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Part 2


Outline

e Partl: Introduction

e Part Il: Main Algorithmic Ideas in Dynamic Query Processing:
Traditional IVM and Recent Advances

3) « Part lll: Generalizations to Arbitrary Ring Structures
e Part IV: Dynamic Query Processing in Big Data Frameworks
e Part V: Outlook
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Generalisation to Arbitrary Ring Structures

e The IVM machinery presented so far uses the ring over Z
—> Tuples are mapped to integers.
= Query operators use addition and multiplication.

e This ring suffices to compute and maintain the count aggregate.
e However, more complex analytical tasks might require other rings.

e Now, we present Factorized IVM (F-IVM) that allows for task-specific rings.
= The machinery for maintenance remains the same.
= Different applications are captured by different rings.

Incremental View Maintenance with Triple Lock Factorization Benefits.
Milos Nikolic and Dan Olteanu. SIGMOD 2018
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Example: COUNT Aggregate

Compute COUNT over the natural join:
R(a,b), S(a,c,e), T(c,d)

Q = SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T




Example: COUNT Aggregate

Naive: compute the join Q = SELECT SUM(1)

and then SUM(1) FROM R NATURAL JOIN §
NATURAL JOIN T

SUM(1)
|
XA
/7 \
R(A,B) [><]C
/7 \



Example: COUNT Aggregate

Naive: compute the join
and then SUM(1)

SUM(1)
|
XA
/ N\
R(A, B) D¢
/ N\
T(C,D)  S(A,C,E)

SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T

Let all relations be of size N

Computing Q takes O(N3) time!
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Example: COUNT Aggregate

Push SUM past joins Q = SELECT SUM(1)

to eliminate variables FROM R NATURAL JOIN S
NATURAL JOIN T

SUM(...)
I
>Xa
e N
SUM(...) SUM(...)
| |
R(A,B) Xl

e N

SuM(...) SuM(...)



Example: COUNT Aggregate

Push SUM past joins Q = SELECT SUM(1)

to eliminate variables FROM R NATURAL JOIN S
NATURAL JOIN T

Q = SUM(Cg * Cc)

>A
7~ N
VR = A,SUM(I) as CB VST = A,SUM(CD * CE) as CC
GROUP BY A GROUP BY A
[ [
R(A, B) X
7~ N
Vr = C,SUM(1)as Cp Vs = A, C,SUM(1) as Cg
GROUP BY C GROUP BY A, C

I I
T(C,D) S(A,C,E)
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Example: COUNT Aggregate

Push SUM past joins
to eliminate variables

Q = SELECT SUM(1)
FROM R NATURAL JOIN S
NATURAL JOIN T

Q = SUM(Cg * Cc)
I Factorized evaluation
Distributivity of * over SUM

DA enables this query rewriting
/ \ . . .
Vk = A,SUM(1) as Cg Vs = A, SUM(Cp + Cg)as Cc  Q is computed in O(N) time
GROUP BY A GROUP BY A using a hierarchy of views!
| |
R(A,B) MXc
7~ N
Vr = C,SUM(1)as Cp Vs = A, C,SUM(1) as Cg
GROUP BY C GROUP BY A, C

I I
T(C,D) S(A,C,E)
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Example: SUM Aggregate

SUM over products of B and C

Q

= SELECT SUM(B xC)
FROM R NATURAL JOIN §
NATURAL JOIN T
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Example: SUM Aggregate

SUM over products of B and C Q = SELECT SUM(B=C)

FROM R NATURAL JOIN S
NATURAL JOIN T

Q = SUM(Sg * S¢)

DA
-~ N
VRZA,SUM(B) as 53 VST =A,SUM(5D*SE*C) as SC
GROUP BY A GROUP BY A
| |
R(A,B) Xl
7~ N
Vr =C,SUM(1)asSp Vs = A, C,SUM(1) as S
GROUP BY C GROUP BY A, C

I I
T(C,D) S(A,C,E)

Reuse counts of D and E

when joining on C

Multiply by C only
after joining on C
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More General Example: SUM Aggregate

Q = SELECT SUM(ga(A)+ge(B)*gc(C)*gp(D)*ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(SB * SC * gA(A))

>Xla

s T

Vg = A, SUM(gg(B)) as Sg Vst = A, SUM(Sp * Sg * gc(C)) as S¢
GROUP BY A GROUP BY A

I I
R(A,B) Xc
/ N
VT = C,SUM(gD(D)) as SD Vs = A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

| |
T(C,D) S(A,C,E)
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More General Example: SUM Aggregate

Q = SELECT SUM(ga(A)+ge(B)*gc(C)*gp(D)*ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Q = SUM(Sp * Sc * ga(A)) Join on & eliminate

I one variable at a time
XA
e \

Vi = A, SUM(gg(B)) as Sg Vst = A, SUM(Sp  Sg * gc(C)) as S¢
GROUP BY A GROUP BY A
I I
R(A,B) X
/ N
VT = C,SUM(gD(D)) as SD Vs :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

T(C,D) S(A,C,E)
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More General Example: SUM Aggregate

Q = SELECT sUM(ga(A)*gs(B)*gc(C)*gn(D) +ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Join on & eliminate
I one variable at a time
XA
s T

Vi = A, SUM(gg(B)) as Sg Vst = A, SUM(Sp  Sg * gc(C)) as S¢
GROUP BY A GROUP BY A
I I
R(A,B) X
/ N
VT = C,SUM(gD(D)) as SD Vs :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

T(C,D) S(A,C,E)
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More General Example: SUM Aggregate

Q = SELECT sUM(ga(A)*gs(B)*gc(C)*gn(D) +ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Join on & eliminate
I one variable at a time
>A
s T
Vk = A,SUM(gg(B)) as Sg Vst = A, SUM(Sp * Sg + gc(C)) as Sc
GROUP BY A GROUP BY A

| | eliminate C
R(A,B) Xc
/ N
VT = C,SUM(gD(D)) as SD V5 :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

T(C,D) S(A,C,E)
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More General Example: SUM Aggregate

Q = SELECT sUM(ga(A)*gs(B)*gc(C)*gn(D) +ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Join on & eliminate
I one variable at a time
>A
s T
Vg = A,SUM(gg(B)) as Sg Vst = A,SUM(Sp * Sg x gc(C)) as Sc
GROUP BY A GROUP BY A

| eliminate B | eliminate C
R(A,B) Xc
/ N
VT = C,SUM(gD(D)) as SD V5 :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A, C

T(C,D) S(A,C,E)
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More General Example: SUM Aggregate

Q = SELECT sUM(ga(A)*gs(B)*gc(C)*gn(D) +ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Join on & eliminate

I “eliminate A one variable at a time
DA
7~ \
Vg = A,SUM(gg(B)) as Sg Vst = A,SUM(Sp * Sg x gc(C)) as Sc
GROUP BY A GROUP BY A
| eliminate B | eliminate C
R(A, B) DX
/ N
VT = C,SUM(gD(D)) as SD V5 :A, C,SUM(gE(E)) as SE
GROUP BY C GROUP BY A,C
| eliminate D | eliminate E

T(C,D) S(A,C,E)
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More General Example: SUM Aggregate

Q = SELECT SUM(ga(A)*gge(B)*gc(C)*gp(D)x*ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Imagine aggregate values are of type R
gx : Dom(X) - R

Can we evaluate @ using the query plan from before?

