S(sk)

175

G

Example: Flink Implementation M B

val doubleJoinStream =
IStream
.join(psStream)
.where(1 => 1.15K)
.equalTo(p => p.psSK)
.window(TumblingEventTimeWindows.of(Time.seconds(seconds = 10)))
.apply((1,p) => (1,p))

doubleJoinStream.map(j => j._l.toString + " | ™ + j._2.toString).print

val tripleJoinStream =
doubleJoinStream
.join(sStream)
.where(_._1.1SK)

.equalTo(_.sSK)
.window(TumblingEventTimeWindows.of(Time.seconds(seconds = 10))).apply((j,s) = (j._1,j._2,s))

176

Acknowledgment: Thanks to Omar Shahbaz Khan for preparing this code.

Example: Flink Execution Plan Apagﬁnk

Source: Custom Source -> Ma

p->Map T

Parallelism: 1

Window(TumblingEventTimeWindow
s(10000), EventTimeTrigger, Co
GroupWindowFunction) -> Map HASH

Parallelism: 1

Window(TumblingEventTimeWindow

Source: Custom Source -> Ma /' s(10000), EventTimeTrigger, Co
p -> Map HASH GroupWindowFunction) -> (Ma
Parallelism: 1 p, Sink: Print to Std. Out)

Parallelism: 1

Source: Custom Source -> Ma
p -> Map

HASH

Parallelism: 1

177

Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

Batch Processing

Distributed

Hadoop (e.g. Incoop,

Frameworks

Continuous Operators /

Nova, ..)

Spark

Also allow batch

BRI ARC AL

processing (e.g. Flink)

Only Stream Processing

Heron [SIGMOD’15, ICDE’17] @

* Streaming engine
* Real-time performance for big data
* Based on + Same programming model of Storm [SIGMOD’14]

[SIGMOD’14] Ankit Toshniwal et al. 2014. Storm@Twitter. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 147-156.

[SIGMOD’15] Sanjeev Kulkarni et al. 2015. Twitter Heron: Stream Processing at Scale. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 239-250.
[ICDE’17] Fu, Maosong et al. 2017. Twitter Heron: Towards Extensible Streaming Engines. In Proc. IEEE International Conference on Data Engineeririg9
(ICDE). 1165-1172.

Heron — Computation Model @

e Queries are represented as topologies, which are directed
acyclic graphs of spouts and bolts
* Spout = tuple sources for the topology (e.g. pull data from kafka)

* Bolt = process data and pass them to next bolt(s)

* Programmer specifies:

 The number of tasks created for each spout and bolt (degree of
parallelism)

* Data partitioning

180

Heron Example Topologies

Credit: Real Time Analytics: Algorithms and Systems by Arun Kejariwal (https://apache.github.io/incubator-heron/docs/resources/)
181

Example Topology : Real Time Active Users (1

Shuffle Fields Fields
grouping on grouping on
grouping user_id timestamp

Kafka Spout Distributor User Count Aggregator
(client_event) Bolt Bolt Bolt

Credit: Fu, Maosong et al. 2017. Twitter Heron: Towards Extensible Streaming Engines. In Proc. IEEE International Conference on Data Engineering
(ICDE). 1165-1172. 182

Heron Topology Architecture @

* Topologies are submitted to a scheduler “Apache Aurora”, which starts
several containers:

 Topology master

* General container running:
* Stream Manager,
* Metric Manager, and

* Heron Instances

Mosrtoeieg Syviem

'

 Topolazy Ty |
~ Maorer (TM) "
" Sandbyy |
]

'

Credit: Fu, Maosong et al. 2017. Twitter Heron: Towards Extensible Streaming Engines. In Proc. IEEE International Conference on Data Engineering
(ICDE). 1165-1172. 183

Heron — Fault Tolerance: Tuples Processing @
Semantics

* At most once:
* No tuple is processed more than once
 Some tuples might be dropped (Not processed by the topology)
* At |least once:
e Each tuple is processed at least once (multiple times happens)
 Add new bolt “acker” to track the processing of each tuple

* Developer custom code for state recovery

184

Heron — Fault Tolerance: Workers @

* Topology Master
 Metadata kept in Zookeeper

» A standby version is created upon startup in case master fails

* Failure scenarios

 Death of a Stream Manager or Heron Instances: restarted from within
the container

 Container failure or Machine failure:
A new container is started

 Failure recovery procedure of Stream Manager and Heron Instances

185

Heron — Support for Join Queries @

* Storm SQL integration experimental feature =2 does not
support joins or aggregations

* Heron Streamlet API (beta) =» join operations of two streams
* Programmers write topology for applications

* Advanced incremental view maintenance approach can be
implemented as a topology ?

