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Dynamic query evaluation

Avoid full recomputation — compute incrementally!
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Application Scenarios:

* Real-time monitoring * Knowledge base construction
* Internet of things * Online machine learning



Real-time monitoring

Web Analytics Sensor Networks  Cloud Monitoring

UPDATES ACTIONS
| RUNTIME | DECISION |
ENGINE SUPPORT
Continuously Continuously

arriving data evaluated views



Complex Event Recognition




Internet of things
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Source: https://blogs.cisco.com/diversity/the-internet-of-things-infographic



Internet of things

These[ (il -5 are starting to talk to each
other and develop their own intelligence.

Imagine a scenario where................... your[plEEdgi= was
H pushed back 45 minutes.

..your knows it will
Thisiscommunicated ;. m need gas to make it to the
(3 edalarm clock,| train station. Fillups
which allows you5 extra usually take 5 minutes.

minutes of sleep.

@ A é ..there was an accident on
elllgdriving route (e=[1 ('
a 15 minute detour.
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M .your[iglilis running 20

minutes behind schedule.

.............................
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And signals your 11 to And signals your g
startin 5 minutes to melt to tunon el
the ice accumulated in S minutes late as well. o

overnight snow storms.

Source: https://blogs.cisco.com/diversity/the-internet-of—fhings;infographic



Knowledge Base Construction

Scalable Probabilistic Databases with
Factor Graphs and MCMC
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mwick@cs.umass.edu

ABSTRACT

Incorporating probabilities into the semantics of incomplete databases
has posed many challenges, forcing systems to sacrifice modeling
power, scalability, or treatment of relational algebra operators. We
propose an alternative approach where the underlying relational
database always represents a single world, and an external factor
graph encodes a distribution over possible worlds: Markov chain
Monte Carlo (MCMC) inference is then used to recover this un-
certainty to a desired level of fidelity. Our approach allows the
efficient evaluation of arbitrary queries over probabilistic databases
with arbitrary dependencies expressed by graphical models with
structure that changes during inference. MCMC sampling provides
eﬂu iency hv lwpolheﬂzu\g mudr/ummn: [ powble worlds rather

cost of running full queries over each sampled world. A significant
innovation of this work is the connection between MCMC sam-
pling and materialized view maintenance techniques: we find em-
pirically that using view maintenance techniques is several orders
of magnitude f.mex than n.n\'el guerying each samy ch wnr]d We

with Jggregauon and demolmune additional scalability t]lruugh
the use of parallelization on a real-world complex model of infor-
mation extraction. This framework is sufficiently expressive tosup-
port probabilistic inference not only for answering queries, but also
for inferring missing database content from raw evidence.

mccallum@cs.umass.edu

miklau@cs.umass.edu

current PDBs do not achieve the difficult balance of expressivity
and efficiency necessary to support such a range of scalable real-
world structured prediction systems.

Indeed. there is an inherent tension between the expressiveness
of a representation system and the efficiency of query evaluation.
Many recent approaches to probabilistic databases can be charac-
terized as residing on either pole of this continuum. For example,
some systems favor efficient query evaluation by restricting mod-
eling power with strict independence assumptions [5, 6. 1]. Other
systems allow rich representations that render query evaluation in-
tractable for a large portion of their model family [10, 24, 19, 20].

Wick, McCallum,
PVLDB 2010.

Miklau,

In this paper we T
o prowsexrond OVEr the portions of the

(_vmplmal mod
uncertainty and p

imnovation of this work

cost of running full queries over each sampled world. A significant

pling and materialized view maintenance techniques: we find em-
“ pirically that using view maintenance techniques is several orders
1 of magnitude faster than naively querying each sampled world. We

world that change, avoiding the onerous

is the connection between MCMC sam-

and M.'ukn\' randd =
ponential family pmlaabnhrv dmubutmn

In our approach, we use factor graphs to represent uncertainty
over our relational data, and MCMC for inference of database con-



Knowledge Base Construction

Incremental Knowledge Base Construction Using
DeepDive
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ABSTRACT

Populating a database with unstructured information is a
long-standing problem in industry and research that encom-
passes problems of extraction, cleaning, and integration. Re-
cent names used for this problem include dealing with dark
data and knowledge base construction (KBC). In this work,
we describe DeepDive, a system that combines database and
machine learning ideas to help develop KBC systems, and we
Locloi " Loilo 1rpc Gicions

We observe that the KBC process is iterative, and we de-
velop techniques to incrementally produce inference results
for KBC systems. We propose two methods for incremen-
tal inference, based respectively on sampling and variational
techniques. We also study the tradeoff space of these meth-
includes all of these contributions, and we evaluate Deep-
Dive on five KBC systems, showing that it can speed up
KBC inference tasks by up to two orders of magnitude with
negligible impact on quality.

complex relationships. Typically, quality is assessed us-
ing two complementary measures: precision (how often a
claimed tuple is correct) and recall (of the possible tuples to
extract, how many are actually extracted). These systems
can ingest massive numbers of documents-far outstripping
the document counts of even well-funded human curation ef-
forts. Industrially, S Al st c skilled

sstorns are o o

Shin et al,
PVLDB 2015.
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wopemore qudtechniques. We also study the tradeoff space of these meth-

This paper T

IWe observe that the KBC process is iterative, and we de-
velop techniques to incrementally produce inference results
this question spangdfor KBC systems. We propose two methods for incremen-

knowledge base construction.’ DeepDive’s language and ex-
ecution model are similar to other KBC systems: DeepDive
uses a high-level declarative language [11,28,30]. From a




Online Machine Learning

Estimating House Prices

Price (€)
Model:y=ax+b

Estimated price

|
New house Size (m?)

Linear regression with parameters (a,b)
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Online Machine Learning

Estimating House Prices

Price (€)
Model:y=ax+b

Size (m?)

Linear regression with parameters (a,b)
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Conclusion:

Dynamic Query Processing is pervasive in a wide

range of application areas.

12
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Dynamic query evaluation

Avoid full recomputation — compute incrementally
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Base data Query View = Cache

Incremental View Maintenance
(IVM)



Dimensions of IVM

Available Query Language
Information Expressiveness

Maintenance of materialized
views: problems, techniques,
applications. Gupta and Mannick.
In Materialized Views.

MIT Press. 1999.

Integrity
constraints

Other Views

Materialized View

Base Tables

Update

Type
17



Dimensions of IVM: this tutorial

Available A Query Language
Information Expressiveness
Maintenance of materialized
views: problems, techniques,
Integrity applications. Gupta and Mannick.