Yes(!), but we need to:

e Define the binary operators * and + in R
e Define zero in R (for initial values)
e Defineonein R (e.g., if X is not used, gx(x) = 1)

e Ensure distributivity of * over +
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Rings

e Aring (R,+,%,0,1) is a set R with two binary operators:

Additive commutativity
Additive associativity
Additive identity
Additive inverse

Multiplicative associativity
Multiplicative identity

Left and right distributivity

at+b=b+a
(a+b)+c=a+(b+c)
0+a=a+0=a
d-—aeR:a+(-a)=(-a)+a=0
(asb)xc=ax(bxc)
axl=1xa=a
ax(b+c)=axb+axcand
(a+b)xc=axc+bxc

Examples: Z,Q,R,C,R", matrix ring, polynomial ring
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Factorized Ring Computation

e Relations are functions
- mapping keys (tuples) to payloads (ring elements)

A B — RI[AB]

Finitely many tuples with
ai b1 — n y y P
» b — r non-zero payloads

ri and r> are elements from a ring

e Query language
- Operations: union, join, and variable marginalization

- More expressiveness via application-specific rings

e Query evaluation
- using view trees as shown before



More General SUM Aggregate

Q = SELECT SUM(ga(A)+gge(B)*gc(C)*gp(D)*ge(E))
FROM R NATURAL JOIN S NATURAL JOIN T

Expressed in our framework:

Q= @A@B @C @D @E ( R[A7 B] ®S[A7 C? E] ®T[C7 D] )

g

Ve
variable marginalization natural joins

Intuition: Relation payloads carry out the summation!
Marginalization of X applies gx, sums payloads, projects away X

Join multiplies payloads of matching tuples

128



Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — RIAB] A B — S[A B] B C — T[B(]

ai b — rn a b — S1 by a — t1
a b — rn a3 by — S b o — to




Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A

B

—

R[A, B]

A B — S[A B]

B C — T[B(]

ai
a2

by
by

1l

n
r2

az
as

by
by

—
-

S1
s2

b1 c1 — (51
b o — t2

(RWS)[A, B]

LIl

n
rn+ s
52




Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[A B A B — S[AB] B C — T[B,C
I a b1 — S1 by a — 51
a b — r a3 b3 2 by @ — t
Union W
A B — (RwS)AB]
al b — n
[[ @2 b — n+s |
d3 [27) — 52
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Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[A, B] A B — S[A, B] B C — T[B7 C]

ay b — n a b — S1 by a — t1

a b — rn a3 by — S b o — to

Union & Join ®

A B — (RWS)[A B] A B C — (RWS)®T)AB,C]
ai b — n aa by a — n*t

a b — rn+ s a by a — (I’2 + 51) * 1y

a3 b — S2 a3 b oo — Sy x to




Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — RIAB]

A B — S[A B]

B C — T[B(]

ay b — n a b — S1 by ¢ — t1

a b — rn a3 by — So v
Union & Join ®

A B — (RWS)[A B] A B C — (RWS)®T)AB,C]
a b — n ay_ b — r xt
|az [')1 — rn+ 51| |32 by a — (r2 4+ s1) * l’1|

d3 D2 — 52 a by C — FERS]




Query Operators

Relations R, S, and T with payloads from a ring (R, +,%,0,1) :

A B — R[A, B] A B — S[A, B] B C — T[B7 C]

ay b — n a b — S1 by a — t1

a b — rn a3 by — S b o — to

Union & Join ®

A B — (RWS)[A B] A B C — (RWS)®T)AB,C]
ai b — n aa by a — n*t

a b — rn+ s a by a — (I’2 + 51) * 1y

a3 b — S2 a3 b oo — Sy x to

for a given
ga : Dom(A) - R

Marginalization €D ,

B C — (BA(RWS)® T)[B, C]
by a — nxti *gA(31)+(r2+51)*t1 *gA(ag)
by o — Sy x tp * gA(a?,




General Query Form

Q = SELECT Xi,...,Xr, SUM(gri1(Xes1) * - % 8m(Xm))
FROM Ry NATURAL JOIN ... NATURAL JOIN R,
GROUP BY Xi,..., Xr

Expressed as Functional Aggregate Query:

Q[X1,..., X¢] = @xm s @xm ®i€[n] Ri[Si]

where:
e Relations Ry, ..., Ry are defined over variables Xi, ..., Xp,
e Xi,...,Xr are free variables

e R; maps keys over schema S; to payloads in a ring (R, +,*,0,1)

e Aggregations @Xf+1’ .., x,, use functions gsy1,...,gm
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Applications

A host of problems are captured using task-specific rings

o Group-by aggregation over joins (we've seen this already)
e Gradient computation for learning regression models

e Representation of results of conjunctive queries

e Matrix chain multiplication
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Learning Linear Regression Models

e Find model parameters © best satisfying:

Size (ft2) | #beds

Price (£) | Rating

X 0-| Y

Input Params Output

o lterative gradient computation:
©,1=0;—aXT(XO®;, -Y) (repeat until convergence)
e Matrices XT X and XTY computed once for all iterations
- Compute SUM(X; - X;), SUM(X;), and SUM(1) for

variables X; and X;
- We assume that all variables are continuous
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Learning Linear Regression Models over Joins

Compute XT X where X is the join of the input relations

e Naive: compute the join, then O(m?) sums over the join result
(m = #query variables)

e Factorized: compute one optimized join-aggregate query

- Using our running query
Q= @A @B @C @D @E( R[A7 B] ® S[A? C’ E] ® T[Cv D] )

but a different payload ring and different functions gx!
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Linear Regression Ring

Set R = (Z,R™,R™*™) of triples a+R b= (Cs+ bS5+ 5p, Qs + Qb)
= (CaCp, Cbsa + ¢a8b, Qs + C2Qp + 528, + spS])
(B ) e
o, 8, 1= (1,0mx1,0me)
J T T
SUM(1) SUM(X)  SUM(X*X;)

gx;(x) for variable X; VAL paDﬁSZﬁs
; /
m - mu V@B[A] V@C[A]
i ifoRslo R[A‘,B] S
o' HE: il e
V4 V4 Sparse | |

payloads T[C,D]  S[A, C,E]
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Relational Data Ring

e Set of relations over R with W and @ forms a ring of relations

- Relation 0 maps every tuple to 0 € R
- Relation 1 maps the empty tuple to 1 € R, othersto 0 € R

e Payloads: Relations over R = Z with the same schema!