186

Running Example

Query from TPC-H Benchmark:

SELECT *

FROM lineitem L, supplier S, partsupp PS

WHERE L.suppkey = S.suppkey
and L.suppkey = PS.suppkey
and L.partkey = PS.partkey

L(sk,pk)

S(sk)

187

Example: Heron/Storm Implementation

builder.setSpout(id = "1i", 1Spout, parallelism_hint= 1)
builder.setSpout(id = "ps", psSpout, parallelism_hint = 1)
builder.setSpout(id = "s", sSpout, parallelism_hint= 1)

val firstStepJoinBolt = new JoinBolt(sourceld = "1i", fieldName = "1S_key")
.join(newStream = "ps", field = "psS_key", priorStream= "1i")
.select(commaSeparatedKeys = "1S_key, 1_obj, ps_obj")
.withTumblingWindow(new Duration(value = 1@, TimeUnit.SECONDS))

builder.setBolt(id = "firstStepJoin", firstStepJoinBolt, parallelism_hint= 1)
.fieldsGrouping(componentld = "1i", new Fields(fields = "1S_key"))
.fieldsGrouping(componentid = "ps", new Fields(fields = "psS_key"))

builder.setBolt(id = "1iPsBolt", new DoubleJoinBolt).shuffleGrouping(componentld = "firstStepJoin")

val secondStepJoinBolt = new JoinBolt(sourceld = "1iPsBolt", fieldName = "key")
.join(newStream = "s", field = "s_key", priorStream = "1iPsBolt")
.select(commaSeparatedKeys = "key, 1_obj, ps_obj, s_obj")
.withTumblingWindow(new Duration(value = 10, TimeUnit.SECONDS))

builder.setBolt(id = "secondStepJoin"”, secondStepJloinBolt)
. fieldsGrouping(componentid = "LiPsBolt", new Fields(fields = "key"))

.fieldsGrouping(componentld = "s", new Fields(fields = "s_key"))

builder.setBolt(id = "1iPsSBolt", new TripleJoinBolt).shuffleGrouping(componentld = "secondStepJoin")

188
Acknowledgment: Thanks to Omar Shahbaz Khan for preparing this code.

Distributed Streaming Frameworks: Summary

__________sparksStreaming |Flink ______Storm/Heron ___

Input stream Persistent + Persistent + No condition

Condition Re-playable Re-playable

Input stream D-Streams Tuples Tuples

Computation Stateless Tasks Topology of Topology of

model Stateful Stateful bolts

Operations

Runtime Engine Batch Processing Stream Processing Stream Processing

Support Batching v v) ¢

Fault tolerance Exactly—once Exactly—once At-most—once or
Parallel and Parallel from At-least-once

partial Recovery Snapshot (programmer) .

Outline

e Partl: Introduction

e Part Il: Main Algorithmic Ideas in Dynamic Query Processing:
Traditional IVM and Recent Advances

e Part lll: Generalizations to Arbitrary Ring Structures
e Part IV: Dynamic Query Processing in Big Data Frameworks

» * Part V: Outlook

190

Parallel and Distributed Dynamic Query Processing

Challenges

Efficiently enumerating query
output from partitioned state

Maintaining a distributed
state

191

Challenge: Maintaining Distributed State

* Query state can be:
* Materialized views (e.g. IVM, HIVM)

e Custom query representation (e.g. Dynamic Yannakakis, F-IVM)

* Assumptions:

e Stored in memory =2 otherwise, promised performance is not
guaranteed

e Optimized for small memory footprint
* Processing on single core

e Streamed tuples trigger updates to this state

192

However

* Frameworks such as Spark:
* Agnostic to data content = shuffle data through network for join
 Stateless operators
Therefore
* Distributed HIVM =>
custom partitioning + immutable RDDs periodically saved to HDFS

* Frameworks such as Storm:
e Stateful operators
* Implementing operators (bolts) that maintains intermediate state

Still Need to Address

* Reduce communication cost =

partitioning; co-locating data
* Exploding state =»

repartitioning; rebalancing; spilling to disk
* Fault tolerance

* Lost messages between workers

 Recomputing failed partitions

leverage existing frameworks; extra coding

194

Challenge: Enumerating Query Output from

Partitioned State
* Consistency

e Cause: simultaneous update to partitions of state
maintain timestamps and track them
* Constant delay enumeration promised by Dynamic Yannakakis

* Cannot be guaranteed: network messages to enumerate the output

reduce messages between workers;

new model to describe enumeration that takes into
account the communication cost

195

Conclusion

* For many applications, it is essential to analyze fast evolving big
data in real time

* Many algorithmic ideas (single core):
e Delta queries
e Storing intermediate results
e Dealing with Skews

* Generalizing to complex aggregates

* Distributed streaming frameworks = ill support of dynamic
query processing

* New challenges: stateful operations yet scalable; consistency