In Materialized Views.
MIT Press. 1999.

constraints

Other View

Materialized View

Base Table&s

Update

Type
18



Main Algorithmic Ideas Time
1. IVM = processing of delta queries [ 1993

— 1997

2. Materialize results of subqueries in
addition to the actual query result

—— 2009

3. Exploit data skew - 2018

19



Main Algorithmic Ideas
3 1. IVM = processing of delta queries

2. Materialize results of subqueries in
addition to the actual query result

3. Exploit data skew

Time

— 1993

— 1997

—— 2009

—— 2018

20



Traditional update representation

John 54 John Jane Bill 54
Mary 23 Mary 23 Mary 40 Jane 20
Bill 54 Mary 40
‘ Remove Insert
Data Update Updated

Data



Uniform update representation

R AR R + AR
A B CNT A B  CNT A B CNT
John 54 2 John 54 -1 John 54
+ —
Mary 23 1 Mary 23 -1 Bill 54
Bill 54 4 Jane 20 2 Jane 20
Mary 40 1 Mary 40
Data Update Updated
_ ! Data
Negative = remove
PodYIHIERIicHy

: (Multiplicity O = absent) :



Query semantics (1/5)

Selection
A B
John 54 2 John 54 2
0p>30 —
Mary 23 1 Bill 54 4
Bill 54 4

o ~/



Query semantics (2/5)

Projection

g —
Mary 23 1 23 1

Bl 54 4 7

o ~/

Duplicate-preserving bag-based projection



Query semantics (2/5)

Projection

g —
Mary 23 1 23 1

Bl 54 -4 7]

o ~/

Duplicate-preserving bag-based projection



Query semantics (3/5)

Union

John 54 2
Mary 23 1
Bill 54 4

John 54 -1
Mary 23 -1
Jane 20 2
Mary 40 1

John 54

Bill 54

Jane 20

Mary 40

Duplicate-preserving bag-based union




Query semantics (4/5)

Difference

John 54 2
Mary 23 1
Bill 54 4

John 54 -1

| Mary 23 1 —
Jane 20 2
Mary 40 1

This is *not™ bag difference!

John 54 3
Mary 23 2
Bill 54 4
Jane 20 -2
Mary 40 -1




Query semantics (5/5)

Join X —

A B C
John 54 2 >4 Gold 10 John 54  Gold 20
Mary 23 1 " 20 Silver 5 — [Bil 54 siver 40
Bill 54 4

Multiply multiplicities of joining tuples



Observations

* Query evaluation algorithms are trivially modified to compute
the CNT values.

* Under this modified semantics, each tuple in the query result
specifies the number of derivations for that tuple.



Query semantics: aggregation

Agg(regate)

Agg g

Allows computation of aggregate queries

//’

‘\\

-

John 54 2
John 23 1
Bill 54 4

=

SELECT SUM(B)

FROM R

= (Aggs(R))

A ] CNT
John 54 108
John 23 23

Bill 54 216




Query semantics: aggregation

‘\\

Renumber
John 54
Renumber
John 23
Bill 54

-

1/

Allows computation of groupby + aggregate queries

All 1

John 54 2 1
John 23 1 1
Bill 54 4 1

31



Groupby: Example

Aggp

_ A

John 54

2

John 23

1

Bill 54

4

SELECT SUM(B)
FROM R
GROUP BY A
Renumber sym(g)
CNT e A SUM CNT
(B)
John 54 John 1131 John 131 1
John 23 23 Bill Bl 216 1
Bl 54 216




Delta queries

Multiplicity union

Update AD
D » D+ AD
Query @ Recompute Q
Q(D) > Q(D + AD)
Incremental maintenance = Q(D)|+ ATl
AT 1

Key insight:

For every query Q in relational algebra (with multiplicities), it is possible fo
write a query AQ that operates on the old datahase D and the update Al|) s.t.

Q(D + AD) = Q(D) +AQ(D,AD)

33



Delta queries

Base case: table refs AR E

John

B

54 -1

Mary 23 -1

R + AR

A ] CNT

John 54 1

R
. B CNT
John 54 2
Mary 23 1
Bill 54 4
Q=R
 /
A B CNT
John 54 2
Mary 23 1
Bill 54 4

Jane 31 1
Bill 54 4
] Jane 31 1
AQ =| AR Q
v
~ A B CNT
A B CNT John 54 1
John 54 -1 Bill 54 4

Mary 23 -1

Jane

31 1




Delta queries

Selection
R
A B CNT
John 54 2
Mary 23 1
Bill 54 4
Q = 0p>30(R)
A B CNT
John 54 2
Bill 54 4

John 54 -1 R +AR

A B CNT
Mary 23 -1

John 54 1
Jane 31 1

Bill 54 4

Jane 31 1
AQ = O-B>30(AR) O-B>30

v
. A B CNT
v o

John 54 1
A B CNT

Bill 54 4
John 54 -1

Jane 31 1
Jane 31 1




Delta queries

Projection
J R
A B CNT
John 54 2
Mary 23 1
Bill 54 4
Q =ng(R)
B CNT
54 6
23 1

John 54 -1 R +AR
A B CNT
Mary 23 -1
John 54 1
Jane 31 1
Bill 54 4
Jane 31 1
AQ = mp(AR) Tp
v
~ B CNT
v o
B CNT 54 5
54 -1 31 1
23 -1
31 1

36



Delta queries

Join

John 54 2

Q=RXxS

A B CNT A

_I_ John

AR\ ~ S

B CNT B C

54 -2 X 54  Gold

Mary 23 1

Jane

CNT

10

B

54

AS

C

Gold

CNT

-2

\

32 1 20  Silver

Bill 54 4

\o

Q(D + AD)=(R + AR) x (S + AS)

5

23

Silver

2

/AN

Distributivity of + over

=

(R x S)H

(AR < S) + (R X AS) + (AR ™ AS)

l
Q(D)

AQ(D, AD)

J

37



Delta queries

John 54 -1 R +AR
A B CNT
Mary 23 -1
John 54 1
Jane 31 1
Bill 54 4
Jane 31 1

Aggregation R
A B CNT
John 54 2
Mary 23 1
Bill 54 4
Q = Aggz(R)
A B CNT
John 54 108
Mary 23 23
Bill 54 216

A B CNT
John 54 -54
Mary 23 -23
Jane 31 31

Aggs

A B CNT
John 54 54
Bill 54 216
Jane 31 31




Delta queries

1

Renumber Q = Renumber.(R)
A B CNT A B CNT
John 23
Q John 54 2 _I_ John 54 -2 —
John 23 1 Jane 32 1 Bill 54
kBiII 54 4 J Jane 32
ARenumber. (R, AR)

= Renumber, (R + AR) - Renumber,(R)

Recomputation necessary!
Specialized algorithm possible

39



Delta queries: summary

Query Q(D) Delta Query AQ(D, AD)

Table R Table AR

09 (Q") a9 (AQ")

ﬂj(Q,) TL’E(AQ')

Q1+ Q> AQ1 + AQ;

Q1 ™ Q> AQq1 ™ Q7 + Q1 ¥ AQ, + AQ; ™ AQ;
Agga(Q) Agga(AQ")

Renumber,(Q’) Renumber,(Q’ + AQ’) - Renumber,(Q’)




The Counting Algorithm

Maintaining Views Incrementally.
Gupta, Mumick, Subrahmaniam. SIGMOD 1993.

e Store all relations in database D
* Store (materialize) Q(D) in view V

* Upon update AD:

— Use AQ to compute AQ(D,AD)
— Add AQ(D’ AD) toV \ Use your favorite Query

Evaluation algorithm to evaluate
this. AD is expected to be small!