A B — RIAB]

C
aa b1 — c—1
C2~>1

C

a2 bl Cc3 — 1

Keep results of conjunctive
queries in payloads
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Evaluating Conjunctive Queries using Relational Payloads

e Consider the conjunctive query:

Q(A,B,C,D)=R(A,B),S(A,C,E), T(C,D)

e Compute  using relations with relational payloads
Q=P P DD, DP:(R[A B]®S[A C,E]@ T[C,D])

e Lifting (aggregate) functions:

X
% if X is a free variable
X —
gx(x) =
()—1 otherwise
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Listing Representation of Conjunctive Query Results

Q(A,B,C,D)=R(A,B),S(A C,E), T(C,D)

A B — R[A,B]
a b= [()—=1
a b= )=1 V©A[]
a by —[()—1

as b4*)"ﬁ

A C E - S[ACE]

V@B [A] V@C[A]

ap ca e —|[()—1 R[A B]

a ca e—|)—-1

a @ e —|()—1

» o e;,aW V@D[C] V@E[A q]

C D — T[C.D]
mﬁ T[C D] S[A, C E]
o b= [)>1

@ d = [()—=1

o d44>w



Listing Representation of Conjunctive Query Results

Q(A,B,C,D)=R(A,B),S(A C,E), T(C,D)

A B — R[A,B]
a b= [()—=1

a b= )=1 V©A[]

B
@ b= 051 al_wm / \
a3 by = [()—1 by —1

A — VOB[A]

—_— B VOB[A]  VOC[4]
A C E - S[ACE] = "Bﬁl ‘
ap ca e —|[()—1 B b1 R[A B]

a ca e—|)—-1

a @ e —|()—1

» o e — W V@D[C] V@E[A, q]

C D - T[C.D] \ \
P T[C, D] S[A, C.E]
o b= [)>1

@ d = [()—=1

o d4aw
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Listing Representation of Conjunctive Query Results

Q(A,B,C,D)=R(A,B),S(A C,E), T(C,D)

A B — R[A,B]
a b= [()—=1
a b= [()=1

a by —[()—1

as b4*)"ﬁ

A C E - S[ACE]

ap ca e —|[()—1

a ca e—|)—-1

a @ e —|()—1

a @ e —|()>1

C D - T[C.D]
a d —[)—>1
o b= [)>1

@ d = [()—=1

o d4aw

A — VOB[A]

B
ay— |bp—1
by —1
a— B
2 b3 —1

as —

by —1

C —VveP[C]
L)
AT =1
D
o—|d—1
d3—1

3 —

dg—1

V@A[ ]

/N

V@B [A] V@C[A]

R[A, B]

V@D[c]

T[C, D]

VEE[A, (]

S[A7 C7 E]
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Listing Representation of Conjunctive Query Results

Q(A,B,C,D)=R(A,B),S(A C,E), T(C,D)

A B — R[A,B]
a b= [()—=1

a b= [()=1 5
a b3 = [()—1 a1—>1ﬁ
a3 by = [()—1 by —1
— o2 V@B[A] VQC[A]
A C E - S[ACE] by —1

- = A B
ap ca e —|[()—1 B b1 R[A B]

a ca e —|()—1

a @ e —|()—1

2 o ea—>|()=1 C - VveP[c] V@D[C] V@E[A q

D
C D — T[C,D] Cl*ﬁ
T b T[C Dl S[A C E]l acoveeaq
—|dr—1 -
. dgal

o b= [)>1 aa— [)=2

@ d = [()—=1 N aa— [)=1
= *7
a d—=[()—1 di—1 o~ |1

A — VOB[A]

V@A[ ]




Listing Representation of Conjunctive Query Results

Q(A,B,C,D) =

A B — R[A,B]
a b= [()—=1
a b= [()=1
a by —[()—1
a3 b4~)w
A C E — S[ACE]

ap ca e —|[()—1

a ca e —|()—1

a @ e —|()—1
a o e4~>w

C D - T[C.D]
a d —[)—>1
o b= [)>1

@ d = [()—=1

a d )51

R(A, B),S(A, C, E),

A — VOB[A]

B
ay— |bp—1
by —1

B
b3~>
aﬁ%

C —VveP[C]
L)

A7 Td 1
D
o—|d—1
d3—1
L)

ST dy =1

T(C,D)

V@A[ ]
/N
veB [A] V@C[A]

R[A, B]

VeP[C]  VCOE[A (]

T[C, D] S[A, C, E]

A — VOC[A]

CcD

Teidi =2
cdr—1
cd3—1
CcD

m—o|od—1
cd3—1

A C - VOE[AC)

aca— [()—2

ac— [()—1

o= [()—1
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Listing Representation of Conjunctive Query Results

0= Vel

Q(A,B,C,D) =

A B — R[A,B]
a b= [()—=1
a b= [()=1

a by —[()—1

as b4*)"ﬁ

A C E - S[ACE]

ap ca e —|[()—1

a ca e —|()—1

a @ e —|()—1

a @ e —|()>1

C D - T[C.D]
a d —[)—>1
o b= [)>1

@ d = [()—=1

a d )51

R(A, B),S(A, C, E),

A — VOB[A]

B
ay— b —1

by —1
o B

b3~>
i

C —VveP[C]
L)

A7 Td 1
D
o—|d—1
d3—1
L)

ST dy =1

T(C,D)

V@A[ ]

/N

V@B [A] V@C[A]
‘ A — VOC[A]