41



The Counting Algorithm: an example

Q=mp(RXS™T)

R S T
A B CNT B C CNT C D  CNT

John

54

2

Mary 23 1

54  Gold 2

Gold 100 2

20 Silver 1

Gold 80 1

Q(D)

A D CNT

John 100 8

Bill 54 4
AR

A B CNT

John 54 -2

Mary 23 2

AQ =myp(AR X S X T

Silver 50 1

John 80 4

Bronze 20 4

+(R+AR) )M AS @ T
+(R + AR) ™ (S + AS) = AT)

Bill 100 16

Bill 80 8
AQ (D, AD)

A D) CNT

John 100 -8

John 80 -4

42



The Counting Algorithm: an example
Q=mp(RXS™T)

R S T QD)
3
John 54 2 54  Gold 2 Gold 100 2 John 100 8
Mary 23 1 20 Silver 1 Gold 80 1 John 80 4
Bill 54 4 Silver 50 1 Bill 100 16
AR Bronze 20 4 Bill 80 8
A B CNT
John 54 -2 AQ(D,AD)
A D CNT
Mary 23 2

ARQ — T[AD(AR X S D] T)

John 100 -8

John 80 -4

43



Main Algorithmic Ideas

1. IVM = processing of delta queries

B 2. Materialize results of subqueries in
addition to the actual query result

3. Exploit data skew

Time

— 1993

— 1997

—— 2009

—— 2018

44



Delta evaluation through recomputation?

Q=mup(R>xSxT) Maintain under updates to R

R S T Q(D)
A B CNT B C CNT C ») CNT A D CNT
John 54 2 54 Gold 2 Gold 100 John 100 8
Mary 23 1 20 Silver 1 Gold 80 John 80 4
i Silver 50
Bill 54 4 Bill 100 16
Bronze 20
AR Bill 80 8
A B CNT
AQ(D,AD
John 54 2 Q ( ' )
l g A D  CNT
Mary 23 2 i
John 100 -8
John 80 -4

ARQ = T[AD(AR XS X T)

45



Key Insight
T[AD(R XS X T)
Tap(R X TTgp (§ > T))

Q

Maintain under updates to R

R T Q(D)
A B CNT B C CNT C D  CNT A D CNT
John 54 2 54 Gold 2 Gold 100 2 John 100 8
Mary 23 1 20 Silver 1 Gold 8 1 John 80 4
Bill 54 4 Silver 50 1 Bill 100 16
Bronze 20 4
AR Bill 80 8
A B CNT "BD(S 0 T)
prea— > ) CNT > AQ(D,AD)
ohn - i i
| 2 100 g | [Maintain under‘ A T
Mary 23 2 updates to
54 80 2 John 100 -8
SandT
20 Silver 1 lohn 80
ArQ = msp(AR X S X T) Optimize

TTaD (AR >4

mpp(S X T))

Qst

aterialize as auxiliary view
to avoid recomputation

46



Key Insight

How to maintain 0
Qst = gp(S X T) >t

R S T TBDp(S ™ T)
A B CNT B C CNT C D CNT B D CNT
John 54 2 54 Gold 2 Gold 100 2 54 100 4
Mary 23 1 20 Silver 1 Gold 80 1 54 80 2
Bill 54 4 Silver 50 1 20 Silver 1
Bronze 20 4
AsQsr = mpp(AS ™| T) ArQst = mpp(S > AT)

No auxiliary view necessary (base table)
Trivial to maintain under updates

(When really a subquery: continue reasoning)

47



What are we doing here ?

Q=myp(RxS™xT) Maintain under updates to R

)Materialize as aux. view

ARQ = T[AD(AR X T[R])(S X< T

.
Qst = Tgp S ™ T) Maintain under updates to S, T
AsQst = Tpp (m\T) Materialize T
AtQ¢r = mpp(S ™ AT) Materialize S

First-order Delta Query

48



What are we doing here ?

Q=myp(RxS™xT) Maintain under updates to R

)Materialize as aux. view

ARQ = T[AD(AR X T[R])(S X< T

Qs = mtgp(S X T) Maintain under updatesto S, T

AsQsr = mpp (AS X T)) Materialize T

S—

ArQsr = mpp (S a AT) Wrialize s

Delta of (subquery of)
a Delta

Higher-Order Delta

49



Continuing our reasoning

Q0 =mup(RxSmxT) Maintain under updates to T

= Tap(Mac(R ™) S) X T)

R S T Q(D)
A B CNT B C CNT C D CNT A D CNT
John 54 2 54 Gold 2 Gold 100 2 John 100 8
Mary 23 1 20 Silver 1 Gold 8 1 John 80 4
) sil 50 1
Bill 54 4 tver Bl 100 16
Bronze 20 4
TAC(R ws) Bl 80 8
A C CNT ] ) AT
Maintain under A+Q(D,AD)
John  Gold 4
Bl Gold 8 )
Rand$S Gold 100 e John 100 -4
Bronze 20 2 John 100 -8
ArQ = myp(R X S x AT)
= T4p 7TAC(R ™ S) >4 AT)) Materialize as auxiliary view

to avoid recomputation

50



Continuing our reasoning

Maintain under
Q0 =mup(RxS xT) aintain under updates to S
=myp(RXT XS
R S T QD)
A B CNT B C CNT C D CNT A D CNT
John 54 2 54 Gold 2 Gold 100 2 John 100 8
Mary 23 1 20 Silver 1 Gold 80 1 John 80 4
Bill 54 4 Silver 50 1 .
AS Bl 100 16
Bronze 20 4
Bl 8 8
B C CNT
54 Gold 3 AQ(D,AD)
23  Silver 1

Mary 50 1

ArQ =myp(R M AS X T)
TAD {R - T:N AS) Could materialize this, but it is a Cartesian

product; doesn’t perform better than
re-evaluation




Key Insight: conclusion

Q =mup(RX S XT) Maintain under all updates

Maintain base tables + query result ...

R S T Q(D)
A B CNT B C CNT C D  CNT A D CNT
John 54 2 54 Gold 2 Gold 100 2 John 100 8
Mary 23 1 20 Silver 1 Gold 80 1 John 80 4
i Silver 50 1
Bill 54 4 Bl 100 16
Bronze 20 4
Bl 80 8

... as well as query subresults as auxiliary views

Tac(R xS) "TBD(S > T) .

B D CNT Hig er-Order
A C CNT

54 100 4 Incremental
John Gold 4 .

54 80 2 View
Bl Gold 8 .

20 Siver 1 Maintenan

52



Higher-Order IVM

Theorem

For a variant of Relational Algebra with Aggregates, Higher-
order IVM lowers the complexity of maintenance under single-
tuple updates from complexity class ACO/TCO to complexity

class NCO.

C. Koch. Incremental query evaluation in a ring of
databases. PODS 2010

Practical system:

@ "TOASTER  saLQueRry comPILER
DBToaster: higher-order delta processing for dynamic,

frequently fresh views. C Koch et al. VLDB J. 23(2), 2014.

53



"TOASTER sQL QUERY COMPILER

I
I
FRONT-END | BACK-END
I
eR(..){
- ON UPDATE R DO Q.update(...)
SELECT SUM(C) Q4= ... }
FROM R, S void
WHERE R.A = 10 :> N LPATESS 10 |:> updateS(..){
AND R.B = S.B | Q4= ... . Q.update(...) ’
[~ [~ ) [~

Higher-order Incremental
View Maintenance

Code Generation
(C++, Scala, Spark)



DBToaster: TPC-H BENCHMARK

Single-Tuple Incremental Stream Processing

100,000
0000 @osx  @SPY

1,000
100
10

1
TUPLE/SEC Q3 Q9 QI0 Q14 Q17 Q21

55



DBToaster: TPC-H BENCHMARK

Single-Tuple Incremental Stream Processing

100,000 - —
10,000 @osx  @sPY

1,000
100

‘Ml d d ‘ i o
Q3 Q9 Q10

TUPLE/SEC Q14 Q17 Q21
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DBToaster: TPC-H BENCHMARK

Single-Tuple Incremental Stream Processing

100,000 - —
10,000 @osx  @sPY

1,000
100

‘Ml d d ‘ i o
Q3 Q9 Q10

TUPLE/SEC Q14 Q17 Q21
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DBToaster: TPC-H BENCHMARK

10,000,000
1,000,000
100,000
10,000
1,000

100

10

|
TUPLE/SEC

Single-Tuple Incremental Stream Processing

@oex @sPY () DBToaster

Q3

58



HIVM: disadvantage

Q =mup(RX S XT) Maintain under all updates

Maintain base tables + query result ...

R S T Q(D)
A B CNT B C CNT C D  CNT A D CNT
John 54 2 54 Gold 2 Gold 100 2 John 100 8
Mary 23 1 20 Silver 1 Gold 8 1 John 80 4
i Silver 50 1
Bill 54 4 Bl 100 16
Bronze 20 4
Bl 80 8

... as well as query subresults as auxiliary views

Mpp(S™T .
TAC(R xS) Sk Subresults can be of size |R|X|S| resp.
B D CNT
A C CNT 3; |S|X|T]|
54 100 4
John  Gold 4 )
54 80 2 In general: can be bigger than |Q(D)|
Bill Gold 8
20 Silver 1 Lo
Not all subresults are useful to materialize

59



IVM + HIVM: Disadvantage

Q= (RXSXT) Full join query

(e.g., Complex Event Processing)

Maintain base tables + query result ...

A B CNT B C CNT C D CNT A B (o D CNT
John 54 2 54 Gold 2 Gold 100 2 John 54 Gold 100 8
Mary 23 1 .
20 Silver 1 Gold 80 1 John 54 Gold 20 4
Bill 54 4 -
Silver 50 1
Bill 54 Gold 100 16
Bronze 20 4
Bill 54 Gold 80 8

(... as well as query subresults as auxiliary views for HIVM)

60



Tradeoff between IVM and HIVM

HIVMM IVM

Materialization of
Subresults
Memory footprint
(also impacts latency)

Recomputation of subresults
on updates
High update processing latency

61



Tradeoff between IVM and HIVM

HIVMM IVM

Materialization of
Subresults
Memory footprint
(also impacts latencv)

Recomputation of subresults
on updates
High update processing latency

Can we do better?

Key Insight
Avoid storing the materialized views; instead store a compressed representation.

62



Properties of Materialization of Q(D)

Q=(RxNSxNT)

1 3
3 4 | ™
2 4
2 3

Efficient

enumeration
of Q(DB)

I

4 3
3 5
6 5
3 2

o|lu|ls |+~ K
I

bWk

Requires |Q(DB)| space,
Q(NA2) in worst case

3 4 3 4
2 4 3 4
1 3 5 6
2 3 5 6
Array,
Linked List,

63



Constant-delay enumeration

Enumerate set Q (D)with constant delay from a data structure M:

tl

al

Q(D)

bl

C

cl

D

di

Constant time to enumerate first tuple

t2

a2

b2

c2

d2

t3

a3

b3

c3

d3

> Constant time between tuples

tn

an

bn

cn

dn

—_ Constant time between enumerating

Constant in data complexity: i.e., independent of |D| or |Q(D)],

last tuple and end of enumeration process

but may depend on |Q|.

Comparable to enumerating from an in-memory array

= Streaming decompression algorithm

64



Dynamic Yannakakis (DYN)

* Materialize a data structure that is:
—Succinct: no larger than the database D
—From which the query result can be enumerated with

constant delay
—Which can be efficiently maintained under updates

The Dynamic Yannakakis Algorithm:

Compact and Efficient Query Processing Under Updates.
M. Idris, M. Ugarte, S. Vansummeren. SIGMOD 2017

Conjunctive Queries with Inequalities Under Updates.
M. Idris et al. PVLDB 11(7), 2018

65



Dynamic Yannakakis (DYN)

* Materialize a data structure that is:
—Succinct: no larger than the database D
—From which the query result can be enumerated with

constant delay
—Which can be efficiently maintained under updates

To achieve this, DYN works only on acyclic conjunctive queries
(but extends to deal with aggregation, negation).

66



Conjunctive Queries (CQs)

Select-project-join queries with equi-joins only
Q =ny (R(a,b) @ S(a,c) x T(c,d,e))

SELECT A, C, SUM(L)

FROM R, S, T

WHERE R.A = S.A and S.C = T.C
GROUP BY A,C
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Acyclic Queries

A CQ is acyclic if its body admits a Generalized Join Tree (GJT)*

* GJTs for Acyclic CQs: A node labelled tree T
where

— Every leaf is a relation in the query

(T)
{c}
{alc}/\
/
R(a,b) S(a,c) T(c,d,e)

*Does not depend on
projections Q = R(a,b) x S(a,c) x T(c,d,e)



Acyclic Queries

A CQ is acyclic if its body admits a Generalized Join Tree (GJT)*

* GJTs for Acyclic CQs: A node labelled tree T
where
— Every leaf is a relation in the query
— Internal nodes are sets of attributes that are

subset of at least one of its children (also called (T)
guard) Q
{alc}/\
/
R(a,b) S(a,c) T(c,d,e)

*Does not depend on
projections Q = R(a,b) x S(a,c) x T(c,d,e)
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Acyclic Queries

A CQ is acyclic if its body admits a Generalized Join Tree (GJT)*

* GJTs for Acyclic CQs: A node labelled tree T
where
— Every leaf is a relation in the query
— Internal nodes are sets of attributes that are

subset of at least one of its children (also called (T)
guard) Q
{alc}/\
/
R(a,b) S(a,c) T(c,d,e)

*Does not depend on
projections Q = R(a,b) x S(a,c) x T(c,d,e)
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Acyclic Queries

A CQ is acyclic if its body admits a Generalized Join Tree (GJT)*

* GJTs for Acyclic CQs: A node labelled tree T
where

— Every leaf is a relation in the query
— Internal nodes are sets of attributes that are

subset of at least one of its children (also called (T)
guard) =
— Every variable in the tree induces a connected
subtreein T {a,c}/\
/
R(a,b) S(a,c) T(c,d,e)

*Does not depend on
projections Q = R(a,b) x S(a,c) x T(c,d,e)
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Acyclic Queries

A CQ is acyclic if its body admits a Generalized Join Tree (GJT)*

* GJTs for Acyclic CQs: A node labelled tree T
where

— Every leaf is a relation in the query
— Internal nodes are sets of attributes that are

subset of at least one of its children (also called (T)
guard) @
— Every variable in the tree induces a connected
subtreein T {a,c}/\
/
R(a,b) S(a,c) T(c,d,e)

*Does not depend on
projections Q = R(a,b) x S(a,c) x T(c,d,e)
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A cyclic query: the triangle query
Q = R(a,b) x S(b,c) x T(a,c)
T A {a,b}
- {a,b} \ x

; PN

R(a,b) S(b,c) T(a,c)




Objectives of Dyanmic Yannakakis (DYN)

* Materialize a data structure that is:
—Succinct: no larger than the database D
—From which the query result can be enumerated with

constant delay
—Which can be efficiently maintained under updates
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T-reduct: Compressed representation based on GJTs