€b
R[A, B] adi—2
cdr—1
cd3—1

CcD
V@D[C] V@E[Av C] an—lad 1

‘ ‘ od3—1

T[C7 D] S[A7 C, E] A C - VOE[AC)

aca— [()—2
ac— [()—1

o= [()—1
_— 137



Factorized Representation of Conjunctive Query Results

Q(A7 87 C7 D) =

A B — R[AB]
b~ 051
b= 0=1

by = ()—1

ai
ai
a

as

A
ap
ai
a

az

€1
<1
2

@

by > 0=1

C E — S[ACE]

a—10=1
e —=|()—1

ea—=|()—1

S

C D — T[C,D]

a d = [)—=1

o &= [)—=1

o d—=[()—1

e di = 0=1

R(A, B), 5(A, C, E),

A — VOB[A]

B
a—|bh—1
b —1

a—

B
b3 —1

/B
a3 by —1

C —VveP[C]

a—r d—1

D
o—|dh—1
d3—1

N D
a dy—1

T(C,D)

V@A[ ]

V@B [A] V@C [A]

R[A B

v@D V@E[A ql

T[C D] SIA, c E]

A C—VOE[AC]

aa— [()—2

ac— |()—1

o= [()—1
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Factorized Representation of Conjunctive Query Results
Q(A, B, C,D) = R(A, B), S(A, C, E), T(C, D)

A B — R[A,B]

a b =051

L Lo VOA[]
a b3 = [()=1 B
2 b2 051 Tt /N
@C @c

A C E - S[ACE] N Eﬁl VEE[A] VeC[A] AHVC [A]
aaea—[0o1 a3ﬁ% ‘ N
g ~ B RAH T
R E

- 1
2oe0-t [0-1 C - ver[C] VeP[C]  VEeE[A (]
C D — T[C,D] oo 31%1 ‘ ‘

a d =)ol b TIC, D] S[ACE]  ac_veeac
o &= [)—=1 o—|dh—1
o d—=[()—1 %1 I

17 D ac— |()—1
c3 dy — ()_>1 63‘%’@

o= [()—1



Factorized Representation of Conjunctive Query Results
Q(A, B, C,D) = R(A, B), S(A, C, E), T(C, D)

A B — R[A,B]

_— 0

a b =051 A

a b= [()—=1 A = VB[A] V@A[] 00— 21:2
a b3 = [()—1 B 2
AR S SV

©B QC eC
A C E 5 S[ACE] nofp—y VO VA AZVTIAl

C

a ca e —|)—1 23— Eﬁfl al—wm
aia e—|)=1 PR e R[A, B] Q=2
a o ea—|)o1 2= fzﬁ»2
zeazl0ot ! VeP[C]  VOE[A, (]
C D — T[C,D] oo 31%1 ‘ ‘

a d =)ol b TIC, D] S[ACE]  ac_veeac
o &= [)—=1 o—|dh—1
o d—=[()—1 %1 I

17 D ac— |()—1
M TS no— )1



Factorized Representation of Conjunctive Query Results

Q(A7 87 C7 D) =

Constant Delay
Enumeration

foreach a in VA
foreach b in V8
foreach ¢ in V®°
foreach d in VP
output (a,b,c,d)

R(A, B), 5(A, C, E),

A — VOB[A]

B
ay— |bp—1
by —1

a—

aﬁ%

C —VveP[C]

a= dy—1

D
o—|d—1
dz3—1

L)
a3 dy—1

T(C,D)

0= Ve[l
A
8
VOA[] 0=
V@B [A] V@C [A] A — v@C[A]

a;— | ~>2
R[A, B] cﬁz

VeD[C]  VCE[A, (]

TIC, D] S[A, C E] a ¢ veepaq

aa— |[()—2
ac— |[()—1

ano— |[()—1
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Factorized Representation of Conjunctive Query Results
Q(A, B, C,D) = R(A, B), S(A, C, E), T(C, D)

0—Verr]
Factorized Join A VO[] 0> 1255
5 V@A[] ap—2
/ U \ ap— | —1 / \
by —1
a a B ecC oc
! ! aolB o VERIAL VA v
B
/ \ / \ as — ai—|cg—2
U U U u — 2 RIA, B 2
NN ] ke
by by <@ (] (&) bs o—2
\ \ \
X x x i VeP[C]  VOE[A, ]
V' o | |
| /\ b TIC,D]  S[AC.E] acveeaq
di dr d3 o—|db—1 —
dy—1 aa— [()-2

D ace— |()—1
c;;a%
dy—1 o= [)—=1



Matrix Chain Multiplication

Input: Matrices A; of size of p; x pj11 over some ring R (i € [n])
Compute: Product matrix A[x1, Xp+1] = sze[m] e Zx,,&pn n;e[n]A;[Xi,Xi+1]

Modeled in F-IVM:

o Represent matrix A;[x;, x;+1] by relation Ai[X;, Xit1]
with Ai[a;, ait+1] = Ajla;, ai+1] (payloads are matrix entries)

e Express matrix multiplication by the query
AlX1, Xnt1] = Dx, - Dx, ®,-€[n] AilXi, Xiy1]

where each lifting function ng(Xj) maps any key to payload 1 € R
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Example: Product of Four Matrices
AlX1, X5] = Dx, Dx, Dx, Qicpa AilXi: Xit1] (each A; encodes a p x p matrix)

V©X3[X1,X5] V©X2 = ®X2 A]_ & A2

/ \ V©X4 — @X4 A3 ® Aq

Ve[ X;, X;] VX [X3, X5]

/ \ / \ V@X3 — @Xa V@X2 ® V@X4

A[X1, Xo]  Ao[Xo, X3l AslX3, Xyl Au[Xy, Xs] View computation time: O(P3)
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Example: Product of Four Matrices

AlX1, X5] = Dx, Dx, Dx, Qicpa AilXi: Xit1] (each A; encodes a p x p matrix)

VOS[X, X5] Ve =@y, A ® Ay
/ \ VeXs — Dx, Az ® Aq
A[X1, Xa]  AalX2, X3] As[X3, Xa]  Ag[Xg, X5] View computation time: O(p’)

Propagation of dAx[X2, X3]:
SV X, X3] = Dx, 0A2[X2, X3] ® Az[X2, X3] (time O(p))
SV [X1, X5] = Dy, SVO2[X1, X3] @ V[ X3, X5] (time O(p?))
Further propagation of delta requires O(p3) time.
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Example: Product of Four Matrices

AlX1, X5] = Dx, Dx, Dx, @icpa AilXi; Xit1] (each A; encodes a p x p matrix)