Q = R(a,b) ¥ S(a,c) xT(c,d,e)

e Bottom-up semi-Join reduction
e Linear in the size of database

mac(R(a,b) > S(a, c))

A C CNT
5 20 1

2 15 2

R(a,b)

A CNT

5 1
2 4 1
2 3 1

[ &0

{a,c}

n.(R(a,b) ™ S(a,c) x T(c,d,e))

TN

C

15

CNT

2

20

1

T(c,d,e)

cC D E

20 1000 22

CNT

1

15 1250 33

1

10 1200 44

1
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Objectives of Dyanmic Yannakakis (DYN)

* Materialize a data structure that is:
—Succinct: no larger than the database D
—From which the query result can be enumerated with

constant delay
—Which can be efficiently maintained under updates
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T-reduct: Enumeration

Q = R(a,b) x S(a,c) = T(c,d,e) 7, (R(a,b) ™ S(a,¢) x T(c,d, e))

* Top-down: find “compatible” tuples

.. (R(a,b) ™ S(a,c))

A C CNT

5 20 1
2 15 2
{a,c}
Output: /\
A B C D 3 CNT
R(a,b) S(a,c) T(c,d,e)
2 41 15 1250 33 1

>
(g}
(o)

NT
5 1 1 20 20 1000 22 1

15 ‘15 1250 33 1
10 |1o 1200 44 1

N
IS
fury
[N

wlw|Nn|wm

RlRr|Rr]| R




T-reduct: Enumeration

Q = R(a,b) ¥ S(a,c) xT(c,d,e)

* Top-down: find “compatible” tuples

Output:

D
2 41 15 1250 33
2 3 15 1250 33

.. (R(a,b) ™ S(a,c))

A C CNT
5 20 1
2 15 2

R(a,b)
5 1 1
2 41 1
2 3 1

{a,c}

wlw(N|u»

>
(g}
(o)

n.(R(a,b) ™ S(a,c) @ T(c,d,e))

S(a,c)

20

N

T

15

10

RlRr|Rr]| R

T(c,d,e)

20 1000 22 1

‘15 1250 33 1

|1o 1200 44 1
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T-reduct: Enumeration

Q = R(a,b) x S(a,c) = T(c,d,e) 7, (R(a,b) ™ S(a,¢) x T(c,d, e))

* Top-down: find “compatible” tuples

.. (R(a,b) ™ S(a,c))

5 20 1
2 15 2
{a,c}
Output: /\
R(a,b) S(a,c) T(c,d,e)
41 15 1250 33 1

15 1250 33 1
1 20 1000 22 1

GVUINN N
w

«
=
[N
v
o

JZO 1000 22 1

2 1
2 4 1 2 15 1 15 1250 33 1
2 3 1 3 10 1 10 1200 44 1
3 5 1




T-reduct: Enumeration

Q = R(a,b) ¥ S(a,c) xT(c,d,e)

* Top-down: find “compatible” tuples
 Add indexes to make this efficient

o (D~ hY na Cf~ AN\

.q(R(a,b) ™ S(a,c) @ T(c,d,e))

N

R(a,b)

S(a,c)

41

1 5 o]
1 5 R :Il 1
2 ~\;

1

15 g1

3

1

10 =—t—

5 eyl

33 1 |
-ﬁ 1000 22 1 |
44 1 |
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What about projections ?

Compatible tree

Q = mgc(R(a,b) x S(a,c) x T(c,d,e))

{c}

N

T(c, d, e)

We can still enumerate
with constant delay!
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Objectives of Dyanmic Yannakakis (DYN)

* Materialize a data structure that is:
—Succinct: no larger than the database D
—From which the query result can be enumerated with

constant delay
—Which can be efficiently maintained under updates
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T-reduct: Update processing

Q = R(a,b) ¥ S(a,c) xT(c,d,e)

e Bottom-up: propagate update
through semi-join reduction
(view each node as IVM)

AS
A_Jc o]
5 10 1
5 20 -1

mac(R(a,b) 4 S(a, c))

15.

{a,c}

R(a,b)

I DEn
5

2~

>

n.(R(a,b) ™ S(a,c) x T(c,d,e))

{c}

/\

S(a,c)

C

15

CNT

2

20

1

15

10

wlw|N|[ U,

5

RlRr|Rk|~
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T-reduct: Update processing

Q = R(a,b) ¥ S(a,c) xT(c,d,e)

e Bottom-up: propagate update
through semi-join reduction
(view each node as IVM)

Age=Tqc (R (a,b) »x AS(a, C))

5 10 1
5 20 -1
AS
DNENED
5 10 1
5 20 -1

mac(R(a,b) 4 S(a, c))

15 .
{a,c}

R(a,b)

o Oe

o1 1]

2~

\
41 1

3 1

n.(R(a,b) ™ S(a,c) x T(c,d,e))

{c}

2N

S(a,c)

C

15

CNT

2

20

1

=

¢/

d

10

ajlw|lw|N

10

[RR VN RCR (AN
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T-reduct: Update processing

e Bottom-up: propagate update
through semi-join reduction
(view each node as IVM)

Age= 1o (R(a,b) x AS(a,c)) ‘

5 10 1
5 20 -1
AS
A_Jc o]
5 10 1
5 20 -1

Q = R(a,b) x S(a,c) x T(c,d,e) 7.(R(a,b) = S(a,c)  T(c,d, e))
C CNT
15 2 A= (Do ¥ T(c,d, €))
{c} | Se—s
T[ac(R(a; b) gl S(a, C)) 10 1
] 20 -1
=
15—l 5 | P
10
\%/\
R(a,b) S(a,c) T(c,d,e)
I O oEE ko o Lc o
: > 1 1 2 ca o 15 '-+125o 33 1 |
2~ 41 1 2 iz 1 20""|’ 1000 22 1 |
3001 3 s 1 10
T 10 : \| 1200 44 1 |
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T-reduct: Update processing

Q = R(a,b) ¥ S(a,c) xT(c,d,e)

* Index guards on
attributes

shared with sibling
Aye= e (AR(a, b) ™ S(a,c))

3 10 1
s |z |
AR
A8 o]
3 4 1

mac(R(a,b) 4 S(a, c))

15.

{a,c}

R(a,b)

I BEa
5

41 1

3 1

>

n.(R(a,b) ™ S(a,c) x T(c,d,e))

{c}

/\

S(a,c)

C

15

CNT

2

20

1

15

10

wlw|N|[ U,

5

RlRr|Rk|~
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T-reduct: Update processing

Q = R(a,b) ¥ S(a,c) xT(c,d,e) n.(R(a,b) = S(a,c) x T(c,d,e))
* Index guards on C  ONT
attnbutes { } 15 2 AC= nc(Aac X T(C, d: e)
C
shared with sibling 7, (R(a, b) ™ S(a,c)) ig 1
10 1
Aac= 7Tac(AR(av b) X S(a; C)) 10 1
3 10 1 {a,c}
3 5 1 Or— 3 1
i
AR R(a,b) S(a,c) T(c,d,e)
) a,C Y
CNT
ERENED o o= DEEEE
5 5 15 1 1250 33 1
2 e [Sr |
[ 1 3 15 1 ""|> 1000 22 1 |
3 J 3 1 T—| 0 0 10 |
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DYN in practice

100% = DBToaster

= % Processing Time = % Memory Consumption

98. 100. 96.3

TPC-H Aggregate queries ETPC-DS Aggregate queries

. Up to two order of magnitude faster
. Consumes up to one order of magnitude less memory
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Enumeration

mDYN mArray

50

40
o
(0]
)
o 30
£
|_
C
§e]
©
()
220
>
C
L

10

215.6MB 424.3VB 1.3GB

Output size (MB)



A note about complexity

Assume |AD| is constant, is the required update time also constant?

{c}

{a, c}

R(a, b) S(a, c) T(c, d, e)

Simple tree \
{b}

{a, b} {b, e}

R(a, b, c) S(a, b, d) T(b, e, f) U(b, e, g)




A note about complexity

* |ldeal IVM algorithm allows, for any
query Q
— Constant delay enumeration of Q(D)

— Constant-time update processing if
|AD | is constant

[Berkholz et al., PODS 2017; ICDT 2018]

Conjunctive query Q supports constant-delay enumeration
after constant-time updates

\ g

Q is g-hierarchical

(under certain complexity-theoretical assumptions)
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Q-hierarchical CQs

A CQ is g-hierarchical if its body has a g-tree*

Tape(R(a, b,c) X S(a,b,d) x T(b,e,f) x U(b,e, g))

Atom condition: each atom must
induce a directed path, starting from
the root

Projection condition: the projection
attributes must induce a connected
subtree that contains the root

*Does depend
on projections
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Q-hierarchical CQs

Theorem

A CQ is g-hierarchical if and only if it has a generalized join tree that is both
simple and compatible with the projection

Tape(R(a,b,c) ¥ S(a,b,d) x T(b,e,f) x U(b,e, g))

/ {b} \
{a, b} {b, e}
P~ ——

R(a, b, ¢)
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Q-hierarchical CQs

Theorem

A CQ is g-hierarchical if and only if it has a generalized join tree that is both
simple and compatible with the projection

Corollary

DYN provides constant-delay enumeration after constant-time updates
precisely for the class of g-hierarchical queries.

Matches the theoretical lower bound.
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What about Cyclic Queries?

* Use View Trees, which relax constraints on GJTs:
— interior nodes need not have guards
— Give up connectedness condition

Q = my(R(a,b) x S(b,c) x T(a,c))

na(naC(R(a, b) x S(b, c)) x T(a,

c)))

0)

{a}

Tq.(R(a,b) » S(b,c))

{a,c}

~

R(a,b)

S(b,c)

T(a,c)
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What about Cyclic Queries?

Use View Trees, relaxing constraints on GJTs
Nodes without guard may be superlinear in |D| but may help processing

to some updates

Q = my(R(a,b) x S(b,c) x T(a,c))

Size Q(N?) in worst case.

Assumptions:

IR =S| =1IT|=N
|AD| = constant

1)
I
{a}
Tqc(R(a,b) »x S(b,c))
> |{a,c}
R(a,b) S(b,c)

T(a,c)

I

I

Updates to R and S are O(N)

Updatesto T are
constant
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What about Cyclic Queries?

Use View Trees, relaxing constraints on GJTs
Nodes without guard may be superlinear in |D| but may help processing
to some updates

Add indicator projections to minimize space

Q =ny(R(a,b) = S(b,c) x T(a,c)) 1))

e (R(a,b) x S(b,c) x AT (a,c))

Size O(N). > 1{a,c}

R(a,b) S(b,c) T(a,c)

Assumptions: AT(a,c)
e IRI=1S| =T = N ] ; ]

* |AD| = constant
Updatesté’ foanthaes® A hodify 3T (a, ¢)

are constant, O(N) otherwise 7



What about Cyclic Queries?

Use View Trees, relaxing constraints on GJTs

Nodes without guard may be superlinear in |D| but may help processing

to some updates

Add indicator projections to minimize space and bulk update time
Q = my(R(a,b) = S(b,c) x T(a,c) 1))

{a}

e (R(a,b) x S(b,c) x AT (a,c))

Size O(N). > 1{a,c}

R(a,b) S(b,c) T(a,c)

Assumptions: AT(a,c)
e IRI=1S| =T = N ] ; ]

Bulk updates, |AD| = N
Bulk updates to R, S, or 3T are ®(N3/2) by
use of worst-case optimal join algorithms
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What about Cyclic Queries

* This approach proposed in:

Incremental View Maintenance with Triple Lock Factorization Benefits.
Milos Nikolic, Dan Olteanu:
SIGMOD Conference 2018: 365-380

* F-IVM features:
— View trees instead of GJTs for HIVM-based processing also allowing cyclic queries
— Processing of complex aggregations (see later)
— Exploiting factorized representations of updates and results (see later)
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Main Algorithmic Ideas

1. IVM = processing of delta queries

2. Materialize results of subqueries in
addition to the actual query result

3) 3. Exploit data skew

Time

— 1993

— 1997

—— 2009

—— 2018
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Exploiting Data Skew

® The maintenance approaches considered so far exploit query
structure but not data skew.

® These approaches do not achieve worst-case optimal update
and answer times in general.

- Exception: g-hierarchical queries

® \We present a maintenance approach that takes data skew into
account and admits:

- Worst-case optimal update and answer times
- Time-space trade-off

Counting Triangles under Updates in Worst-Case Optimal Time.
Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, Haozhe Zhang.
To appear in ICDT 2019
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Example: The Triangle Count

Maintain the triangle count @
under single-tuple updates to R, S, and T!

Q counts the number of tuples
in the join of R, S, and T.

Q =7()[R(a, b) X 5(b,c) X T(c, a)]
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Updates to the Triangle Count

R S T
AB | B C | CA|
a1 b1 2 b1 C1 2 Cl a1 1
a b |3 bio |1 o a |3

Cy az 3
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Updates to the Triangle Count

R S T RXSNXT
AB | B C | CA| ABC|
ay by |2 by c |2 aa |l a; b1 a ‘2-2-1:4
a b |3 bio |1 o a |3

3

C az
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Updates to the Triangle Count

R S T RXSXT
AB | B C | CA| ABC|
a1 b |2 bic |2 caa |l ay by |2-2-1=4
a» by |3 b1 |1 G a |3 ay b o =6
car |3 a b o 3=9
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Updates to the Triangle Count

R S T RXSXT
AB | B C | CA| ABC|
a1 b |2 bic |2 caa |l ay by |2-2-1=4
a» by |3 b1 |1 G a |3 ay b o =6
car |3 a b o 3=9

Q(D)

0
()|4+6+9=19
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Updates to the Triangle Count