VQX3[X17X5] V@X2 — @Xz Al ® A2
/ \ V©X4:@X4A3®A4
\ﬁ% fl V@/X%f] VO = Py, VO @ VX
AiX1, Xzl AolXz, X3 As[X3 Xa]  AalXs, Xs] View computation time: O(p®)

Propagation of a factorizable update 6Az[X2, X3] = u[X2] ® v[X3]:
SVO2[X1, X3] = (B, A1lX1, X2] ® u[X2]) @v[X3] (time O(p?))

uz[X1]
SVOS[X1, Xs5] = ua[X1] © (B, vIX3] ® VE4[X3, X5]) (time O(p?))
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Summary: Factorized IVM

e Framework for unified IVM of in-database analytics
- Captures many application scenarios via tasks-specific rings
e Based on 3 shades of factorization

- Factorized query evaluation
- Factorized representation of query results
- Factorized updates

e Performance: Up to 2 OOM faster and 4 OOM less memory
than state-of-the-art IVM techniques
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Outline

e Partl: Introduction

e Part Il: Main Algorithmic Ideas in Dynamic Query Processing:
Traditional IVM and Recent Advances

* Part lll: Generalizations to Arbitrary Ring Structures
3 PartIV: Dynamic Query Processing in Big Data Frameworks
e Part V: Outlook
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Are Centralized Algorithms Scalable ?

Distributed Dynamic Yannakakis (TPA-D) vs Centralized Dynamic Yannakakis (CDYN)

Time (s)

2000.0

1500.0

1000.0

500.0

0.0

Update Time (s)

500.0
400.0
= 300.0
£
= 2000
100.0
14.6 26.5
— 0.0
05 3 5

TPC-H Instance Scale

EmTPA-D mCDYN

Enumeration Time (s)

0.7 16 22.9

0.5

3 5
TPC-H Instance Scale

B TPA-D mCDYN

Setup: 5 machines, 24GB RAM, 8 Cores / 16 Threads
0.5 =2 million tuples; 3 = 20.5 million tuples; 5 =34 million tuples
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Why Distributed Streaming Frameworks?

* Efficiently process streams of big data

* Data too big to fit into the memory of one machine

* Centralized approaches are not efficient enough to process large data
* Add recovery to faults

e Why ? Distributed Computations + Messages
 Failure = Too expensive to start recomputing from the beginning
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Distributed Streaming Frameworks

5 sToRM éFlink

@ HERON
S

Millwheel ’
Google Dataflow Trill

PULSAR

Spoﬁ’(\z
Streaming

Q)
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Main Objectives

e Supporting complex continuous queries ?

* Low latency

* Scalability — Distributed streaming frameworks

 Fault tolerance
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Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

Batch Processing
Frameworks

Hadoop (e.g. Incoop,
Nova, ..)

Distributed
Frameworks

Spark

Continuous Operators /
Streaming Frameworks

Also gllow batch iy
processing (e.g. Flink)

For each system, we focus on: computation model,
scalability, fault tolerance, and support for joins

Only Stream Processing
(e.g. Storm / Heron)
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Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

atch Processin
Frameworks

doop (e.g. Incoa
Nova,..)

Distributed

Spark

Also allow batch

Continuous Operators /

Streaming Frameworks

Only Stream Processing

(e.g. Storm / Heron) .




Nova [SIGMOD’11]
* Goals: semcec.ien;sﬁ?ﬁ?%?

Layer on top
of
Pig/Hadoop

* Dynamic query processing | e |
° SChedUI|ng Nova server instance ) :
* Optimizations watchdog | Sehipieace
——— Va $
S trigger process . process
—— NADARBE manager optimizer

‘metadata“" \ J -

database N
data process
— manager executor
— ’ —ﬁ
v / \
data & large-scale ¥ Y _
metadata 1 storage & Hadoop **  Pig H Oozie
replicator processing s
other clusters

[SIGMOD’11] Christopher Olston et al. 2011. Nova: continuous pig/hadoop workflows. In Proc. ACM SIGMOD Int. Conf. on Management of Data.
1081-1090.
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Example Nova Workflow

Tasks

Channels / Data Containers

il

e Data annotated with
All  Read complete snapshot
New Read NEW data
B Emit full snapshot

A Emit new data that augment existing

[SIGMOD’11] Christopher Olston et al. 2011. Nova: continuous pig/hadoop workflows. In Proc. ACM SIGMOD Int. Conf. on Management of Data.

1081-1090.

template
detection

news site

templates |

7 ALL
shingle de-
seen A

\*\, - B IA N

RSS feed

~~.. template

tagging

T
—

shingling

unique

_articles
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Example Nova Workflow 5

news
articles

ALL

Non-incremental - L

detection

e

— Stateless
news site | . .
templates |} “TOR - incremental with
i 7N lookup table
NEW

Stateless incremental shingling

i

— NEW

—s]winglzeg - de- StatEfUI
hashes duping .
seen fAL 1= incremental
\'.u'niqu'e-/
articles

[SIGMOD’11] Christopher Olston et al. 2011. Nova: continuous pig/hadoop workflows. In Proc. ACM SIGMOD Int. Conf. on Management of Data.
1081-1090. 153



Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

Hadoop (e'g' Incoop, IR

Nova, ..)
atch Processin
Frameworks
l il
Distributed '
Also allow batch

Continuous Operators /
Streaming Frameworks

Only Stream Processing
(e.g. Storm / Heron)
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Spcwr‘lgZ

Spark Streaming [SOSP’13, SIGMOD’18] streaming

Design objectives
* Process streams of large scale data
* Automatically handle faults and stragglers (parallel recovery)
* Integrate streaming with batch and interactive analysis
Kafka
Flume S "\Z HDFS
HDFS/S3 p Qr K Databases
Kinesis Stfeamlng Dashboards

Twitter

Credit: https://spark.apache.org/

[SOSP’13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and lon Stoica. 2013. Discretized Streams: Fault-tolerant

Streaming Computation at Scale. In Proc. ACM Symp. on Operating Systems Principles (SOSP). 423—-438.
[SIGMOD’18] Michael Armbrust et al. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proc. ACM 155

SIGMOD Int. Conf. on Management of Data. 601-613.