R S T RXSNXT
AB | B C | CA| ABC|
a by |2 by c |2 caa |l ag by |2:2-1=4
a by |3 bic |1 G a |3 ap by [2-1-3=6
car |3 a b o 3=9
AR(a, b) Q(D)
AB | 0

a by |2 ()]4+6+9=19

103



Updates to the Triangle Count

R S T RXSNXT
AB | B C | CA| ABC|
a by |2 by c |2 caa |l ag by |2:2-1=4
a» by |3 bic |1 G a |3 ap by [2-1-3=6
car |3 a b o 3=9
AR(a, b) Q(D)
AB | 0

a by |2 ()]4+6+9=19

103



Updates to the Triangle Count

R S T RXSXT
AB | B C | CA| ABC|
a by |2 b1 c |2 caa |l ag by |2:2-1=4
a b |1 bic |1 oa |3 a1 b o -1-3=6
car |3 a b o 3=9
AR(a, b) Q(D)
AB | 0

a by |2 ()]4+6+9=19

103



Updates to the Triangle Count

R S T RXSXT
AB | B C | CA| ABC|
a by |2 b1 c |2 caa |l a b |2:2-1=4
a by |1 bio |1 o a |3 ai bl C2 +1-3=6
cax |3 ar by c3 =9
AR(a, b) Q(D)
AB | 0

a by |2 ()]4+6+9=19

103



Updates to the Triangle Count

R S T RXSXT
AB | B C | CA| ABC|
a by |2 b1 c |2 caa |l a b |2:2-1=4
a by |1 bio |1 o a |3 ai bl C2 +1-3=6
cax |3 ar by c3 =3
AR(a, b) Q(D)
AB | 0

a by |2 ()]4+6+9=19

103



Updates to the Triangle Count

R S T RXSXT
AB | B C | CA| ABC|
a by |2 b1 c |2 caa |l a b |2:2-1=4
a by |1 bio |1 o a |3 ai bl C2 +1-3=6
cax |3 ar by c3 =3
AR(a, b) Q(D)
AB | 0

a by |2 ()]4+6+3=13
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The Considered Maintenance Problem

single-tuple single-tuple single-tuple
update update update
database Dy D; s Do > e
[ Y I\\ I\\
[ 1 1
[N 1 AN 1 AN
1 \ 1 . 1 N
- ' N 1 N 1 N
aUX|I|ary 1 < 1 maintain 1 maintain
data 1 Ag ------ Lo Ay meee- s Ay e
structure ' R ' ‘ 1 ‘
L L VL
1 4 1 /I 1 /I
v ¥ v o v -
triangle maintain maintain
cour%t Q(Dg) ------ » Q(Dy) ----- > Q(D2) ----- ¥ oo

Given a current database D and a single-tuple update,
what are the time and space complexities for maintaining Q(D)?
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Much Ado about Triangles

The Triangle Query Served as Milestone in Many Fields

® Worst-case optimal join algorithms [Algorithmica 1997, SIGMOD R. 2013]
® Parallel query evaluation [Found. & Trends DB 2018]
® Randomized approximation in static settings [FOCS 2015]

® Randomized approximation in data streams
[SODA 2002, COCOON 2005, PODS 2006, PODS 2016, Theor. Comput. Sci. 2017]

Intensive Investigation of Answering Queries under Updates
® Theoretical developments [PODS 2017, ICDT 2018]

® Systems developments [F. & T. DB 2012, VLDB J. 2014, SIGMOD 2017, 2018]
® | ower bounds [STOC 2015, ICM 2018]

So far: No dynamic algorithm maintaining the
exact triangle count in worst-case optimal time!
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Naive Maintenance

“"Compute from scratch!”

0 [( R(a, b) + AR(a, b)) M S(b, c) X T(c, a)}

newR

() [neWR(a, b) X S(b,c) X T(c, a)]

Maintenance Complexity

® Time: O(|D|*®) using worst-case optimal join algorithms

® Space: O(|D|) to store input relations
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Classical IVM

“Compute the difference!”
Let AR(a, b) = {(a,b') s m}
0 [( R(a, b) + AR(a, b)) M S(b, c) X T{(c, a)}
0 [R(a, b) M STb, )X T(c, a)}
+

0 [AR(a., b) X oy S(b, ¢) M o0 T(c, a)}

Maintenance Complexity

® Time: O(|D|) to intersect C-values from S and T
® Space: O(|D|) to store input relations
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Higher Order IVM

“Compute the difference by using pre-materialized views!"
Let AR(a,b) = {(d',b') — m}
Pre-materialize Vst(b, a) = 7, S(b,c) X T(c, a)!
0 [( R(a, b) + AR(a. b)) M S(b, c) X T(c, a)}

b)
() {R(a, b) X S(b, c) X T(c, a)}
+

() [AR(a., b) X Oa=al ,b=b' \/ST(b7 a)}
Maintenance Complexity

® Time for updates to R: O(1) to look up in Vst
® Time for updates to S and T: O(|D|) to maintain Vst
e Space: O(|D|?) to store input relations and Vst (improvable to O(|D|®))
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Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound

Maintenance Time:  O(|D|)
Space:  O(|D|)

Known Lower Bound

Amortized maintenance time: not O(|D|%5~7) for any v > 0
(under reasonable complexity theoretic assumptions)
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Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound

Maintenance Time:  O(|D|)
Space:  O(|D|)

Can the triangle count
be maintained in
sublinear time?

Known Lower Bound

Amortized maintenance time: not O(|D|%5~7) for any v > 0
(under reasonable complexity theoretic assumptions)
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Closing the Complexity Gap

Complexity bounds for the maintenance of the triangle count

Known Upper Bound

Maintenance Time:  O(|D|)

Space:  O(|D|)
Yes!
Can the triangle count We propose: IVM#
be maintained in Amortized maintenance time:
sublinear time? O(|D|%%)

This is worst-case optimal!

Known Lower Bound

Amortized maintenance time: not O(|D|%5~7) for any v > 0
(under reasonable complexity theoretic assumptions)

109



IVM® Exhibits a Time-Space Tradeoff

Given ¢ € [0, 1], IVM® maintains the triangle count with
e O(|D|max{e:1=¢}) amortized time and
° O(|D|1+min{5,1—£}) space.

complexity
O(|D|*%) 4
— Space
—— Amortized Time
O(|DJ) |
05 worst-case optimality
O(ID*?) e=05
P H
0 0.5 1

® Known maintenance approaches are recovered by IVME.
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Main Ideas in [VM?

® Compute the difference like in classical IVM!
® Materialize views like in Higher Order IVM!

® New ingredient: Use adaptive processing based on data skew!
= Treat heavy values differently from light values!
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Relation Partitioning

Fix ¢ € [0, 1] and partition R into
® alight part R, = {t € R|
|oa=t.a] < D[},
® a heavy part Ry = R\R,!
R

light part
A B R
A B
}n < |DJ -

a bn heavy part
a b/ RH
m> |D|E _AB

ab’

112



Relation Partitioning

Fix ¢ € [0, 1] and partition R into Derived Bounds
® alight part R, = {t € R| e for all A-values a: |ca—,R.| < |D|¢
|oa=e.a < DI}, ® |maRy| < |D|'7¢
® a heavy part Ry = R\R,!
R
A B

light part
R,

AB

}n < |DJ -
a bn heavy part

a b/ RH
m > |D|5 AB
a b’




Relation Partitioning

Fix ¢ € [0, 1] and partition R into
® alight part R, = {t € R|
|oa=t.a] < D[},
® a heavy part Ry = R\R,!
R

light part
A B R
A B
}n < |DJ -

a bn heavy part
a b/ RH
m> |D|E _AB

ab’

Derived Bounds
e for all A-values a: |ca—,R.| < |D|¢

* |maRy| < |D|'F

Likewise, partition
e S =5, USy based on B, and
® T =T, U Ty based on C!
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Relation Partitioning

Fix ¢ € [0, 1] and partition R into
® alight part R, = {t € R|
|oa=t.a] < D[},
® a heavy part Ry = R\R,!
R

light part
A B Ru
A B
}n < |DJ -

a bn heavy part
a b/ RH
m> |D|E _AB

ab’

Derived Bounds
e for all A-values a: |ca—,R.| < |D|¢

* |maRy| < |D|'F

Likewise, partition
e S =5, USy based on B, and
® T =T, U Ty based on C!