SpaflgZ

Spark Streaming — Computation Model Streaming
D-streams:
* Computations => short, stateless, deterministic tasks
* Streamed data => fault-tolerant data structures (RDDs)
* Recomputed deterministically
* Spark engine for processing
input data batches of batches of
stream Spark input data Spark processed data

Streaming Engine

Credit: https://spark.apache.org/
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Spark Streaming — Computation Model

Input

* Input should be re-playable
( e.g. Amazon Kenisis, Apache Kafka )

Spark Streaming
'g 1L Spark
“ | Batches

Live input data
stream

Results

Batches of
Results

Spor‘l'g

Streaming

Spark Streaming
Divide data Streaming computations
stream into expressed using
batches DStreams
C ]
[ 3| Batches of Generate
< input data ROD
RDDs
" transformations
Spark
Task
Scheduler Spark batch jobs to
Memory execute RDD
Manager transformations

Credit: Michael Armbrust et al. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proc. ACM SIGMOD Int.

Conf. on Management of Data. 601-613.
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ok’
Spark Streaming — Computation Model Sheoming

Processing

* Time interval completes =2 spark streaming generate a parallel
job (RDD transformation) to operate on the data

Spark Streaming

Divide data Streaming computations
b » streaminto expressed using
Live input data’ batches DStreams
Spark Streaming =
stream [ J
] Batcrt\zs ff Generate
mpuRD;sa ROD
- N = u - % | transformations
Data Streams =~ > ’/ H Spark W
> T Spark
’ o
@ Task
“ | Batches Results '
Scheduler Spark batch jobs to
Memo execute RDD
Batches of ry t f t
Manager ransformations
Results

Credit: Michael Armbrust et al. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proc. ACM SIGMOD Int.
Conf. on Management of Data. 601-613. 158



ok’
Spark Streaming — Computation Model Sheoming

Output
* Pushed to another system or stored as an RDD

* Next jobs operate on: Streamed data + Intermediate
materialized data Spark Strearming

Divide data Streaming computations
» streaminto expressed using
Live input data batches DStreams
Spark Streamin ®
e 8 stream [ ? Batches of G
I input data e:;:)ate
. .~ as RDDs s
e = ) - | transformations
Data Streams > Spark
7 g Spark
& Task
Batches Resiets Scheduler Spark batch jobs to
Memory execute RDD
Batches of Manager transformations
Results

Credit: Michael Armbrust et al. 2018. Structured Streaming: A Declarative API for Real-Time Applications in Apache Spark. In Proc. ACM SIGMOD Int.
Conf. on Management of Data. 601-613. 159



Spark Streaming — Fault Tolerance

* Parallel recovery
* Streams and intermediate data are stored as RDDs
* Frequent checkpointing
* Failure => only missing partitions are recomputed
 Straggler mitigation
* Run speculative copies of slow tasks

* Deterministic computations + Idempotent sinks

Spar‘;(\Z

Streaming

v
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Spark Streaming — Incremental Processing of

Queries
* Stateless =@ fault tolerance

* Maintaining a State =» Arbitrary Stateful Operators

// Define an update function that simply tracks the
// number of events for each key as its state, returns

// that as its result, and times out keys after 30 min.
def updateFunc(key: UserId, newValues: Iterator[Event],

state: GroupStatel[Int]): Int = {
val totalEvents = state.get() + newValues.size()
state.update(totalEvents)
state.setTimeoutDuration("30 min")
return totalEvents

// Use this update function on a stream, returning a

// new table lens that contains the session lengths.

lens = events.groupByKey(event => event.userlId)
.mapGroupsWithState (updateFunc)

SpoflgZ
Streaming

161



Spofl’g

Spark Streaming — Support for Join Queries Streaming

 Allowed Joins:

* Join between two data streams

* Join between a data stream and a static dataset
* What about joining n datasets?

* n-1 pairjoins

* Materialize intermediate join results

 Dynamic query processing ?
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Running Example

Query from TPC-H Benchmark:

SELECT *

FROM lineitem L, supplier S, partsupp PS

WHERE L.suppkey = S.suppkey
and L.suppkey = PS.suppkey
and L.partkey = PS.partkey

L(sk,pk)

S(sk)
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o
. Spark
Example: Spark Implementation sticaming

val dsL = spark
.readStream
.format( source = "kafka")
.option("kafka.bootstrap.servers", "localhost:9093")
.option("subscribe", "li-topic")
. load
.select( col = "value", cols= "timestamp")
.as[(String,Timestamp) ]
.map(data => L(data._1, data._2))

.withWgtermark{ geventTime = 'dTimestamp", delayThreshold = "10 seconds")
~w1iefine datasets

.format( source = "kafka")
.option{"kafka.bootstrap.servers", "localhost:9094")
.opti subscribe", "ps-topic")

dsL
.1 d 1 1 - mmn mmn Y] — i n
sgtcu col = "value", cols= "timestamp") .]01n(dsPS,expr( expr = LSK pSSK )' joinType = "inner )

= Definte schema .join(dsS, expr( expr= """1SK = sSK"""), joinType= "inner")

.withWatermark( eventTime = "psTimestamp", delayThreshold = "10 seconds"
val dsS = spark

.readStream

.format( source = "kafka")

.option("kafka.bootstrap.servers", "localhost:9095")

.option("subscribe", "s-topic")

. load

.select( col= "value", cols= "timestamp")

.as[(String, Timestamp) ]

.map(data => S(data._1, data._2))

.withWatermark( eventTime = “sTimestamp", delayThreshold = "10 seconds")

Two step
join

val tripleJoin =

164
Acknowledgment: Thanks to Omar Shahbaz Khan for preparing this code.



Example: Spark Execution Plan

¥ DAG Visualization

Stage 0

Stage 1

in i

istingRDD

WholeS]

tageCodegen

EventTi

eWatermark

>

Exchange

E}FstingRDD

WholeS]

tageCodegen

EventTi

eWatermark

/

R

xchange

Stage 2

Spor‘l'g

Streaming

Exchange

map

Exchange

reamingSymm

cHashJoin Exchange

|

Tis’:in DD /

leSfageCodegen

StreamingSympaétricHashJoin

$

/

entTIueWatermark

Exchange
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Example: Spark Execution Plan

Stage 3
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Distributed Higher-Order Incremental View
Maintenance [SIGMOD’16]

TOASTER

* On top of Spark: synchronous execution model

Views =» local or distributed (partitioned)

Parallel updates of views =2 dependency among programs
(LOCAL IVM PROGRAM]

Batching updates (well in some of the cases !) ON UPDATE R

STATEMENT 1

STATEMENT 2

STATEMENT 3

ON UPDATE S
STATEMENT 4

STATEMENT 5

STATEMENT 6
STATEMENT 7

\.

[SIGMOD’16] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2015. How to Win a Hot Dog Eating Contest: Distributed Incremental View
Maintenance with Batch Updates. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 511-526.
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Distributed HIVM Solution Qrmsren

* Annotate each node in the query plan with location tags
* LOCAL, PARTITIONED BY KEY, RANDOM

* |nsert communication operations into query plans:
location transformers

8 = » o

- o = o
<am = =
REPARTITION GATHER SCATTER

* Holistic optimization to minimize communication cost

[SIGMOD’16] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2015. How to Win a Hot Dog Eating Contest: Distributed Incremental View
Maintenance with Batch Updates. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 511-526. 168



Distributed HIVM — Fault Tolerance @ TOASTER

* Leverage Spark fault tolerance mechanism
* Periodic checkpointing in trigger program
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Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

Hadoop (e.g. Incoop,
Nova, ..)

Batch Processing
Frameworks

Spark

Distributed

Also allow batch

Continuous Operators /

W Only Stream Processing

(e.g. Storm / Heron)
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Flink [DE’15] (Based on Stratosphere[VLDBJ'14])

G

Apache Flink

* No distinction between stream processing and batch processing

* However, core is a distributed streaming datflow engine

= o
= g N
5 S §
& = D oo o
o = sl
s | = Fall 2§
£ £ o W
g | £33 |38 || 5% a3 38
@ = i
s | ES || 66 || €1 S8l €3
5
fu |
- DataSet API DataStre am API
§ Batch Processing Stream Processing
Runtime
= Distributed Streaming Dataflow
it
Local Cloud
g Single JVM Cluster Google Comp. Engine
a : £ Standalone, YARN - ENBING,
3 Embedded ’ EC2

[DE’15] Carbone, Paris, et al. 2015. "Apache flink: Stream and batch processing in a single engine." Bulletin of the IEEE Computer Society Technical

Committee on Data Engineering 36.4.

[VLDBJ'14] Alexander Alexandrov et al. 2014. The Stratosphere Platform for Big Data Analytics. The VLDB Journal 23, 6 (Dec. 2014), 939-964.
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Flink — Computation Model Apjf%mk

* Runtime program: DAG of stateful operators connected with
data streams

» Stateful operators: parallelized into one or more parallel instance
(subtask)

* Streams: partitioned into one or more stream partition (one per
subtask)

e Static program =»

e finite stream

e order of records is not important
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G

Flink — Fault Tolerance Apacha Plink
* Consistency guarantee: exactly-once-processing
* |nput data: persistent + re-playable --_--
* Frequent checkpointing -“-
* Allow partial re-execution v
* Distributed consistent snapshots: R

state of the operators + current position of the input stream

* Failure occurs =»
e Revert to latest snapshot

 Redo the computation
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Flink — Support for Join Queries Api%mk

* Join two streams

e Window

* |nterval

 Join in Batch API allows custom join functions
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Running Example

Query from TPC-H Benchmark:

SELECT *

FROM lineitem L, supplier S, partsupp PS

WHERE L.suppkey = S.suppkey
and L.suppkey = PS.suppkey
and L.partkey = PS.partkey

(T)
{sk}

{sk,pk}

L(sk,pk)

PS(sk,pk)

S(sk)
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G

Example: Flink Implementation M B

val doubleJoinStream =
IStream
.join(psStream)
.where(1 => 1.15K)
.equalTo(p => p.psSK)
.window(TumblingEventTimeWindows.of(Time.seconds( seconds = 10)))
.apply((1,p) => (1,p))

doubleJoinStream.map(j => j._l.toString + " | ™ + j._2.toString).print

val tripleJoinStream =
doubleJoinStream
.join(sStream)
.where(_._1.1SK)

.equalTo(_.sSK)
.window(TumblingEventTimeWindows.of(Time.seconds( seconds = 10))).apply((j,s) = (j._1,j._2,s))

176

Acknowledgment: Thanks to Omar Shahbaz Khan for preparing this code.



Example: Flink Execution Plan Apagﬁnk

Source: Custom Source -> Ma

p->Map T

Parallelism: 1

Window(TumblingEventTimeWindow
s(10000), EventTimeTrigger, Co
GroupWindowFunction) -> Map HASH

Parallelism: 1

Window(TumblingEventTimeWindow

Source: Custom Source -> Ma /' s(10000), EventTimeTrigger, Co
p -> Map HASH GroupWindowFunction) -> (Ma
Parallelism: 1 p, Sink: Print to Std. Out)

Parallelism: 1

Source: Custom Source -> Ma
p -> Map

HASH

Parallelism: 1
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Categories of Frameworks Supporting Incremental
Processing of Big Data

(Batch vs Stream Based Runtime Engine)

Batch Processing

Distributed

Hadoop (e.g. Incoop,

Frameworks

Continuous Operators /

Nova, ..)

Spark

Also allow batch

BRI ARC AL

processing (e.g. Flink)

Only Stream Processing




Heron [SIGMOD’15, ICDE’17] @

* Streaming engine
* Real-time performance for big data
* Based on + Same programming model of Storm [SIGMOD’14]

[SIGMOD’14] Ankit Toshniwal et al. 2014. Storm@Twitter. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 147-156.

[SIGMOD’15] Sanjeev Kulkarni et al. 2015. Twitter Heron: Stream Processing at Scale. In Proc. ACM SIGMOD Int. Conf. on Management of Data. 239-250.
[ICDE’17] Fu, Maosong et al. 2017. Twitter Heron: Towards Extensible Streaming Engines. In Proc. IEEE International Conference on Data Engineeririg9
(ICDE). 1165-1172.