Q@ is the sum of skew-aware views
W()[RU(aa b) X SV(ba C) X TW(Ca a)]
with U, V, W € {L, H}.
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Adaptive Maintenance Strategy

Given an update AR, (a,b) = {(a’,b') — m}, compute the difference for each skew-aware
view using different strategies:

Skew-aware View Evaluation from left to right Time
() [R*(av b) X SL(ba C) N TL(Cv a)} AR*(ala bl) : ZSL(b/a C/) ’ TL(C/a a/) O(|D‘E)
c/
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Adaptive Maintenance Strategy

Given an update AR, (a,b) = {(a’,b') — m}, compute the difference for each skew-aware
view using different strategies:

Skew-aware View Evaluation from left to right Time
() [R*(av b) X SL(ba C) N TL(Cv a)} AR*(ala bl) : ZSL(b/a C/) ’ TL(C/a a/) O(|D‘E)
c/

70 [Ro(3,6) 2 Su(b,€) X Th(e,8)]  AR.(,b) - STu(e', ) - Su(b'.¢') O(D™)
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Adaptive Maintenance Strategy

Given an update AR, (a,b) = {(a’,b') — m}, compute the difference for each skew-aware

view using different strategies:

Skew-aware View

Evaluation from left to right Time

T(y[R:(a, b) X Sp(b, c) X Ti(c, a)]

T(y[R(a, b) X Sy (b, ) X Tp(c, a)]

ﬂ'()[R*(a, b) X S;(b,c) X Ty(c, a)]

AR.(d',b')- ZSL(b’, ) - Ti(c',a) O(|DJf)

AR.(2, ) - STu(c, d) - Su(b, ') O(D[*)
AR.(2.b)-SS.(b, ) Tu(c',a') O(DF)

AR.(2, b)) - Tu(c, d) - Su(b, ') O(D[*)
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Adaptive Maintenance Strategy

Given an update AR, (a,b) = {(a’,b') — m}, compute the difference for each skew-aware

view using different strategies:

Skew-aware View

Evaluation from left to right Time

T(y[R:(a, b) X Sp(b, c) X Ti(c, a)]

T(y[R(a, b) X Sy (b, ) X Tp(c, a)]

ﬂ'()[R*(a, b) X S;(b,c) X Ty(c, a)]

T(y[R:(a, b) X S (b, c) X Ti(c, a)]

AR.(d',b')- ZSL(b’, ) - Ti(c',a) O(|DJf)

AR.(2, ) - STu(c, d) - Su(b, ') O(D[*)
AR.(2.b)-SS.(b, ) Tu(c',a') O(DF)

or
AR.(3, b)) - S Tu(c, ) - S (b, ") O(D**)
AR, (2, b)) Vsr(b', ) 0(1)
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Adaptive Maintenance Strategy

Given an update AR, (a,b) = {(a’,b') — m}, compute the difference for each skew-aware
view using different strategies:

Skew-aware View Evaluation from left to right Time
() [R*(av b) X SL(ba C) N TL(C7 a)} AR*(ala bl) : ZSL(b/a C/) ’ TL(C/a a/) O(|D‘E)
c/

70 [Ro(3,6) 2 Su(b,€) X Th(e,8)]  AR.(,b) - STu(e', ) - Su(b'.¢') O(D™)
AR.(o ) DSu(B,¢) - Tu(e',o) O(IDIF)

T(y[Re(a, b) X Sp(b, c) X Ty(c,a)]  or
AR.(d',b)- Z:T,‘./(c’7 a)- S (b, ") O(|D|*7*)

70y [Re(a,b) X S(b, c) X Ty(c,a)] AR.(a/,b)- Vsr(b/,a) 0(1)

Overall update time: O(|D|max(s:1=¢))
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Materialized Auxiliary Views

VRS(a, C) = Ta,c [RH(37 b) X SL(b’ C):I
Vst (b, a) = 7p,a[Su(b, c) X Ti(c, a)]
VTR(B, C) = Ta,c [TH(C7 a) X RL(a’ b)]

* Maintenance of Vgs(a, c) = ma c[Ru(a, b) X Sy (b, c)]

Update Evaluation from left to right

Time

ARk(a,b) = {(3/,) > m}  ARu(@,b) - L 5.(8,¢)

AS,(b,c) = {(b,c) s m}  AS(V,c)- SRu(d, b)

o(IDf7)

O(ID[*~#)
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Materialized Auxiliary Views

VRS(a, C) = Ta,c [RH(37 b) X SL(b’ C)]
Vst (b, a) = 7p,a[Su(b, c) X Ti(c, a)]
VTR(B, C) = Ta,c [TH(C7 a) X RL(a’ b)]

* Maintenance of Vgs(a, c) = ma c[Ru(a, b) X Sy (b, c)]

Update Evaluation from left to right Time
ARy(a,b) ={(a’,b')— m} ARy, b)->.5.(b,c) O(|DJf)
C/

ASi(b,c) = {(H.c) o m}  AS(H.¢)- TRa(d, )  O(ID[)

® Size of Vgs(a,c) = mac[Ru(a, b) X Si(b, c)]
[Vrs(a,c)l < |Rul-maxy{|op-pSi(b,c)]} = O(ID|***)
|Vrs(a,c)| < [Sc]-maxy {|op=prRu(a,b)|} = O(ID[**+(179)
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Materialized Auxiliary Views

VRS(a, C) = Ta,c [RH(37 b) X SL(b’ C)]
Vst (b, a) = 7p,a[Su(b, c) X Ti(c, a)]
VTR(B, C) = Ta,c [TH(C7 a) X RL(a’ b)]

* Maintenance of Vgs(a, c) = ma c[Ru(a, b) X Sy (b, c)]

Update Evaluation from left to right Time

ARy(a,b) = {(2,) -+ m}  ARu(@,b)-L5u(F,¢)  O(IDF)
ASi(b,c) = {(H.c) o m}  AS(H.¢)- TRa(d, )  O(ID[)

® Size of Vgs(a,c) = mac[Ru(a, b) X Si(b, c)]
[Vrs(a,c)l < |Rul-maxy{|op-pSi(b,c)]} = O(ID|***)
|Vrs(a,c)| < [Sc]-maxy {|op=prRu(a,b)|} = O(ID[**+(179)

* Overall: Update Time O(|D|™>{=:1=¢}); Space O(|D|**min{el=<})
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Rebalancing Partitions

Updates can change the frequencies of values in the relation parts!

® This can require rebalancing of partitions.
= Minor rebalancing: Transfer tuples from one to the other part of the same relation!

= Major rebalancing: Recompute partitions and views from scratch!

Both forms of rebalancing require superlinear time.

The rebalancing times amortize over sequences of updates.
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Extensions of IVM®?

Generalization of IVM#
® Partitioning on both attributes of each relation improves space
complexity.
® |VME variants obtain worst-case optimal maintenance time for counting
versions of Loomis-Whitney, 4-cycle, and 4-path.

Ongoing Work

® Characterization of the class of conjunctive count queries that admit
O(DO?) worst-case optimal maintenance time

® |Implementation of IVM®
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