Heron — Computation Model @

e Queries are represented as topologies, which are directed
acyclic graphs of spouts and bolts
* Spout = tuple sources for the topology (e.g. pull data from kafka)

* Bolt = process data and pass them to next bolt(s)

* Programmer specifies:

 The number of tasks created for each spout and bolt (degree of
parallelism)

* Data partitioning
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Heron Example Topologies

Credit: Real Time Analytics: Algorithms and Systems by Arun Kejariwal (https://apache.github.io/incubator-heron/docs/resources/)
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Example Topology : Real Time Active Users (1

Shuffle Fields Fields
grouping on grouping on
grouping user_id timestamp

Kafka Spout Distributor User Count Aggregator
(client_event) Bolt Bolt Bolt

Credit: Fu, Maosong et al. 2017. Twitter Heron: Towards Extensible Streaming Engines. In Proc. IEEE International Conference on Data Engineering
(ICDE). 1165-1172. 182



Heron Topology Architecture @

* Topologies are submitted to a scheduler “Apache Aurora”, which starts
several containers:

 Topology master

* General container running:
* Stream Manager,
* Metric Manager, and

* Heron Instances

Mosrtoeieg Syviem

'

 Topolazy Ty |
~ Maorer (TM) "
" Sandbyy |
]

'

Credit: Fu, Maosong et al. 2017. Twitter Heron: Towards Extensible Streaming Engines. In Proc. IEEE International Conference on Data Engineering
(ICDE). 1165-1172. 183




Heron — Fault Tolerance: Tuples Processing @
Semantics

* At most once:
* No tuple is processed more than once
 Some tuples might be dropped (Not processed by the topology)
* At |least once:
e Each tuple is processed at least once (multiple times happens)
 Add new bolt “acker” to track the processing of each tuple

* Developer custom code for state recovery
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Heron — Fault Tolerance: Workers @

* Topology Master
 Metadata kept in Zookeeper

» A standby version is created upon startup in case master fails

* Failure scenarios

 Death of a Stream Manager or Heron Instances: restarted from within
the container

 Container failure or Machine failure:
A new container is started

 Failure recovery procedure of Stream Manager and Heron Instances
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Heron — Support for Join Queries @

* Storm SQL integration experimental feature =2 does not
support joins or aggregations

* Heron Streamlet API (beta) =» join operations of two streams
* Programmers write topology for applications

* Advanced incremental view maintenance approach can be
implemented as a topology ?
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Running Example

Query from TPC-H Benchmark:

SELECT *

FROM lineitem L, supplier S, partsupp PS

WHERE L.suppkey = S.suppkey
and L.suppkey = PS.suppkey
and L.partkey = PS.partkey

L(sk,pk)

S(sk)

187



Example: Heron/Storm Implementation

builder.setSpout( id = "1i", 1Spout, parallelism_hint= 1)
builder.setSpout( id = "ps", psSpout, parallelism_hint = 1)
builder.setSpout( id = "s", sSpout, parallelism_hint= 1)

val firstStepJoinBolt = new JoinBolt( sourceld = "1i", fieldName = "1S_key")
.join( newStream = "ps", field = "psS_key", priorStream= "1i")
.select( commaSeparatedKeys = "1S_key, 1_obj, ps_obj")
.withTumblingWindow(new Duration( value = 1@, TimeUnit.SECONDS))

builder.setBolt( id = "firstStepJoin", firstStepJoinBolt, parallelism_hint= 1)
.fieldsGrouping( componentld = "1i", new Fields( fields = "1S_key"))
.fieldsGrouping( componentid = "ps", new Fields( fields = "psS_key"))

builder.setBolt( id = "1iPsBolt", new DoubleJoinBolt).shuffleGrouping( componentld = "firstStepJoin")

val secondStepJoinBolt = new JoinBolt( sourceld = "1iPsBolt", fieldName = "key")
.join( newStream = "s", field = "s_key", priorStream = "1iPsBolt")
.select( commaSeparatedKeys = "key, 1_obj, ps_obj, s_obj")
.withTumblingWindow(new Duration( value = 10, TimeUnit.SECONDS))

builder.setBolt( id = "secondStepJoin"”, secondStepJloinBolt)
. fieldsGrouping( componentid = "LiPsBolt", new Fields( fields = "key"))

.fieldsGrouping( componentld = "s", new Fields( fields = "s_key"))

builder.setBolt( id = "1iPsSBolt", new TripleJoinBolt).shuffleGrouping( componentld = "secondStepJoin")

188
Acknowledgment: Thanks to Omar Shahbaz Khan for preparing this code.



Distributed Streaming Frameworks: Summary

__________sparksStreaming |Flink ______Storm/Heron ___

Input stream Persistent + Persistent + No condition

Condition Re-playable Re-playable

Input stream D-Streams Tuples Tuples

Computation Stateless Tasks Topology of Topology of

model Stateful Stateful bolts

Operations

Runtime Engine Batch Processing Stream Processing Stream Processing

Support Batching v v ) ¢

Fault tolerance Exactly—once Exactly—once At-most—once or
Parallel and Parallel from At-least-once

partial Recovery  Snapshot (programmer) .



Outline

e Partl: Introduction

e Part Il: Main Algorithmic Ideas in Dynamic Query Processing:
Traditional IVM and Recent Advances

e Part lll: Generalizations to Arbitrary Ring Structures
e Part IV: Dynamic Query Processing in Big Data Frameworks

» * Part V: Outlook
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Parallel and Distributed Dynamic Query Processing

Challenges

Efficiently enumerating query
output from partitioned state

Maintaining a distributed
state
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Challenge: Maintaining Distributed State

* Query state can be:
* Materialized views (e.g. IVM, HIVM)

e Custom query representation (e.g. Dynamic Yannakakis, F-IVM)

* Assumptions:

e Stored in memory =2 otherwise, promised performance is not
guaranteed

e Optimized for small memory footprint
* Processing on single core

e Streamed tuples trigger updates to this state
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However ....

* Frameworks such as Spark:
* Agnostic to data content = shuffle data through network for join
 Stateless operators
Therefore
* Distributed HIVM =>
custom partitioning + immutable RDDs periodically saved to HDFS

* Frameworks such as Storm:
e Stateful operators
* Implementing operators (bolts) that maintains intermediate state



Still Need to Address

* Reduce communication cost =

partitioning; co-locating data
* Exploding state =»

repartitioning; rebalancing; spilling to disk
* Fault tolerance

* Lost messages between workers

 Recomputing failed partitions

leverage existing frameworks; extra coding
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Challenge: Enumerating Query Output from

Partitioned State
* Consistency

e Cause: simultaneous update to partitions of state
maintain timestamps and track them
* Constant delay enumeration promised by Dynamic Yannakakis

* Cannot be guaranteed: network messages to enumerate the output

reduce messages between workers;

new model to describe enumeration that takes into
account the communication cost

195



Conclusion

* For many applications, it is essential to analyze fast evolving big
data in real time

* Many algorithmic ideas (single core):
e Delta queries
e Storing intermediate results
e Dealing with Skews

* Generalizing to complex aggregates

* Distributed streaming frameworks = ill support of dynamic
query processing

* New challenges: stateful operations yet scalable; consistency



